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Effect of core polarization on magnetic dipole moments in deformed odd-mass nuclei
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Magnetic properties of deformed odd-mass nuclei are studied within a nonrelativistic mean-field-plus-pairing
approach, namely the Skyrme-Hartree-Fock-BCS approach with self-consistent blocking. For an odd number of
nucleons these approaches lead to the breaking of the time-reversal invariance. The deviation from the Schmidt
values of the isoscalar magnetic dipole moment is known to result from a subtle balance between core-polarization
effects and meson-exchange current effects. However, the former are usually calculated in the random phase
approximation without time-reversal symmetry breaking at the mean-field level. In this work we show that if one
takes into account this symmetry breaking already in the mean-field solution, the correction from core polarization
yields a significant contribution to the empirical quenching of the spin gyromagnetic ratios as compared to the free
values in deformed odd-mass nuclei. Moreover, we calculate magnetic dipole moments in the Bohr and Mottelson
unified-model description with self-consistent blocked mean-field intrinsic states. The obtained results in the
A ∼ 100 and A ∼ 180 mass regions as well as for three actinide nuclei compare favorably with experimental data.
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I. INTRODUCTION

It has been recognized for a very long time (see, e.g.,
Refs. [1,2] for an in-depth analysis) that the usual description
of magnetic properties in deformed odd-mass nuclei merely
due to the geometrical coupling of an unpaired (dubbed in
what follows as “last”) nucleon with an even-even core must
be corrected. Two corrective effects are generally considered.
The first and most important one is the coupling of the
dynamics of the last nucleon with the core nucleon dynamics
through time-reversal symmetry-breaking parts of the mean
field. This coupling generates the appearance of a spin-vector
component in that part of the one-body reduced density matrix
which is due to the core nucleons. It results also in the
existence of nonvanishing currents in the core. In deformed
nuclei, as described within the so-called unified model of
Bohr and Mottelson [3], this polarization manifests itself
phenomenologically as a quenching of the spin gyromagnetic
factors, gs , from their free values by about 30% [2]. Note,
en passant, that in this model approach, the totality of the
deviation of magnetic moments from their pure single-particle
values is merely attributed to a core polarization, within
which only spin degrees of freedom play a role. The second
correction, resorting to explicit mesonic degrees of freedom,
is deemed to be less important (see, e.g., Ref. [4]). It is not
directly accessible under the nonrelativistic reduction of the
nucleonic interactions because it represents the contribution to
the magnetic properties of the currents of the charged virtual
mesons responsible for the neutron-proton interaction. This
effect cannot be considered here in our microscopic approach
using a nonrelativistic effective nucleon-nucleon interaction
of the Skyrme type [5,6].

In the present paper, to study the magnetic effect of the
core polarization induced by the last nucleon, we work
within the Hartree-Fock-BCS (HFBCS) framework with a
self-consistent blocking of the last nucleon. We consider
eleven well-deformed nuclei (five odd-N and six odd-Z nuclei)
as typical examples in the A ∼ 100, A ∼ 180, and actinide
mass regions, assuming axial and intrinsic parity symmetries.

A direct comparison of the results of such microscopic
calculations in well-deformed nuclei with the spectroscopic
data may be performed using the unified-model framework [3]
as done, e.g., in Ref. [7]. This allows one to generate nuclear
states of a given spin and parity through the coupling of
the intrinsic and rotational degrees of freedom approximately
treated within this model. In such a treatment, the Coriolis
coupling may influence the nuclear spectroscopic properties
and in particular the magnetic ones which are the subject
of the present study. Nevertheless, we have checked for the
seventeen bandheads considered below and found that this
coupling could be operative in only one single case—the 7/2−
state in the 175Yb nucleus. For all other nuclei, no neighboring
bandheads with a K value differing by ±1 appear close enough
in energy to allow for this coupling in the first order of
perturbation theory. Consequently, the Coriolis coupling is
neglected here.

The nuclear interaction that we use is the standard Skyrme
interaction without inclusion, at this stage, of its tensor part.
Strictly speaking, this is rather an energy-density functional
because of the density dependence introduced in place of
the zero-range three-body potential initially proposed by
Skyrme [8]. Indeed, Stringari and collaborators showed that the
SIII parameter set with the three-body potential yields isoscalar
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spin instability in several subshell-closed, spin-unsaturated
nuclei [9], and Lipparini and collaborators showed that the
replacement with a two-body, density-independent term cures
this instability [10].

The reason we discard the tensor part of the Skyrme
interaction is because no parametrization which includes it and
is free from finite-size spin instabilities is available yet [11].
Actually, it was recognized that, at least at the perturbative
level, the tensor interaction plays within the energy-density
functional framework a minor or simply corrective role
for the ground-state mean-field characteristics [12] as well
as for recently examined excitation modes as high-spin
superdeformed rotation states [11] and isovector giant dipole
resonances [13].

Having acknowledged the limitations of our current
approach—ignoring the Coriolis coupling, tensor interaction,
mesonic currents—and discussed their expected minor impact
on our specific investigation carried out in the present study,
we come to the point of this paper. We show that the self-
consistent mean-field description offers a physical mechanism
which accounts for the core-polarization effect induced by
the presence of the unpaired (last) nucleon and that this
description yields a fair reproduction of the experimentally
observed magnetic dipole moments.

In the next section we present the theoretical framework,
namely the Skyrme-HFBCS approach with self-consistent
blocking, and the calculation of the spin quenching factor and
total magnetic dipole moment. Then we present the calculation
settings and the obtained results, and we provide a detailed
analysis and interpretation of the latter. In the last section, we
draw conclusions from the obtained results and propose some
extensions of this study.

II. THEORETICAL FRAMEWORK

A. Self-consistent mean-field solutions with time-reversal
symmetry breaking

Self-consistent mean-field ground-state solutions are ob-
tained in the Skyrme-Hartree-Fock-BCS framework, briefly
recalled below with an emphasis on the approximations
made and the peculiarities stemming from the time-reversal
symmetry breaking at the one-body level.

The nuclear Hamiltonian Ĥ considered is the sum of
the intrinsic kinetic energy K̂ , the nuclear interaction V̂ , and
the Coulomb interaction between protons. As often done, we
make the approximation that neutrons and protons have the
same mass m and neglect the two-body contribution to K̂ , so
that the intrinsic kinetic energy becomes a one-body operator
written as [14]

K̂ =
(

1 − 1

A

) A∑
i=1

p̂2
i

2m
. (1)

The nuclear interaction V̂ is chosen to be the Skyrme density-
dependent local two-body interaction defined by the sum of
the central V̂c, density-dependent V̂DD (to mock up three-body
effects) and spin-orbit V̂s.o. contributions given, in coordinate

representation, by

Vc(r1,r2) = t0(1 + x0Pσ ) δ(r1 − r2)

+ t1

2
(1 + x1Pσ ) [δ(r1 − r2) k2 + H.c.]

+ t2(1 + x2Pσ ) k† · δ(r1 − r2) k , (2)

where Pσ = 1
2 (1 + σ 1 · σ 2) is the spin-exchange operator,

k = i
2 (∇1 − ∇2), and H.c. denotes the Hermitian conjugate

of the preceding term in the bracket,

VDD(r1,r2) = t3

6
(1 + x3Pσ ) ρα

(
r1 + r2

2

)
δ(r1 − r2), (3)

where ρ is the nucleon density,

Vs.o.(r1,r2) = i W0 (σ 1 + σ 2) · k† × δ(r1 − r2)k . (4)

In the context of time-reversal symmetry-breaking calcula-
tions, it should be noted that the two-body density-dependent
interaction VDD is not equivalent to a three-body zero-range
interaction, as discussed earlier by various authors (see, e.g.,
Ref. [10]).

