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Within schematic models based on the Tamm-Dancoff approximation and the random-phase approximation
with separable interactions, we investigate the physical conditions that may determine the emergence of the pygmy
dipole resonance in the E1 response of atomic nuclei. By introducing a generalization of the Brown-Bolsterli
schematic model with a density-dependent particle-hole residual interaction, we find that an additional mode
will be affected by the interaction, whose energy centroid is closer to the distance between two major shells
and therefore well below the giant dipole resonance (GDR). This state, together with the GDR, exhausts all the
transition strength in the Tamm-Dancoff approximation and all the energy-weighted sum rule in the random-phase
approximation. Thus, within our scheme, this mode, which could be associated with the pygmy dipole resonance,
is of collective nature. By relating the coupling constants appearing in the separable interaction to the symmetry
energy value at and below saturation density we explore the role of density dependence of the symmetry energy
on the low-energy dipole response.
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I. INTRODUCTION

In spite of their apparent simplicity, schematic physical
models are always very insightful as they provide in a
transparent way the essential physical content, which de-
termines a specific feature that is shaping an otherwise
complex phenomenon. A quite successful class of such models
is that devoted to explain within a quantum many-body
treatment the emergence of the collective behavior in various
microscopic systems [1], with special emphasis on atomic
nuclei [2–5]. To this end, it was pointed out that in the
presence of a separable residual particle-hole interaction [6]
a coherent superposition of one-particle one-hole states is
generated, which carries almost all the transition strength
and is pushed up or down in energy from the unperturbed
value.

The collectivity of the giant dipole resonance (GDR), one
of the most robust modes observed in all nuclei [7], is very
well captured in such descriptions [8–12]. As a consequence
of the repulsive particle-hole residual interaction, the energy
peak gets closer to the empirical mass parametrization,
EGDR = 80A−1/3, at almost twice the value associated with
the distance between two major shells �ω0 = 41A−1/3. In
recent years experimental investigations [13,14] evidenced
the presence of a resonance-shaped state [15–17] below the
GDR response but close to the particle threshold energy,
exhausting only few percentages of the dipole energy-weighted
sum rule (EWSR). The nature of this state is one of the
most important open questions in the field and a subject of
intense debate [18,19], with current interpretations spanning
from a doorway state [20] or single-particle E1 strength that
fails to join the GDR [21,22], to a collective manifestation
of some excess neutrons, which oscillate against the more
stable core [23–27]. Moreover, the correlations between the
properties of PDR and the behavior of symmetry energy can

contribute to constrain the dependence with the density of this
quantity [28–30]. It is then natural to ask if schematic models
such as those mentioned above are able to provide additional
insight about the physical nature of the low-energy dipole
response, the role of the symmetry energy, and succeed in the
interpretation of the experimentally observed features, such as
the energy centroid or the EWSR, when for the parameters
of the model realistic values are ascribed, as was the case of
GDR.

The purpose of this paper is to investigate the emergence
of exotic modes in neutron-rich nuclei and the role of density
dependence of the symmetry energy within such schematic
models. We shall introduce a generalization of the Brown-
Bolsterli schematic model [3,31,32], which admits more
general structures for the separable interactions, but which
do not spoil the main advantages of the initial model and
allow for more general conditions. The coupling constants
appearing in these separable interactions will be related not
only to the value of symmetry energy at saturation, but some
of them are determined by the behavior of this quantity below
saturation.

We start with a very brief overview of the schematic
approaches, which are relevant for the description of dipole
modes. Even if the presentation follows a textbook style, it
allows us to introduce those concepts and ideas required for
the latter generalizations. Then we analyze possible extensions
of these schematic models, based on quite natural physical
assumptions, which are able to predict additional collective
modes and can incorporate the evolution with density of sym-
metry energy. As a consequence we can investigate analytically
and in a transparent manner how the symmetry energy values at
subsaturation density influences the PDR centroid and the sum
rules. In the last part we focus on two specific systems, 68Ni
and 132Sn, and show that the predictions of these schematic
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models agree quite well with data and the results of more
sophisticated theoretical approaches. Therefore, we consider
that the scenario suggested by our models for the emergence
of pygmy dipole resonance as well as that for sharing of the
EWSR between PDR and GDR may contribute to a better
understanding of the role on symmetry energy on the dynamics
of these modes.