As is well known, the expectation value E of the above
Hamiltonian Ĥ calculated for a normalized Slater determinant
|�〉 is a time-even functional

E =
∫

dr (Hkin(r) + Hc(r) + HDD + Hs.o.(r) + HCoul(r))

(5)

of local densities, where Hkin(r), Hc(r), HDD(r), Hs.o.(r),
and HCoul(r) are the kinetic, central, density-dependent, spin-
orbit, and Coulomb energy-density contributions. These local
densities are classified in two categories according to their
behavior under time-reversal symmetry, represented by an
antiunitary operator T :

(1) time-even densities, which commute with T and are
scalar or rank-2 tensor quantities: nucleon density
ρt (r), kinetic-energy density τt (r), spin-current tensor
Jμν
t (r);

(2) time-odd densities, which anticommute with T and
are vector quantities: spin density st (r), current (or
momentum) density jt (r), spin-kinetic-energy density
Tt (r).

The subscript t denotes the considered charge state, namely
t = n for neutrons and t = p for protons. It is omitted when
the sum of neutron and proton contributions is implied. The
definition of the above listed densities can be found, e.g., in
Refs. [6,11,15,16] but are explicated in Appendix A—together
with the above energy-density contributions—to make this
paper self-contained. Note that additional densities come
into play when the nuclear interaction includes tensor terms
(see, e.g., Ref. [12]).

Because we study here well-deformed nuclei (in order
for their mean-field description to be relevant) with axial
and left-right symmetric shapes in their ground state, the
single-particle states denoted hereafter as |i〉 have a definite
projection 	i of the angular momentum on the symmetry axis
and a definite parity πi . On the other hand, the suppression
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of the Kramers degeneracy does not allow us in principle to
define pairs of states having respectively 	i > 0 and 	i < 0
values, as this is the case when the time-reversal symmetry
is present. In the BCS treatment of pairing correlations, this
poses the problem of properly defining the notion of pairs. In
this work we define the conjugate state |ĩ〉 of a given neutron
or proton single-particle state |i〉 as the one that has the same
charge state and the largest overlap in absolute value with
the time-reversed state |i〉 = T |i〉 (for the space-spin part of
the states). In practice, it turns out that this overlap is equal
to 1 within 1% or less for all cases encountered. One can
similarly define a neutron-proton pair without ambiguity. Thus,
due to the perturbative character of the polarization effects
which we have above alluded to, it is generally possible to
assign unambiguously single-particle states of a given (|	|,π )
subspace into well-defined pairs which will be dubbed below
as quasidegenerate pairs.

In the well-deformed nuclei the unified-model picture for
the ground state (see Eq. (4-19) of Ref. [17]) applies and allows
one to equate the total angular momentum I and parity π in
the ground state with the angular-momentum projection on
the symmetry axis K = 	i and parity πi of the last nucleon,
namely I = K and π = πi in the absence of Coriolis coupling
effects.

When solving the Hartree-Fock-BCS equations, we start
from a converged solution for an underlying even-even core
(assuming axial and left-right symmetries) and implement
the self-consistent blocking procedure. A priori, there is an
ambiguity in the definition of such a core stemming from
the possibility of considering the last nucleon as a hole or
a particle state in one of the two relevant cores. In practice,
provided that the two cores have roughly the same deformation,
such an ambiguous choice has no practical consequence, due
to the self-consistent treatment to be performed from either
starting point. In practice, in what follows, we will take as core
nuclei the isotopes having one neutron or one proton less than
the studied odd nuclei. Then the single-particle state which
has the desired quantum numbers K and π and the lowest
energy above the underlying even-even core is imposed to
have an occupation factor equal to 1 and does not participate
in pair excitations. The BCS equations are thus solved for the
remaining single-particle spectrum.

B. Choice of the Skyrme parametrization

Two points of view can be adopted to determine the Skyrme
parametrization:

(1) interaction point of view: the independent parameters
to be considered are those entering the various parts of
the nuclear interaction Eqs. (2) to (4);

(2) functional point of view: the parameters to be consid-
ered are the Bi coupling constants appearing in the ex-
pression of the hamiltonian density (see Appendix A),
subject to Galilean invariance.

In the first point of view, all terms corresponding to the
coupling constants Bi should be taken into account, whereas in
the second point of view one can choose to discard some of the
Bi terms (see Appendix A). In either approach the adjustment

of parameters is traditionally performed in even-even nuclei
so that the terms involving time-odd local densities identically
vanish. Therefore these terms are not constrained and may
yield spin instabilities in nuclear matter. This is the case for
SLy4, SLy5, and all TIJ parameter sets [11], but not for the
more recent parametrization SLy5* [18] built from SLy5 [19]
with the additional constraint not to yield finite-size spin
instabilities in nuclear matter.

In finite nuclei the appearance of instabilities depends
particularly on the strength of the B18 and B19 coupling
constants, which drive the �s and �st contributions to
the Hamiltonian density and Hartree-Fock Hamiltonian, but
also on the numerical implementation of the Hartree-Fock
equations. Here we employ a matrix representation of the
Hartree-Fock Hamiltonian using the cylindrical harmonic-
oscillator basis and we evaluate all integrals by a Gauss-type
quadrature (Gauss-Hermite along the symmetry axis z and
Gauss-Laguerre in the perpendicular plane). We have found no
instability with SLy4 and SLy5, and so did we using SIII [20],
SkM* [21], and SLyIII.0.8 [22].

The various parameter sets can be split into different
categories according to (i) the power α of the density
dependence:

(1) α is integer: this is the case of SIII and SLyIII.xx
for which α = 1; these functionals can be regularized
when used in configuration-mixing calculations such
as the generator coordinate method or symmetry
restoration [23];

(2) α is noninteger, usually fractional: this is the case
of SkM*, SLy4, SLy5, and TIJ, which cannot be
regularized;

(ii) according to the neglect or the inclusion of the
←→
J

2

terms:

(1)
←→
J

2
terms neglected: SIII, SkM*, SLy4, etc.;

(2)
←→
J

2
terms taken into account: SLy5, SLy5*, SLyIII.xx,

TIJ, etc.;

(iii) or according to the presence or absence of the tensor
interaction:

(1) tensor interaction taken into account: TIJ;
(2) no tensor interaction: SIII, SkM*, SLy4, SLy5, SLy5*,

SLyIII.xx, etc.

Since by now no parametrization is yet available that
includes the tensor part of the Skyrme interaction and is,
at the same time, free from finite-size spin instabilities, we
consider here only the central and spin-orbit parts. Moreover,
we have to restrict to parametrizations in which the center-
of-mass correction is treated in the above-mentioned way,
namely the one-body contribution to the binding energy and
effective-mass field [defined in Eq. (A30)] only is taken into
account in the adjustment procedure.

In this context, and for the sake of making in our study
meaningful comparisons between interactions and with data,
we retain two parameter sets satisfying the following three
conditions: (i) they are free from finite-size spin instabilities,
(ii) they have the same power α of the density dependence,
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and (iii) one is fitted with the
←→
J

2
terms taken into account and

the other is without these terms. The only choice left among
the above quoted (and frequently used) parametrizations is
SIII and SLyIII.xx. More precisely we use here the SLyIII.0.8
parameter set as recommended in Ref. [22].

When using SIII interaction, the Coulomb direct and
exchange (approximated à la Slater) contributions are taken
care of as discussed in Appendix A [see Eq. (A3)]. On the
contrary, the SLyIII.0.8 interaction parameters have been fitted
by neglecting completely the Coulomb exchange contribution,
thus preserving the regularizable character of this energy
functional.

In the calculations performed with SIII, we neglect the
←→
J

2
terms as well as the s · �s terms in the energy-density

functional, and all the contributions they produce in the
Hartree-Fock Hamiltonian. In particular, the only time-odd
fields are the spin field S(r) and the current field A(r). We call
this framework the minimal scheme. In contrast, when using
the SLyIII.0.8 parametrization, all terms in the energy-density
functional and in the Hartree-Fock Hamiltonian produced by
the central and spin-orbit parts of the Skyrme interaction are
taken into account. In addition to the above two time-odd
fields we also have the spin-gradient field C(r), which can
be considered as a spin-dependent effective-mass field. This
framework is called here the full scheme.

C. Magnetic dipole moment

In the unified model of Bohr and Mottelson, the magnetic
dipole moment μtot of the axially symmetric ground state of
an odd-mass nucleus is the sum of an intrinsic contribution
μintr and a contribution from the collective degrees of freedom
μcoll (see Eq. (4-86) of Ref. [17]).

For K �= 1/2, the former is proportional to the expectation
value (for the microscopic state) of the projection μ̂z of
the magnetic dipole moment operator on the symmetry axis
(chosen to be the z axis) according to

μintr = K

K + 1
〈�|μ̂z|�〉, (6)

where |�〉 is the normalized nuclear state with good quantum
numbers K and π . The one-body operator μ̂z is defined by

μ̂z = g��̂z + gs ŝz, (7)

where �̂z and ŝz are the corresponding projections of the
single-particle orbital and spin angular-momentum operators.
Because μ̂z is a one-body operator, 〈�|μ̂z|�〉 can be written
in the same form as in the independent-particle model (where
core polarization is absent). This allows us to define an
effective spin gyromagnetic ratio g(eff)

s by the relation

〈�|μ̂z|�〉 = g
(q)
� 〈�̂z〉odd + g(eff)

s sodd, (8)

where q is the charge state of the odd nucleon (the other
charge state being denoted by q) and 〈�̂z〉odd (resp. sodd)
is the expectation value of �̂z (respectively, ŝz) for the odd
nucleon. The ratio g(eff)

s /g
(q)
s is called the spin quenching factor.

According to Eqs. (7) and (8) this ratio takes the following

expression:

g(eff)
s

g
(q)
s

= 〈�|μ̂z|�〉 − g
(q)
� (K − sodd)

g
(q)
s sodd

. (9)

To exhibit explicitly the core-polarization effect on the
quenching factor we rewrite g(eff)

s /g
(q)
s as

g(eff)
s

g
(q)
s

= 1 − δ , (10)

where

δ =
∑

t

(
g

(t)
� − g(t)

s

) 〈�|ŝz|�〉(t)
core

g
(q)
s sodd

(11)

represents the core-polarization contribution to the spin
quenching factor. In Eq. (10) the minus sign has been chosen
because the empirical value of g(eff)

s /g
(q)
s is smaller than 1.

The collective contribution μcoll, on the other hand, is
proportional to the collective gyromagnetic ratio gR according
to

μcoll = K

K + 1
gR . (12)

In this work we calculate gR microscopically within the
Inglis-Belyaev approximation in the underlying even-even
nucleus, which gives the “unpolarized” value g

(unpol)
R , and we

compare it with the “polarized” value g
(pol)
R obtained with the

same expression using the single-particle states, occupation
factors, and quasiparticle energies resulting from the HFBCS
calculation with blocking.1 In both cases we can use the
following expression deduced from that of Ref. [24],

gR =
∑

k,�〈�|μ̂−|k〉〈k|ĵ+|�〉 (ukv� − u�vk)2/(Ek + E�)∑
k,�〈�|ĵ−|k〉〈k|ĵ+|�〉 (ukv� − u�vk)2/(Ek + E�)

,

(13)

where the sums run over all Hartree-Fock-BCS single-particle
states, except the blocked state when the polarized value
is computed. The operators ĵ± = ĵx ± i ĵy are the usual
angular-momentum raising and lowering operators (similar
expressions hold for μ̂±), Ek is the quasiparticle energy of the
single-particle state |k〉, and uk and vk are the usual BCS
vacancy and occupation amplitudes for the single-particle
state |k〉. It is worth noting that the free gs value is used in
the μ̂− operator. This enables to assess the impact of the
core-polarization mechanism studied here on this quantity,
especially in view of the earlier finding that the effect of core
polarization on gR translates into different effective gs factors
in μ̂z and μ̂± matrix elements [25,26].

III. RESULTS AND DISCUSSION

A. Calculations settings

We apply the above theoretical formalism to examine the
magnetic properties of the following nuclei: 99Sr, 99Y, 103Mo,

1The time-reversed conjugate states are thus replaced with the
conjugate states defined in Subsec. II A.
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TABLE I. Harmonic-oscillator basis parameters b (in fm−1) and
q (dimensionless) optimized with 13 major shells for SIII and
SLyIII.0.8 parametrizations of the Skyrme functional. The strengths
of the seniority force used for the optimizations are given in Table II.

Nucleus SIII SLyIII.0.8

b q b q

98Sr 0.507 1.37 0.514 1.16
102Mo 0.502 1.24 0.511 1.12
174Yb 0.528 1.57 0.497 1.59
178Hf 0.520 1.45 0.498 1.58
234U 0.506 1.32 0.518 1.22
236U 0.505 1.32 0.518 1.22

103Tc, 175Yb, 175Lu, 179Hf, 179Ta, 235U, 235Np, and 237Np.
They are representative nuclei of three deformation regions,
namely A ∼ 100, A ∼ 180, and actinide nuclei, for which
some experimental data are available.

We choose the SIII and SLyIII.0.8 Skyrme parameter sets as
argued in Subsec. II B. For each parametrization the cylindrical
harmonic-oscillator basis parameters are optimized for the
core even-even nucleus by minimizing the binding energy.
The definitions of the size parameter b and the deformation
parameter q is to be found in Ref. [27]. The truncated
harmonic-oscillator basis contains thirteen major shells. In
Table I we report the obtained values of b and q.

For each charge state, the single-particle states participating
in the BCS treatment lie up to 6 MeV above the Fermi
level. As usual (see Ref. [28] for a precise definition) a
smoothing factor is attached to each single-particle state to
suppress sudden variations in the configuration-space content.
It is defined by a width parameter μ = 0.2 MeV. For such a
configuration space, the strengths of the seniority force in BCS
have been calibrated in each mass region against experimental
three-point mass formulas (centered on the odd nuclei as
suggested in Ref. [29]). With the standard notation G

(t)
0 of

the constant pairing parameter for the charge state t (such that
the corresponding matrix element of the residual interaction
is given by G(t) = G

(t)
0 /(N (t) + 11), where N (t) is the number

of nucleons in this charge state), the calculation procedure is
denoted as HFBCS(G). Table II displays the calibrated values
of G

(t)
0 for the various mass regions.

Finally the numbers of the Gauss integration points used in
the z direction and in the perpendicular plane are N

(z)
G = 50

TABLE II. Seniority force strengths for neutrons G
(n)
0 and protons

G
(p)
0 (in MeV) calibrated for each Skyrme parametrization and each

mass region.

Mass region SIII SLyIII.0.8

G
(n)
0 G

(p)
0 G

(n)
0 G

(p)
0

A ∼ 100 −17.9 −19.5 −18.6 −20.8
A ∼ 176 −18.1 −16.5 −18.1 −16.8
A ∼ 234 −18.2 −16.9 −17.0 −13.5

(25 points for z > 0 because parity symmetry is assumed) and
N

(r)
G = 20, respectively.