For a system of fermions, which interact through an
effective two-body potential within a shell-model approach in
the absence of ground-state correlations, one usually defines
the particle-hole vacuum |0〉 and the particle (hole) energies
associated with the single-particle excitations εp (εh).The
unperturbed particle-hole excitation energies are obtained
as εi = εp − εh, where i labels the specific particle-hole
configuration. Expressing the interaction among quasiparticles
in terms of the difference between direct and exchange
terms, as Aij = V̄ph′hp′ = Vph′,hp′ − Vph′,p′h = 〈ph′|V̂ |hp′〉 −
〈ph′|V̂ |p′h〉, within the linear approximation of the equations-
of-motion method [33], we get the Tamm-Dancoff approxima-
tion (TDA) equations:

∑
j

(εiδij + Aij )X(n)
j = EnX

(n)
i . (1)

Together with the normalization condition
∑

j |X(n)
j |2 = 1,

Eq. (1) determine the energy En of the state |n〉 = �
+(n)
TDA|0〉, as

well as the amplitudes, which define the excitation operator:

�
+(n)
TDA =

∑
p,h

X
(n)
pha+

p ah. (2)

As a next step, the exchange term is neglected and a separable
particle-hole interaction Aij = λQiQ

∗
j is introduced for the

direct one. One then arrives to the dispersion relation:

∑
i

|Qi |2
En − εi

= 1

λ
, (3)

which can be solved for En. From a simple graphical analysis
one notices that for positive (negative) λ one of the solutions
of Eq. (3) is pushed up (down) in energy with respect to the
unperturbed energies. This state |nc〉 has a collective nature,
as it can be easily seen from Eq. (3) if the degenerate case
εi = ε is considered. Indeed, for this situation the energy of
the collective state is given by Enc

= ε + λ
∑

i |Qi |2, while for
all others (noncollective) states one finds En = ε. Moreover,
the transition probability |〈nc|Q|0〉|2 = ∑

i |Qi |2, i.e., the
collective state exhausts all the energy-independent sum rule,
while the transition probability to noncollective p-h states |n〉
cancels, 〈n|Q|0〉 = 0.

Allowing for correlations in the ground state, the TDA
treatment is upgraded to the random phase approximation
(RPA). The amplitudes, which appear in the excitation
operator

�
+(n)
RPA =

∑
p,h

X
(n)
pha+

p ah + Y
(n)
ph a+

h ap, (4)

and which obey the normalization conditions
∑

j (|X(n)
j |2 −

|Y (n)
j |2) = 1 are obtained from the RPA equations

εiX
(n)
i +

∑
j

(
AijX

(n)
j + BijY

(n)
j

) = EnX
(n)
i , (5)

εiY
(n)
i +

∑
j

(
B∗

ijX
(n)
j + A∗

ij Y
(n)
j

) = −EnY
(n)
i , (6)

with Bij = V̄pp′hh′ . The amplitudes Yj are a measure of
ground-state correlations and by setting all Yj = 0 we recover
the TDA equations. For separable particle-hole interactions
Aij = λQiQ

∗
j and Bij = λQiQj we get the dispersion

relation: ∑
i

2εi |Qi |2
E2

n − ε2
i

= 1

λ
, (7)

which, unlike the TDA treatment, admits a double set of
solutions, ±En. In the degenerate limit the collective state
|nc〉 has the energy

E2
n,RPA = ε2 + 2λε

∑
i

|Qi |2 = ε(2En,TDA − ε). (8)

A very specific feature of the RPA collective state is that it
exhausts the whole EWSR gathered in the unperturbed case,
i.e., En,RPA|〈nc|Q|0̃〉|2 = ε

∑
i |Qi |2. Here |0̃〉 denotes the

correlated ground state. Summing up, the residual particle-hole
interaction builds up a state, which is a coherent sum of
the |ph〉 states. For a repulsive interaction (λ > 0), this is
characterized by an energy, which is pushed upwards from the
unperturbed value and carries all the strength.