B. Mechanism of the time-reversal symmetry breaking
and core-polarization effect

Let us outline the physical mechanism for the time-reversal
symmetry breaking in the mean field and the appearance of the
core-polarization effect in odd-mass nuclei. The presence of an
unpaired neutron or proton on top of the even-even core leads
to the appearance of uncompensated time-odd fields in the
Hartree-Fock Hamiltonian (A29), which cause a suppression
of the Kramers degeneracy in the single-particle spectrum. In
the beginning of the iterative procedure these fields are equal to
the mere contribution of the last nucleon, which we write with
the subscript “odd.” The expressions of the time-odd fields for
the charge states q and q (defined in Subsec. II C) thus become

Aq = −2(B3 + B4) jodd + 2B9 ∇ × sodd, (14)

Aq = −2B3 jodd + B9∇ × sodd, (15)

Sq = 2B9∇ × jodd + 2[B10 + B11 + ρα(B12 + B13)]sodd

− (B14 + B15) Todd + 2(B18 + B19)�sodd, (16)

Sq = B9 ∇ × jodd + 2(B10 + ραB12) sodd (17)

Cq = −(B14 + B15) sodd (18)

Cq = −B14 sodd. (19)

As substantiated in Sec. III, the main part of the converged
fields Sq , Aq , and Cq consists of these “initial” values, which
are merely due to the last nucleon. The differences between the
actual Sq , Aq , and Cq fields and their initial values, or between
the whole Sq̄ , Aq̄ , and Cq fields and zero, correspond only to
perturbative corrections. These corrective terms yield, as a
result of the mean-field iteration process, a core polarization
affecting currents and spin-vector densities. In such a way,
at the end of the self-consistent procedure, the single-particle
spectrum does not possess the Kramers degeneracy anymore.
This effect is similar to a magnetic core polarization.

C. Intrinsic magnetic moments

We perform HFBCS(G) calculations with SIII and
SLyIII.0.8 Skyrme parametrizations using the corresponding
parameters listed in Tables I and II by blocking the con-
strained Kπ orbital. The ground-state results obtained are
given in Table III, with a straightforward notation. Let us
simply mention that the rank in the given Kπ single-particle
subspace—sorted by increasing single-particle energy—is the
number of the single-particle state closest to the Fermi level2

and that the Q20 values correspond to the quadrupole moment
of the total (mass) distribution. Here in addition to the gs

quenching factors we display in nuclear magneton μN units
the expectation value of the μ̂z operator denoted by 〈μ̂z〉.

2We define the Fermi energy as the arithmetic mean of the Nt th and
(Nt + 1)th single-particle energies for the charge state t , sorted by
increasing order.
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TABLE III. HFBCS(G) ground-state results using SIII and SLyIII.0.8 (abbreviated SLyIII below) with the corresponding parameters of
Tables I and II. The energy E is the binding energy, Q20 is the mass quadrupole moment, sodd is the expectation value (in � units) of the
ŝz operator for the blocked state, 〈μ̂z〉 is the expectation value (in nuclear magneton μN units) of the μ̂z operator for the nuclear state, and
g(eff)

s /g(q)
s is the spin quenching factor. The superscript q denotes the charge state of the last nucleon.

Nucleus Kπ (rank) E (MeV) Q20 (fm2) sodd 〈μ̂z〉 g(eff)
s /g(q)

s

SIII SLyIII SIII SLyIII SIII SLyIII SIII SLyIII SIII SLyIII

99Sr 5/2−(3) −829.267 −828.052 1010.1 874.7 0.380 0.370 −1.054 −1.203 0.725 0.851
3/2+(5) −829.281 −828.664 961.5 807.3 0.342 0.328 −1.050 −1.172 0.803 0.935

99Y 5/2+(2) −836.410 −836.302 985.3 743.3 0.427 0.410 4.097 4.196 0.848 0.920

103Mo 3/2+(5) −876.726 −877.652 866.5 581.5 0.346 0.285 −1.041 −1.018 0.786 0.935
5/2−(3) −876.561 −876.928 949.3 660.8 0.369 0.335 −1.028 −1.069 0.728 0.835

103Tc 5/2+(2) −879.088 −881.418 692.2 438.1 0.398 0.370 3.935 3.996 0.825 0.902
3/2−(4) −879.244 −880.745 796.7 572.8 0.489 0.487 3.270 3.393 0.827 0.876

175Yb 7/2−(3) −1405.205 −1404.961 1882.9 1820.2 −0.417 −0.421 1.139 1.307 0.713 0.811
175Lu 7/2+(2) −1405.158 −1405.588 1855.8 1779.2 −0.478 −0.478 1.866 1.681 0.791 0.861
179Hf 9/2+(2) −1432.423 −1432.221 1750.2 1709.2 0.435 0.437 −1.222 −1.445 0.734 0.865

179Ta 7/2+(2) −1431.325 −1431.787 1811.3 1771.5 −0.479 −0.479 1.877 1.687 0.786 0.857
9/2−(1) −1431.651 −1431.940 1727.3 1680.9 0.478 0.479 6.202 6.428 0.816 0.900

235U 7/2−(5) −1774.887 −1770.228 2572.6 2477.1 0.351 0.357 −0.987 −1.196 0.735 0.876

235Np 5/2+(5) −1773.765 −1770.160 2619.5 2527.4 0.341 0.346 3.729 3.887 0.824 0.896
5/2−(4) −1773.885 −1770.583 2608.6 2531.7 −0.384 −0.383 1.167 1.024 0.801 0.868

237Np 5/2+(5) −1786.173 −1781.834 2698.0 2611.7 0.339 0.344 3.722 3.879 0.825 0.897
5/2−(4) −1786.212 −1782.170 2693.7 2620.0 −0.386 −0.386 1.163 1.019 0.799 0.866

The intrinsic magnetic moment can be deduced from 〈μ̂z〉 by
multiplying it by K/(K + 1).

Overall the calculated quenching factor is smaller—
corresponding to a stronger quenching effect—when using the
SIII parameter set than with the SLyIII.0.8 parametrization.
It typically falls in the 0.70–0.85 range with the former and
0.80–0.95 with the latter. Even though the empirical value of
the order of 0.7 is even smaller, the calculated results show
that at least half of the observed quenching can be accounted
for by a core-polarization effect. The mechanism responsible
for this effect can be analyzed thanks to the above-mentioned
perturbative character of the time-odd fields.

Indeed, to a good approximation the values obtained for the
gs quenching factor can be reproduced within a perturbative
approach to the time-odd part ĥ

(t)
odd of the Hartree-Fock

potential using both Skyrme parametrizations considered here.
In this approach we calculate at first order in ĥ

(t)
odd the core-

polarization contribution δ to the spin quenching factor after
one iteration starting from the HFBCS(G) solution for the
core even-even nucleus. Details of calculations are given in
Appendix B.

Let us first discuss the results obtained with the SLyIII.0.8
parametrization because all terms generated in the energy and
one-body fields by the central part of the Skyrme interaction are
taken into account. As visible from Table IV, there is a good
agreement between the perturbative and the self-consistent
calculations of δ. The former tend in most cases to produce
only a slight overestimation of the core-polarization effect.
This validates the qualitative description of the mechanism of
time-reversal symmetry breaking presented in Subsec. III B
and allows us to provide a fine analysis of this effect on the
spin quenching factor.

At first order of perturbation it is possible to express δ as
a sum of contributions from the three time-odd Hartree-Fock
fields

δ = δS + δA + δC, (20)

where the indices S, A, and C refer to the spin field S,
current field A, and the spin-gradient field C, respectively.
Table IV shows that the core-polarization effect on the spin
quenching factor is driven by a competition between the spin
field and the spin-gradient field. More precisely the dominant
contribution to δ is δS and is partly counterbalanced by δC , with
the contribution from the current field playing a weak role.

TABLE IV. Calculated values of δ. The “Exact” columns refer
to the self-consistent HFBCS(G) calculations. In the perturbative
calculations, the contributions from each time-odd Hartree-Fock
fields are also reported. The SLyIII.0.8 parametrization has been
used. See the text for details.

Nucleus Kπ Exact Perturbative

sodd δ δ δS δA δC

99Sr 3/2+ 0.328 0.065 0.039 0.181 −0.033 −0.109
99Y 5/2+ 0.410 0.080 0.101 0.188 −0.027 −0.061
179Hf 9/2+ 0.437 0.135 0.159 0.273 −0.022 −0.092

179Ta 7/2+ −0.479 0.143 0.187 0.246 0.010 −0.069
9/2− 0.479 0.100 0.122 0.202 −0.015 −0.065

235U 7/2− 0.357 0.124 0.143 0.244 −0.011 −0.090

235Np 5/2+ 0.346 0.104 0.122 0.195 −0.012 −0.060
5/2− −0.383 0.132 0.157 0.210 0.013 −0.066
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TABLE V. Contributions to δ from each Skyrme parameter using the SLyIII.0.8 parametrization.

Nucleus Kπ Exact Perturbative

sodd δ δ δt0 δt0x0 δt1 δt1x1 δt2 δt2x2 δt3 δt3x3 δW0

99Sr 3/2+ 0.328 0.065 0.039 0.546 −0.153 −0.178 0.019 −0.110 0.037 −0.155 0.055 −0.021
99Y 5/2+ 0.410 0.080 0.101 0.319 0.079 −0.103 −0.020 −0.031 −0.008 −0.076 −0.024 −0.034
179Hf 9/2+ 0.437 0.135 0.159 0.546 0.004 −0.166 −0.009 −0.086 0.020 −0.127 −0.006 −0.016

179Ta 7/2+ −0.479 0.143 0.187 0.402 −0.005 −0.087 0.005 −0.030 −0.015 −0.107 0.004 0.022
9/2− 0.479 0.100 0.122 0.381 0.015 −0.100 −0.010 −0.049 0.003 −0.096 −0.002 −0.022

235U 7/2− 0.357 0.124 0.143 0.588 −0.059 −0.170 0.001 −0.099 0.031 −0.136 0.016 −0.029

235Np 5/2+ 0.346 0.104 0.122 0.342 0.058 −0.096 −0.015 −0.036 −0.007 −0.086 −0.018 −0.019
5/2− −0.383 0.132 0.157 0.336 0.020 −0.065 0.001 −0.037 −0.013 −0.090 −0.007 0.011

Moreover, the matrix elements 〈φk′ |ĥ(t)
odd|φk〉 entering the

expression (B9) of δ can be viewed as linear functions of the
Skyrme parameters ti , tixi , and W0 in the interaction point of
view or linear functions of the coupling constants Bi in the
functional point of view. Therefore, each of the three time-odd
field contributions can be broken down in terms generated by
the Skyrme parameters or the coupling constants. We can thus
write δ as the following sums:

δ =
3∑

i=0

(
δti + δtixi

) + δW0 (21)

and

δ =
∑

i

(
δ

(Bi )
S + δ

(Bi )
A + δ

(Bi )
C

)
, (22)

where the sum over i in Eq. (22) involves the retained
coupling constants (namely B1 to B15, B18 and B19 in the
full scheme, and B1 to B13 in the minimal scheme). The
contribution to δ from a given Skyrme parameter in Eq. (21)
represents the value of δ when all the other parameters are
set to 0 in h

(t)
odd when computing δ(t) from Eq. (B9). Moreover

the decompositions (20) and (22) thus imply, for example,
δS = ∑

i δ
(Bi )
S . The values of each contribution in Eq. (21)

are displayed in Table V for SLyIII.0.8. It is found that the
dominant term is δt0 and that this term is counterbalanced by
δt1 and δt2 . Overall the δtixi

contribution is much smaller than
δti for all values of i. Finally, even if δW0 is always smaller than
the δti terms, we find without exception that the sign of δW0 is
opposite to the sign of sodd. For positive values of sodd, which
is most often the case in our selected sample of nuclei, the
spin-orbit term yields a slight reduction of the spin quenching
factor.

Let us now turn to the SIII parametrization. As explained

in Subsec. II B, it has to be used without the
←→
J

2
terms. In

the minimal scheme considered here, the s · �s terms are
also discarded. Therefore, we have by definition δC = δt1 =
δt1x1 = δt2 = δt2x2 = 0. In this case we still find that the δS

contribution to δ is much larger than δA for all considered
nuclei. With the 3/2+ solution in 99Sr as a representative
example, we obtain the results reported in the first line of
Table VI.

In order to compare with the results obtained using
SLyIII.0.8, let us also consider each parameter set in the
scheme appropriate to the other set. The results obtained with
SIII in the full scheme and those obtained with SLyIII.0.8 in
the minimal scheme are reported in the second and third lines
of Table VI. For both parametrizations we observe that the
exact value of δ drops when going from the minimal scheme
to the full scheme. This drop is reproduced in the perturbative
approach, which allows us to investigate the reasons for this
strong decrease in the light of the decomposition of δ given
by Eq. (20). As can be seen in Table VI, the inclusion of all
time-odd terms not only leads to a significant, negative value
of δC , but also decreases the δS contribution. In both schemes
the spin-current contribution δA is small and its variation does
not contribute to the observed drop of δ.

To understand the decrease of δS from the minimal scheme
to the full scheme, we need to decompose δS in terms of
the coupling constants B9 to B15, B18, and B19 appearing in
Eq. (A35). The results for the Kπ = 3/2+ solution of the 99Sr
nucleus are displayed in Table VII. In the four calculations the
spin-orbit contribution δS,B9 is found to be negligible. From
the first and third lines of Table VII it is clear that, in the
absence of the B14, B15, B18, and B19 terms, the value of δS

results from a competition between δ
(B11)
S and δ

(B12)
S on the one

TABLE VI. Perturbative analysis of the core-polarization contribution δ to the gs quenching factor for the Kπ = 3/2+ solution in 99Sr with
SIII and SLyIII.0.8 (abbreviated SLyIII) parametrizations in the minimal or full scheme (see Subsec. II C for definition).

Parameter Scheme Exact Perturbative

set sodd δ δ δS δA δC

SIII Min. 0.342 0.197 0.266 0.287 −0.021 0
Full 0.383 0.085 0.094 0.190 −0.013 −0.083

SLyIII Min. 0.286 0.206 0.241 0.277 −0.036 0
Full 0.328 0.065 0.039 0.181 −0.033 −0.109
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TABLE VII. Detailed perturbative analysis of the spin-field contribution to δS in the Kπ = 3/2+ solution of the 99Sr nucleus with SIII and
SLyIII.0.8 parametrizations with all or selected time-odd terms.