The expression of the coupling constant λ can be obtained
from considerations based on the self-consistency between
the vibrating potential and the induced density variations [34].
In the case of the GDR this quantity is determined by the
isovector component of the nuclear interaction, i.e., by the
potential contribution to the symmetry energy at saturation.
In the expression of the energy per nucleon the symmetry
energy Esym

A
is the quantity connected to the isospin I = N−Z

A

degree of freedom, i.e., E
A

(ρ,I ) = E
A

(ρ,I = 0) + Esym

A
(ρ)I 2

and contains both a kinetic contribution associated with Pauli
correlations, as well as a potential contribution determined by
the nuclear interaction: Esym

A
= b(kin)

sym + b
(pot)
sym [35]. Then λ =

6b
(pot)
sym (ρ0)
A〈r2〉 , where 〈r2〉 is the mean-square radius of the nucleus

considered and ρ0 is the saturation density. Considering this
value for λ and accounting for the sum rules satisfied by the
matrix elements |Qi |2 [37], the energy centroid and the EWSR
exhausted by the GDR were successfully reproduced by the
RPA treatment.

II. TDA TREATMENT FOR LOW-LYING MODES

Finite nuclei, however, exhibit a density profile. Since
the symmetry energy decreases with density, one expects
a smaller value of the coupling constant for the nucleons
located at the surface. This is particularly true for neutron-rich
nuclei, where several neutrons are located in a region at
quite low density, the neutron skin. Analogous arguments
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were promoted in phenomenological models [38] when three
coupled fluids (i.e., protons, blocked neutrons, and excess
neutrons) were considered to describe various normal modes
in a hydrodynamical picture. We shall implement this idea
in a schematic approach by relaxing the condition of a
unique coupling constant for all particle-hole pairs. Similar
generalizations of the separable interaction were proposed also
in microscopic approaches in order to include the coupling
between normal and threshold states [39] or to study the
GDR in fissioning nuclei [40]. To this end, we assume that
for a subsystem of particle-hole pairs, namely i,j � ic, the
interaction is Aij = λ1QiQ

∗
j , with λ1 = λ(ρ0) corresponding

to the potential symmetry energy at saturation density, while
for the other subsystem, namely i,j > ic, the interaction is
characterized by a weaker strength Aij = λ3QiQ

∗
j , with λ3 =

λ(ρe) associated with the symmetry energy value at a much
lower density ρe << ρ0. If i � ic,j > ic or i > ic,j � ic, i.e.,
for the coupling between the two subsystems, we consider
Aij = λ2QiQ

∗
j with λ2 = λ(ρi) corresponding to a potential

symmetry energy at an intermediate density ρ0 > ρi > ρe. As
a consequence one of the conditions that the coupling constants
will satisfy, obtained from previous physical arguments, is
λ1 > λ2 > λ3 > 0. The TDA equations for the corresponding
amplitudes X

(n)
i can be generalized straightforwardly as

εiX
(n)
i + λ1Qi

∑
j�ic

Q∗
jX

(n)
j + λ2Qi

∑
j>ic

Q∗
jX

(n)
j = EnX

(n)
i

if i � ic, (9)

εiX
(n)
i + λ2Qi

∑
j�ic

Q∗
jX

(n)
j + λ3Qi

∑
j>ic

Q∗
jX

(n)
j = EnX

(n)
i

if i > ic, (10)

with the solutions

X
(n)
i = Nc

En − εi

Qi if i � ic, (11)

X
(n)
i = Ne

En − εi

Qi if i > ic. (12)

Here the normalization factors are given by

Nc = λ1

∑
j�ic

Q∗
jX

(n)
j + λ2

∑
j>ic

Q∗
jX

(n)
j , (13)

Ne = λ2

∑
j�ic

Q∗
jX

(n)
j + λ3

∑
j>ic

Q∗
jX

(n)
j . (14)

Using Eqs. (11)–(14) we observe that Nc and Ne satisfy the
homogeneous system of equations:⎛