Parameter Scheme δS δ
(B9)
S δ

(B10)
S δ

(B11)
S δ

(B12)
S δ

(B13)
S δ

(B14)
S δ

(B15)
S δ

(B18)
S δ

(B19)
S

set

SIII Min. 0.275 −0.004 −0.103 0.448 0.058 −0.124 0 0 0 0
Full 0.190 −0.006 −0.078 0.428 0.042 −0.114 0 −0.086 0 0.004

SLyIII.0.8 Min. 0.274 −0.007 −0.152 0.537 0.054 −0.155 0 0 0 0
Full 0.183 −0.006 −0.155 0.549 0.056 −0.155 0.025 −0.144 0.003 0.010

hand and δ
(B10)
S and δ

(B13)
S on the other hand. The sum of the

former contributions dominates but is counterbalanced by the
sum of the latter. When the B14, B15, B18, and B19 terms are
taken into account, we find that δ

(B10)
S , δ

(B11)
S , δ

(B12)
S , and δ

(B13)
S

do not change significantly and that δ
(B15)
S acquires a rather

large, negative value. Therefore the decrease of δS when going
from the minimal scheme to the full scheme is essentially
caused by the appearance of the negative δ

(B15)
S term generated

by the
∑

t (
←→
J

2
t − st · Tt ) contribution to the central part of the

Hamiltonian density.
Finally it is worth noting that, despite a different treatment

of the Coulomb interaction (as discussed), the SIII and
SLyIII.0.8 parametrizations give comparable values of δ when
they are used in the same scheme. This has been checked to be
the case also for other nuclear states than the one considered in
Table VII. We can explain this similarity by the facts that these
parametrizations contain the same density dependence, namely
a linear dependence in ρ(r) (except for the small Coulomb
exchange contribution in the case of the SIII parametrization),
and that their parameters contributing most to δ, namely t0,
t0x0, t1, t3, and t3x3, have comparable values. We can thus

conclude that the spin quenching factor is not sensitive to
the change from one considered approximate treatment of the
Coulomb interaction to the other.

D. Total magnetic moments

The total magnetic moments μtot of the nuclei under study
are simply given by

μtot = μintr + μcoll, (23)

where the collective contribution μcoll requires the evaluation
of the collective gyromagnetic ratio gR . This evaluation is
done using Eq. (13) for the underlying even-even nucleus
without and with core polarization, which gives the values
denoted by g

(unpol)
R and g

(pol)
R respectively. The calculated

values of g
(unpol)
R are found to be 10–15% smaller than the

crude Z/A approximation and can be significantly different
from the values of g

(pol)
R . The μtot values obtained with

SIII and SLyIII.0.8 in the considered states are given in
Tables VIII and IX, respectively, in comparison with available
experimental values [30].

TABLE VIII. Magnetic moments (in μN units) with the SIII parametrization: intrinsic contribution
μintr, collective gyromagnetic ratio g

(unpol)
R calculated without core polarization, corresponding total

magnetic moment μ
(unpol)
tot , collective gyromagnetic ratio g

(pol)
R calculated with core polarization,

corresponding total magnetic moment μ
(pol)
tot , and experimental μexp values taken from Ref. [30] (by

convention, the most recent value is retained when several entries appear).

Nucleus Kπ μintr g
(unpol)
R μ

(unpol)
tot g

(pol)
R μ

(pol)
tot μexp

99Sr 5/2− −0.753 0.262 −0.566 0.302 −0.537
3/2+ −0.630 −0.473 0.305 −0.447 −0.261(5)

99Y 5/2+ 2.927 0.262 3.114 0.285 3.131

103Mo 3/2+ −0.624 0.249 −0.475 0.251 −0.473
5/2− −0.734 −0.556 0.213 −0.582

103Tc 5/2+ 2.811 0.249 2.989 0.450 3.132
3/2− 1.962 2.111 0.303 2.144

175Yb 7/2− 0.886 0.338 1.149 0.361 1.167 0.768(8)
175Lu 7/2+ 1.452 0.338 1.715 0.352 1.726 2.2323(11)
179Hf 9/2+ −1.000 0.345 −0.718 0.327 −0.732 −0.6409(13)

179Ta 7/2+ 1.460 0.345 1.728 0.335 1.721 2.289(9)
9/2− 5.075 5.357 0.351 5.362

235U 7/2− −0.768 0.324 −0.516 0.289 −0.543 −0.38(3)

235Np 5/2+ 2.663 0.324 2.894 0.407 2.954
5/2− 0.833 1.064 0.354 1.086

237Np 5/2+ 2.744 0.318 2.971 0.407 3.035 3.14(4)
5/2− 0.831 1.058 0.348 1.080 1.68(8)
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TABLE IX. Same as Table VIII for SLyIII.0.8.

Nucleus Kπ μintr g
(unpol)
R μ

(unpol)
tot g

(pol)
R μ

(pol)
tot μexp

5/2− −0.859 −0.644 0.276 −0.66299Sr 0.301
3/2+ −0.703 −0.523 0.310 −0.517 −0.261(5)

99Y 5/2+ 2.997 0.301 3.212 0.412 3.291
3/2+ −0.611 −0.406 0.270 −0.449103Mo 0.341
5/2− −0.763 −0.520 0.227 −0.601
5/2+ 2.854 3.098 0.701 3.355103Tc 0.341
3/2− 2.036 2.241 0.403 2.278

175Yb 7/2− 1.017 0.352 1.291 0.369 1.304 0.768(8)
175Lu 7/2+ 1.308 0.352 1.582 0.367 1.593 2.2323(11)
179Hf 9/2+ −1.182 0.347 −0.898 0.318 −0.922 −0.6409(13)

7/2+ 1.312 1.583 0.347 1.583 2.289(9)179Ta 0.347
9/2− 5.259 5.543 0.366 5.558

235U 7/2− −0.931 0.478 −0.559 0.441 −0.588 −0.38(3)
5/2+ 2.776 3.117 0.468 3.110235Np 0.478
5/2− 0.731 1.073 0.499 1.087
5/2+ 2.771 3.113 0.477 3.112 3.14(4)237Np 0.479
5/2− 0.728 1.070 0.500 1.085 1.68(8)

Overall the difference between calculated and measured
values of μtot is of the order of a few tenths of μN , so we
can consider that we obtain a reasonable agreement given
that, for a given effective interaction, there is not a single
free parameter in our approach. A closer comparison reveals a
better agreement using the SIII parametrization (in the minimal
scheme) than with SLyIII.0.8 (in the full scheme). One finds
that the root mean square deviation of our results (in μN

units) from data is 0.44 for the former and 0.53 for the latter
when g

(unpol)
R is used, whereas it is 0.42 for SIII and 0.52

for SLyIII.0.8 when using g
(pol)
R . Despite the large differences

between g
(unpol)
R and g

(pol)
R in some cases, both values yield a

similar agreement with data. The difference in the root mean
square deviation between the two parametrizations could be
related to the smaller spin quenching factor when taking into
account all time-odd terms in the Hartree-Fock mean field,
making the SIII results closer to the phenomenologically
retained value of about 30% for the quenching of the spin
gyromagnetic factor. One could thus argue that the magnetic
moment is an observable that could be used to add in the fitting
protocol a constraint on the coupling constants driving the
Hartree-Fock fields to which the magnetic moment is sensitive
(essentially B14 and B15).

IV. CONCLUSIONS AND PERSPECTIVES

In this work we have explored, within the Skyrme-Hartree-
Fock-BCS framework, the mechanism of response of an even-
even core to the time-reversal breaking perturbation brought
by the presence of an extra nucleon in the odd-mass nuclei.
Assuming that the orbital gyromagnetic ratio is unaffected,
we have found that the addition of this nucleon treated in the
self-consistent blocking approach yields a sizable contribution
to the quenching of the spin gyromagnetic factor away from
its free value.

Moreover, we have shown that this core-polarization effect
is of order 1 in the time-odd part of the Hartree-Fock
Hamiltonian. This effect is driven by the spin field but is
partly counterbalanced by the spin-gradient field—which adds
a spin-dependent contribution to the effective-mass field—
when it is taken into account in the corresponding Skyrme
parametrization. In particular, the SIII parametrization yields
a quenching factor close to the empirical one, whereas the
SLyIII.0.8 parametrization provides a weaker effect. This sug-
gests that the magnetic moment could be used in constraining
the Skyrme parameters (in the interaction point of view) or
the coupling constants (in the functional point of view) in the
fitting protocol.

Finally, when including the collective contribution to
magnetic moments, we have obtained a reasonable overall
agreement with experimental data for well-deformed odd-
mass nuclei in mass regions A ∼ 100, rare-earth nuclei around
A ∼ 180, and actinide nuclei (around A = 236). This is all the
more encouraging because, for a given effective interaction
(or energy-density functional depending on the point of
view), we have no free parameters. Moreover, the selected
parametrizations did not include the magnetic moments in
their fitting protocol.

A natural extension of this work is the calculation of
magnetic moments in N ∼ Z nuclei where the neutron-proton
pairing is at work and is expected to noticeably affect the
intrinsic magnetic moment (see Ref. [31]). In these nuclei a
consistent treatment of T = 1 and T = 0 pairing correlations
is required and the highly truncated diagonalization approach,
described, for example, in Ref. [32], is a tool of choice.

Another direction of extension of the present work is the
study of more complex blocked configurations known as
multiquasiparticle bandheads, in even-even, odd-mass as well
as odd-odd deformed nuclei. This could be of special interest
in regards to a recently initiated study of magnetic moments
and deformations in nuclear high-K isomeric states [33].
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APPENDIX A: ENERGY-DENSITY FUNCTIONAL
AND HARTREE-FOCK FIELDS AS FUNCTIONS

OF LOCAL DENSITIES

We give here the expressions of the kinetic, central, density-
dependent, spin-orbit, and Coulomb terms of the energy-
density functional as functions of the local densities (the r
dependence of which is omitted to alleviate the expressions)
in an arbitrary coordinate system {xμ,μ = 1,2,3}

Hkin(r) =
(

1 − 1

A

)
�

2

2m
τ, (A1)

Hc(r) = B1 ρ2 + B10 s2 + B3 (ρ τ − j2) + B14 (
←→
J

2 − s · T) + B5 ρ �ρ + B18 s · �s

+
∑

t

{
B2 ρ2

t + B11 s2
t + B4

(
ρtτt − j2

t

) + B15(
←→
J

2
t − st · Tt ) + B6 ρt �ρt + B19 st · �st

}
, (A2)

HDD(r) = ρα

[
B7 ρ2 + B12 s2 +

∑
t

(
B8 ρ2

t + B13 s2
t

)]
, (A3)

Hs.o.(r) = B9

[
ρ ∇ · J + j · ∇×s +

∑
t

(ρt ∇ · Jt + jt · ∇×st )

]
, (A4)

HCoul(r) ≈ 1

2
ρp VCD(r) − 3

4
e2

(
3

π

) 1
3

ρ
4
3
p , (A5)

where the index t in local densities is the charge state n
or p. In the expression of HCoul(r), the direct Coulomb
potential VCD(r) is given by VCD(r) = e2

∫
d3r′ ρp(r′)

|r−r′| . To
evaluate the contribution of the Coulomb exchange term, the
Slater approximation is used [34] (and consistently in the

Hartree-Fock Hamiltonian). In Eq. (A3)
←→
J

2
t = Jt,μνJμν

t (using
Einstein’s summation convention) and in Eq. (A4) Jt denotes
the antisymmetric part of the spin-current tensor Jμν

t [15]. The
coefficients Bi appearing in Eqs. (A1) to (A4) are constants.
In Eq. (A3) the symbol � ≡ ∇μ∂μ represents the Laplace
operator (acting on a scalar or vector function), ∇μ being the
covariant derivative associated with the arbitrary coordinate
system and ∂μ = ∂

∂xμ . Vector quantities with an upper index are
contravariant components in the natural basis εμ = ∂μr, such
that εμ · εν is equal to the metric tensor gμν , whereas lower
indices refer to the covariant components in the reciprocal basis
εμ such that εμ · εν = δν

μ. When acting on a vector function,
the Laplace operator is written in bold.

The basic time-even local densities ρ(r), τ (r), and Jμν(r)
generated by the central and spin-orbit parts of the interaction
are defined by

ρ(r) =
∑

k

v2
k [φk]†(r)[φk](r), (A6)

τ (r) =
∑

k

v2
k (∇[φk]†(r)) · ∇[φk](r), (A7)

Jμν(r) = 1

2i

∑
k

v2
k {[φk]†(r) σν∂μ[φk](r)

− (∂μ[φk]†(r)) σν[φk](r)}, (A8)

whereas the relevant time-odd densities s(r), Tμ(r), and j(r)
respectively read

s(r) =
∑

k

v2
k [φk]†(r) σ [φk](r), (A9)

Tμ(r) =
∑

k

v2
k (∇[φk]†(r)) · σμ∇[φk](r), (A10)

j(r) = 1

2i

∑
k

v2
k {(∇[φk]†(r))[φk](r)

− [φk]†(r)∇[φk](r)}. (A11)

In the interaction point of view, the coupling constants Bi

are combinations of the Skyrme parameters. Those entering
the central contribution to the energy-density functional
are

(1) from the t0 term of the Skyrme interaction:

B1 = t0

2

(
1 + x0

2

)
, (A12)

B2 = − t0

2

(
1

2
+ x0

)
, (A13)

B10 = 1

4
t0x0, (A14)

B11 = −1

4
t0, (A15)

054307-10



EFFECT OF CORE POLARIZATION ON MAGNETIC . . . PHYSICAL REVIEW C 91, 054307 (2015)

(2) from the t1 and t2 terms:

B3 = 1

4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
, (A16)

B4 = −1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
, (A17)

B5 = − 1

16

[
3t1

(
1 + x1

2

)
− t2

(
1 + x2

2

)]
, (A18)

B6 = 1

16

[
3t1

(
1

2
+ x1

)
+ t2

(
1

2
+ x2

)]
, (A19)

B14 = −1

8
(t1x1 + t2x2), (A20)

B15 = 1

8
(t1 − t2), (A21)

B18 = − 1

32
(3t1x1 − t2x2), (A22)

B19 = 1

32
(3t1 + t2). (A23)

Because |x1| and |x2| are usually smaller than 1 (they are
even 0 for SIII and SkM* parametrizations, for instance), the
coupling constants B14 and B18 play a less important role
than their respective counterparts B15 and B19 do. Finally,
the coupling constants appearing in the density-dependent
contribution HDD are defined as

B7 = t3

12

(
1 + x3

2

)
, (A24)

B8 = − t3

12

(
1

2
+ x3

)
, (A25)

B12 = 1

24
t3x3, (A26)

B13 = − t3

24
, (A27)

and the spin-orbit coupling constant is

B9 = −W0

2
. (A28)

The pairing correlations are then included in the many-body
ground state within the BCS framework. As explained in detail
in Ref. [6], this amounts to simply extending the definition
of the local densities by incorporating the BCS occupation
factors and adding the so-called pairing energy to the energy-
density functional given by Eq. (5). The resulting energy is
then varied with respect to the single-particle wave functions
(in terms of which the local densities are expressed), with
a normalization constraint enforced by Lagrange multipliers
interpreted as single-particle energies ek , and with respect to
the occupation factors. The former variation yields the Hartree-
Fock equations ĥ

(t)
HF|φk〉 = ek|φk〉 with a Hartree-Fock one-

body Hamiltonian ĥ
(t)
HF of the following form in coordinate

representation for the charge state t

〈r|ĥ(t)
HF|φk〉 = −∇ ·

[(
�

2

2m∗
t (r)

+ Ct (r) · σ

)
∇[φk](r)