⎝λ1

∑
i�ic

|Qi |2
En − εi

− 1

⎞
⎠ Nc + λ2

∑
i>ic

|Qi |2
En − εi

Ne = 0, (15)

λ2

∑
i�ic

|Qi |2
En − εi

Nc +
⎛
⎝λ3

∑
i>ic

|Qi |2
En − εi

− 1

⎞
⎠ Ne = 0. (16)

If we resume to the degenerate case εi = ε, with α =∑
i�ic

|Qi |2, β = ∑
i>ic

|Qi |2, by imposing to have nontrivial
solutions, we get:

(En − ε)2 − (λ1α + λ3β)(En − ε) + (
λ1λ3 − λ2

2

)
αβ = 0.

(17)

The two states that are affected by interaction in this model
will have the TDA energies:

E(1)
n = ε + (λ1α + λ3β)

2

(
1 +

√
1 − 4

(
λ1λ3 − λ2

2

)
αβ

(λ1α + λ3β)2

)
(18)

E(2)
n = ε + (λ1α + λ3β)

2

(
1 −

√
1 − 4

(
λ1λ3 − λ2

2

)
αβ

(λ1α + λ3β)2

)
.

(19)

It is obvious from Eq. (17) that by setting λ1 = λ2 = λ3 = λ
we return to the standard situation with only one collective
energy. Simple expressions for E(1)

n and E(2)
n are obtained if

we assume that λ1α � λ3β:

E(1)
n ≈ ε + (λ1α + λ3β), (20)

E(2)
n ≈ ε +

(
λ1λ3 − λ2

2

)
αβ

(λ1α + λ3β)
. (21)

One of the solutions, E(1)
n , is nearest to the value associated

with the collective mode obtained in the usual TDA approach
while the other one, E(2)

n , is much closer to the unperturbed
value ε. The amplitudes X

(n1)
i and X

(n2)
i will define the two

operators whose action on the ground state generates the two
states |nc,1〉 and |nc,2〉. It is interesting to observe that now
energy independent sum rule is distributed only between these
two states, i.e.,

|〈nc,1|Q|0〉|2 + |〈nc,2|Q|0〉|2 = α + β =
∑

i

|Qi |2. (22)

We therefore conclude, by extending the interpretation from
Brown-Bolsterli model, that both states |nc,1〉 and |nc,2〉 man-
ifest the feature expected for a collective behavior. Equation
(22) can be easily derived observing that

〈nc,k|Q|0〉 =
∑

i

QiX
(nk )∗
i = α + xkβ√

α + x2
k β

, (23)

where k = 1,2 and xk = [(E(k)
n − ε) − λ1α]/λ2β. When all

coupling constants become equal the transition amplitude of
the state with higher energy goes to (α + β), as expected,
exhausting all the sum rule.

III. RPA TREATMENT FOR LOW-LYING MODES

Including the ground state correlations does not change the
main conclusions obtained within the TDA treatment. Also in
this case we shall find the appearance of a second collective
state if the unique coupling constant condition is relaxed. The
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equations for forward and backward amplitudes become

εiX
(n)
i + λ1Qi

⎛
⎝∑

j�ic

Q∗
jX

(n)
j +

∑
j�ic

QjY
(n)
j

⎞
⎠

+ λ2Qi

⎛
⎝∑

j>ic

Q∗
jX

(n)
j +

∑
j>ic

QjY
(n)
j

⎞
⎠ = EnX

(n)
i

εiY
(n)
i + λ1Q

∗
i

⎛
⎝∑

j�ic

Q∗
jX

(n)
j +

∑
j�ic

QjY
(n)
j

⎞
⎠

+ λ2Q
∗
i

⎛
⎝∑

j>ic

Q∗
jX

(n)
j +

∑
j>ic

QjY
(n)
j

⎞
⎠ = −EnY

(n)
i

if i � ic, (24)