]
+ (Ut (r) + δtp VCoul(r))[φk](r)

+ iWt (r) · (σ × ∇[φk](r))

− i
[
W

μν
t (r)σν∂μ[φk](r)

+∇μ

(
W

μν
t (r)σν[φk](r)

)]
− iAt (r) · ∇[φk](r) + St (r) · σ [φk](r), (A29)

where [φk](r) is the spinor notation for the wave function
in coordinate representation. In Eq. (A29) we have used the
property ∇ · At (r) = 0 which holds in this time-independent
context. The time-even fields m∗

t (r), Ut (r), VCoul(r), Wt (r), and
Wt,μν(r) denote the effective mass, the central-plus-density-
dependent field, the Coulomb field, the spin-orbit field, and
the spin-current field respectively, whereas St (r), At (r), and
Ct (r) are time-odd fields. They are functions of the above
local densities. In the following we call St (r) the spin field and
Ct (r) the spin-gradient field. The expressions of the time-even
fields are

�
2

2m∗
t (r)

=
(

1 − 1

A

)
�

2

2m
+ B3 ρ + B4 ρt , (A30)

Ut (r) = 2 (B1 ρ + B2 ρt ) + B3 τ + B4 τt

+ 2 (B5 �ρ + B6 �ρt )

+ ρα−1
[
(2 + α)B7ρ

2 + B8α
(
ρ2

n + ρ2
p + 2ρ ρt

)]
+B9 (∇ · J + ∇ · Jt ), (A31)

VCoul(r) ≈ VCD(r) −
(

3

π

) 1
3

e2 ρ
1
3

p , (A32)

Wt (r) = −B9(∇ρ + ∇ρt ), (A33)

Wt,μν(r) = B14Jμν + B15Jt,μν, (A34)

where the second contribution to VCoul(r) is the exchange term
in the Slater approximation, and the time-odd fields are given
by

St (r) = 2(B10 + B12 ρα)s + 2(B11 + B13 ρα)st

−B9 ∇ × (j + jt ) − B14 T − B15 Tt

+ 2 (B18 �s + B19 �st ), (A35)

At (r) = −2(B3 j + B4 jt ) + B9 ∇ × (s + st ), (A36)

Ct (r) = −B14 s − B15 st , (A37)

where the vector Laplacian of s is related to the spin-kinetic
density through

�s(r) = 2 T(r) +
∑

k

v2
k {(�[φk]†(r))σ [φk](r)

+ [φk]†(r)σ�[φk](r)} . (A38)

The Hartree-Fock equations are solved by diagonalization
of the ĥ

(t)
HF one-body Hamiltonian in the cylindrical harmonic-

oscillator basis. The matrix elements of ĥ
(t)
HF are calculated by
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integration in coordinate space as follows:

〈a|ĥ(t)
HF|b〉 =

∫
d3r

{
(∇[φa]†(r)) ·

(
�

2

2m∗
t (r)

+ Ct (r) · σ

)
∇[φb](r) + (Ut (r) + δq p VCoul(r)) [φa]†(r)[φb](r)

+ i [φa]†(r) Wt (r) · (σ × ∇[φb](r)) − i W
μν
t (r) [[φa]†(r)σν∂μ[φb](r) − (∂μ[φa]†(r))σν[φb](r)]

− i [φa]†(r) At (r) · ∇[φb](r) + [φa]†(r) St (r) · σ [φb](r)

}
. (A39)

To derive Eq. (A39) we have used integration by parts over the whole coordinate space and the property of the field At (r) to have
a vanishing divergence.

APPENDIX B: PERTURBATIVE TREATMENT OF THE CORE POLARIZATION

Let us consider the eigenstates |φk〉 (normalized to unity) and eigenvalues ek of the time-even part of the Hartree-Fock
Hamiltonian ĥ(t)

even for the nucleons of charge state t

ĥ(t)
even|φk〉 = ek |φk〉. (B1)

This Hamiltonian is invariant under time-reversal, intrinsic parity, and axial symmetries. In the subspace of eigenvectors common
to ĥ(t)

even, π̂ , and ĵz the eigenvalues of ĥ(t)
even are not degenerate. Therefore, we can use nondegenerate perturbation theory to express

the eigenstates of the Hartree-Fock Hamiltonian ĥ
(t)
HF = ĥ(t)

even + ĥ
(t)
odd at first order in ĥ

(t)
odd

|ψk〉 = |φk〉 +
∑
k′ �=k

〈φk′ |ĥ(t)
odd|φk〉

ek − ek′
|φk′ 〉. (B2)

By convention and to alleviate the notation, the index k implicitly contains the isospin quantum number.
Then the perturbed many-body state |�〉 is the BCS state built with the single-particle states |ψk〉 and the occupation numbers

calculated by solving the BCS equations with blocking from the single-particle states |φk〉. The expectation value of the ŝz

operator in the state |�〉 is thus given, at first order in ĥ
(t)
odd, by

〈�|ŝz|�〉 =
∑

t

∑
k

v2
k 〈ψk|ŝz|ψk〉 =

∑
t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k

v2
k 〈φk|ŝz|φk〉 + 2

∑
k,k′

k′ �= k

v2
k

Re
(〈φk|ŝz|φk′ 〉 〈φk′ |ĥ(t)

odd|φk〉
)

ek − ek′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 〈φi |ŝz|φi〉 +
∑

t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k �=i

v2
k 〈φk|ŝz|φk〉 + 2

∑
k,k′

k′ �= k

v2
k

〈φk|ŝz|φk′ 〉 〈φk′ |ĥ(t)
odd|φk〉

ek − ek′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (B3)

where |φi〉 is the blocked state (of charge state q). The second
term of Eq. (B3) represents the even-even core contribution
to the expectation value of the ŝz operator. It can be explicitly
written as∑

k �=i

v2
k 〈φk|ŝz|φk〉 =

∑
k > 0

k �= i,k �= i

v2
k (〈φk|ŝz|φk〉 + 〈φk|ŝz|φk〉),

(B4)

where |φk〉 is the time-reversal conjugate state of |φk〉 and
the notation k > 0,k �= i,k �= i means that we restrict the
summation to pairs of time-reversal conjugate states other
than the blocked state. Because ŝz anticommutes with the
time-reversal operator, we find that∑

k �=i

v2
k 〈φk|ŝz|φk〉 = 0. (B5)

Considering a basis {|φk〉} which yields a real representation
of the Hartree-Fock Hamiltonian, we thus obtain

〈�|ŝz|�〉 = sodd +
∑
t=q,q

〈�|ŝz|�〉(t)
core, (B6)

where sodd represents the expectation value of ŝz in the
perturbed blocked state and is given at first order by

sodd = 〈φi |ŝz|φi〉 + 2
∑

k �= i

〈φi |ŝz|φk〉 〈φk|ĥ(q)
odd|φi〉

ei − ek

, (B7)

and where 〈�|ŝz|�〉(t)
core denotes the core contribution to

〈�|ŝz|�〉 for the charge state t , defined by

〈�|ŝz|�〉(t)
core = 2

∑
k �=i

∑
k′ �=k

〈φk|ŝz|φk′ 〉 〈φk′ |ĥ(t)
odd|φk〉

ek − ek′
. (B8)
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Then according to Eqs. (10), (11), (B6), and (B8), we can write the core-polarization contribution δ to the gs quenching factor
as δ = ∑

t=q,q δ(t) with

δ(t) = 2
g

(t)
� − g(t)

s

g
(q)
s

∑
k �=i

∑
k′ �=k

〈φk|ŝz|φk′ 〉
sodd

〈φk′ |ĥ(t)
odd|φk〉

ek − ek′
. (B9)
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