εiX
(n)
i + λ2Qi

⎛
⎝∑

j�ic

Q∗
jX

(n)
j +

∑
j�ic

QjY
(n)
j

⎞
⎠

+ λ3Qi

⎛
⎝∑

j>ic

Q∗
jX

(n)
j +

∑
j>ic

QjY
(n)
j

⎞
⎠ = EnX

(n)
i

εiY
(n)
i + λ2Q

∗
i

⎛
⎝∑

j�ic

Q∗
jX

(n)
j +

∑
j�ic

QjY
(n)
j

⎞
⎠

+ λ3Q
∗
i

⎛
⎝∑

j>ic

Q∗
jX

(n)
j +

∑
j>ic

QjY
(n)
j

⎞
⎠ = −EnY

(n)
i

if i > ic, (25)

with the solutions

X
(n)
i = Mc

En − εi

Qi ; Y
(n)
i = − Mc

En + εi

Q∗
i if i � ic,

(26)

X
(n)
i = Me

En − εi

Qi ; Y
(n)
i = − Me

En + εi

Q∗
i if i > ic.

(27)

The normalization factors

Mc = λ1

∑
j�ic

(
Q∗

jX
(n)
j +QjY

(n)
j

) +λ2

∑
j>ic

(
Q∗

jX
(n)
j + QjY

(n)
j

)
,

(28)

Me = λ2

∑
j�ic

(
Q∗

jX
(n)
j +QjY

(n)
j

)+λ3

∑
j>ic

(
Q∗

jX
(n)
j + QjY

(n)
j

)
(29)

satisfy the homogeneous system of equations:⎛
⎝λ1

∑
i�ic

2εi |Qi |2
E2

n − ε2
i

− 1

⎞
⎠ Mc + λ2

∑
i>ic

2εi |Qi |2
E2

n − ε2
i

Me = 0,

(30)

λ2

∑
i�ic

2εi |Qi |2
E2

n − ε2
i

Mc +
⎛
⎝λ3

∑
i>ic

2εi |Qi |2
E2

n − ε2
i

− 1

⎞
⎠ Me = 0.

(31)

In the degenerate case, εi = ε, nontrivial solutions are obtained
if(
E2

n−ε2
)2−2ε(λ1α+λ3β)

(
E2

n−ε2
) + 4ε2

(
λ1λ3−λ2

2

)
αβ = 0.

(32)

Then the collective RPA energies are:

E
(1)2
n,RPA = ε2 + 2ε

(
E

(1)
n,TDA − ε

) = ε
(
2E

(1)
n,TDA − ε

)
, (33)

E
(2)2
n,RPA = ε2 + 2ε

(
E

(2)
n,TDA − ε

) = ε
(
2E

(2)
n,TDA − ε

)
, (34)

where E
(1)
n,TDA and E

(2)
n,TDA are the corresponding energies in

the TDA approximation given by (18), (19). It is interesting to
notice that within the RPA treatment the total EWSR is shared
only by these two states, i.e.,

E
(1)
n,RPA|〈nc,1|Q|0̃〉|2 + E

(2)
n,RPA|〈nc,2|Q|0̃〉|2 =

∑
i

ε|Qi |2,
(35)

therefore both of them manifest a collective nature. The last
relation can be easily deduced observing that (k = 1,2)

〈nc,k|Q|0̃〉 =
∑

i

(
QiX

(nk )∗
i + Q∗

i Y
(nk)∗
i

)

=
√

ε

E
(k)
n,RPA

α + zkβ√
α + z2

kβ

;

zk = E
(k)2
n,RPA − ε2

2ελ2β
− λ1α

λ2β
. (36)

IV. APPLICATION OF THE SCHEMATIC MODELS TO
PYGMY DIPOLE RESONANCE IN 68Ni AND 132Sn

In the following we apply the predictions of the schematic
TDA and RPA models to specific nuclear systems, where
the appearance of a low-lying strength has been observed
in the dipole response. Thus we associate the low-energy col-
lective state discussed above with the pygmy dipole resonance
(PDR). Several criteria sustaining at least a certain degree of
collectivity of PDR, especially in neutron-rich nuclei, were
discussed within various models [41,42]. We employ the
EWSR associated with the isovector dipolar field correspond-
ing to the unperturbed case: m1 = �ω0(α + β) = �

2

2m
NZ
A

. The
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FIG. 1. (Color online) The GDR and PDR energy centroids as a
function of the ratio λ2/λ1. The black thick lines refer to the TDA
while the red lines to RPA calculations. For 68Ni [(a) and (b)] the solid
lines correspond to Ne = 6; the dashed lines correspond to Ne = 12.
(b) For 132Sn [(c) and (d)] the solid lines correspond to Ne = 12; the
dashed lines correspond to Ne = 32. In (b) and (d) the horizontal blue
line indicates the unperturbed energy value.

values for α and β are related to the number of protons (Zc)
and neutrons (Nc), which belong to core, (Ac = Nc + Zc) and
the number of neutrons considered in excess, i.e., nucleons at
much lower density (Ne), respectively. We first consider Ne

as a parameter (Ne + Nc = N ) but a more precise value can
be estimated from arguments based on density distributions
of protons and neutrons, as we discuss later. We then obtain
�ω0α = �

2

2m
NcZ
Ac

and �ω0β = �
2

2m
NeZ

2

AAc
[43,44]. Concerning the

coupling constants, we observe that in the presence of the
dipolar field the charges of protons and neutrons are considered

to be N/A and −Z/A, respectively. Then λ1 = A2

NZ

10b
(pot)
sym (ρ0)
AR2 ,

where the nuclear radius is R = 1.2A1/3. Let us first adopt for
λ3 a constant value λ3 = 0.2λ1, which corresponds to the lower
density associated with the neutron skin region and investigate
the influence of λ2 when varied from λ3 (a weak coupling
between the two subsystems) to λ1 (a strong coupling between
the two subsystems).

We consider first the nucleus 68Ni and determine the
position of the energy centroid corresponding to the two
collective states both in TDA (black thick lines) and RPA
(red lines) calculations, see Figs. 1(a), 1(b). Two values were
chosen for the number of excess neutrons, namely Ne = 12,
which corresponds to the extreme case Ne = N − Z (dashed
lines) and Ne = 6 (solid lines). We observe that the ground-
state correlations are influencing strongly the GDR peak and
that the RPA predictions are closer to the experimental values
(around 17.8 MeV). The PDR energy centroid does not change
much either when we modify the value of Ne, nor when we
include the ground-state correlations. The experimental value
recently reported in Ref. [17] is E

exp
PDR = 9.55MeV, while in

our study, for Ne = 6, it changes from EPDR = 10.2–9.3 MeV,
when λ2 increases from λ3 to λ1.

We report the same type of calculations for the 132Sn in
Figs. 1(c), 1(d) considering the cases Ne = 32 (dashed lines)
and Ne = 12 (solid lines). For this system, when Ne = 12, the
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FIG. 2. (Color online) (a) The EWSR fraction exhausted by GDR
in RPA calculations for 68Ni. Ne = 6 (red solid lines) and Ne = 12
(blue dashed lines). (b) The EWSR fraction exhausted by PDR in
RPA calculations for 68Ni. Ne = 6 (red solid lines) and Ne = 12
(blue dashed lines). (c) The EWSR fraction exhausted by GDR in
RPA calculations for 132Sn. Ne = 6 (orange solid lines) and Ne = 12
(blue dashed lines). (d) The EWSR fraction exhausted by PDR in
RPA calculations for 132Sn. Ne = 6 (orange solid lines) and Ne = 12
(green dashed lines).

position of the PDR energy centroid changes from EPDR =
8.5 − 7.5 MeV as λ2 is varied as before. A steeper decrease is
observed for a greater value of Ne. In Fig. 2 we plot the fraction
of EWSR exhausted by the GDR (fGDR) and the PDR (fPDR)
as predicted by the RPA calculations for the same systems:
68Ni, Figs. 2(a) and 2(b) and 132Sn, Figs. 2(c) and 2(d). A
greater value of Ne determines a larger value of the EWSR
fraction exhausted by the PDR. Moreover, fPDR is strongly
influenced by the value of the coupling constant λ2 at variance
with the EPDR position. In the case of 68Ni, for λ2/λ1 = 0.4,
fPDR varies from 2.4 − 5.2 % when Ne changes from 6 to 12.
The experimental values are spanning a domain between 2.8%
and 5% [16,17].

For 132Sn in Figs. 3, 4 we represent the global dependence
of GDR energy and the EWSR fraction exhausted by GDR

FIG. 3. (Color online) The GDR energy centroids as a function of
the ratios λ2/λ1, λ3/λ1 in the case of 132Sn and Ne = 13.5, (λ2 > λ3).
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FIG. 4. (Color online) The EWSR fraction ascribed to GDR as a
function of the ratios λ2/λ1, λ3/λ1 in the case of 132Sn and Ne = 13.5,
(λ2 > λ3).

as a function of λ2/λ1 and λ3/λ1 and for Ne = 13.5 (see the
following discussion, which motivates this choice) derived
from the RPA treatment. The same quantities for the PDR
are plotted in Figs. 5, 6. We remark that the predictions
of the model concerning the position of the two energies
are quite robust: one energy is around 15 MeV and the
other around 8 MeV and therefore is well suited to describe
the two dipole modes observed experimentally in the same
energy regions. The predictions are also quite consistent with
more complex theoretical approaches for the same nucleus
as is relativistic quasiparticle time-blocking approximation
[26] or relativistic quasiparticle random phase approximations
[45,46]. An important observation that follows from these
global plots is a specific sensitivity of the EWSR exhausted
by PDR against the values of two parameters λ2 and λ3. A
stronger coupling between the two subsystems of the model
reduces the EWSR ascribed to PDR.

By returning to our discussion concerning the connection
between the symmetry energy and these parameters we can

FIG. 5. (Color online) The PDR energy centroids as a function of
the ratios λ2/λ1, λ3/λ1 in the case of 132Sn and Ne = 13.5, (λ2 > λ3).

FIG. 6. (Color online) The EWSR fraction ascribed to PDR as a
function of the ratios λ2/λ1, λ3/λ1 in the case of 132Sn and Ne = 13.5,
(λ2 > λ3).

adopt now more precise values for them and then compare
the predictions of model with data and other theoretical
approaches. To analyze the role of the symmetry energy some
additional assumptions concerning the connection between
the values of λi and the density behavior of the symmetry
energy are established. Here we employ three different
parametrizations of the potential symmetry energy denoted
as asysoft, asystiff, and asysuperstiff, respectively [35], which
were considered also in the study of PDR in the transport
model based on Vlasov equation [44].

The ratio of the coupling constant at a given density ρ to
the coupling constant at the saturation density, λ(ρ)/λ(ρ0) is
shown in Fig. 7 for the three asy-EOS.

We focus our discussion on 132Sn and approximate the
radial proton and neutron density distributions by trapezoidal
shapes [47]. We reproduce the proton mean-square radius and
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-3
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FIG. 7. (Color online) The ratio λ(ρ)/λ(ρ0) as a function of
density for asystiff EOS (black solid lines), asysuperstiff EOS (blue
dot-dashed lines) and asysoft EOS (red dashed lines). The inset: the
trapezoidal distribution of neutron (black solid line) and proton (black
dashed line) densities for 132Sn considered in the calculations.
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TABLE I. The ratios λ2/λ1, λ3/λ1 corresponding to the realistic
physical conditions for the three asy-EOS, the predicted values of
PDR, EPDR and GDR, EGDR, energy centroids (in MeV), the fraction
fPDR exhausted by the PDR in each case. f V

PDR refers to the values
obtained from Vlasov calculations.

asy-EoS λ2/λ1 λ3/λ1 EPDR EGDR fPDR(%) f V
PDR(%)

asysoft 0.57 0.23 7.98 15.30 1.3 2.4
asystiff 0.31 0.11 8.05 15.20 3.3 4.2
asysupstiff 0.15 0.02 8.05 15.17 5.0 4.4

obtain a neutron skin thickness 
Rnp = 0.3 fm when we adopt
for the central densities the values provided by the Vlasov
calculations [44], ρn = 0.0825 fm−3, ρp = 0.0575 fm−3, see
the inset in Fig. 7. We consider the number of neutrons in
excess as being determined by the neutron density distribution
beyond r = 6.5fm, where the tail of the protons distribution is
approaching the end part. In this way we obtain a value of Ne

around 13.5 neutrons. We also assume that the average density
of these particles will define ρe, obtaining ρe = 0.0186 fm−3.
For the three asy-EOS we calculate the corresponding λ3/λ1

ratio, indicated in Table I. The properties of the region where
the total density changes from ρ0 to zero determine the
coupling between the core and the excess neutrons. Therefore
we associate the average density of this region with ρi ,
obtaining ρi = 0.05 fm−3. The corresponding values of the
ratio λ2/λ1, for the three asy-EOS, are reported in Table I.

With these values of the parameters the PDR energy
centroid is found around 8 MeV for all cases. The EWSR
fraction exhausted by PDR is strongly influenced by the
density dependence of the symmetry energy below saturation.
Values equal to 1.3%, 3.3%, and 5.0% are obtained for
fPDR when we pass from the asysoft to the superasystiff
parametrization. In other words, a stronger coupling between
the core and the skin reduces the strength of the PDR response
[18], enhancing the GDR contribution. Let us mention that
in a transport model based on the Vlasov equation, whose
linearized version can be related to the RPA equations [48] and
which includes both the isovector and the isoscalar channels
of the residual interaction, it was obtained, for 132 Sn [49,50],
a PDR peak position around 8 MeV, weakly dependent on
the asy-EOS, while the EWSR fraction was 2.4%, 4.2%,
and 4.4%, for the three symmetry energy parametrizations.
Keeping in mind the limits of our assumptions, the agreement
between the two models is reasonably good, confirming the
clear connection between the behavior of the symmetry energy
at quite low densities and the PDR response.

In the present study the influence of the isoscalar component
of the residual interaction, which in a neutron-rich system may
also affect the isovector response [35,44], is neglected. The
mixing of isoscalar and isovector states in the low-lying dipole
excitation and the role of neutron skin was investigated for
neutron-rich nuclei in Refs. [51,52] within Hartree-Fock plus

random phase approximation with Skyrme forces. The study
of the evolution of the low-lying dipole strength as the number
of neutrons increases [53] indicates a proton contribution
to transition density in the nuclear interior and of neutrons
at large radii with more collectivity in the heavier isotopes.
Moreover, some features of the PDR can only be reproduced
going beyond random phase approximation. The coupling of
PDR to other surface mode will determine a separation of
the PDR into two components, which can be excited by using
complementary probes, isoscalar, and isovector respectively
[54]. A description of the transition densities based on
relativistic quasiparticle time-blocking approximation and a
direct comparison with experimental results obtained from
inelastic α scattering shows a structural splitting of the
low-lying E1 strength with an enhanced neutron contribution
from the surface and an isoscalar behavior in the nuclear
interior [55].

In summary, we introduced in this work schematic models
based on separable interactions where the condition of a unique
coupling constant for all particle-hole interactions was relaxed.
The coupling constant for the isovector dipole response can
be related to the potential part of the symmetry energy, which
is density dependent and the model is well suited to describe
situations when some of the nucleons are located in a region at
lower density, as in presence of a neutron skin. Thus, by intro-
ducing a density-dependent particle-hole residual interaction
for systems with nonuniform density distribution, which gen-
eralize the Brown-Bolsterli model, we evidence a mechanism
through which the coherent superposition of particle-hole exci-
tations generate two nontrivial states, which are excited by the
dipole operator. As a consequence the two collective states will
share all the EWSR. The promoted mechanism is supported
by the observation that for values of the parameters selected
in connection with the features of the symmetry energy below
saturation, the predictions of the model agree quite well with
more realistic calculations and reproduce simultaneously the
basic experimental features of GDR and PDR, which, within
this description, appears as a collective mode.

Since the proposed schematic models provide a clear
connection between the density dependence of the symmetry
energy and the EWSR exhausted by the PDR, we further
emphasize that precise experimental determinations of the
properties of the low-energy dipole response can settle im-
portant constraints on the behavior of the symmetry energy
well below saturation.
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