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Energy resolution with the Lorentz integral transform
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A brief outline of the Lorentz integral transform (LIT) method is given. The method is well established
and allows treatment of reactions into the many-body continuum with bound-state-like techniques. The energy
resolution that can be achieved is studied by means of a simple two-body reaction. From the discussion it will
become clear that the LIT method is an approach with a controlled resolution and that there is no principle
problem to even resolve narrow resonances in the many-body continuum. As an example, the isoscalar monopole
resonance of 4He is considered. The importance of the choice of a proper basis for the expansion of the LIT
states is pointed out. By employing such a basis, a width of 180(70) keV is found for the 4He isoscalar monopole
resonance when using a simple central nucleon-nucleon potential model.
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I. INTRODUCTION

In recent years, ab initio approaches have gained increasing
importance in the calculation of bound-state and reaction ob-
servables of nuclear systems with a nucleon number A � 4 (for
a comparison of various techniques, see Refs. [1,2]). A par-
ticularly challenging aspect in such calculations is the proper
treatment of resonances. Recently, via the EIHH (effective
interaction hyperspherical harmonic) expansion technique
[3], the Lorentz integral transform (LIT) method [4,5] was
applied to calculate the isoscalar monopole strength of the
4He(e,e′) reaction with realistic nuclear forces, with special
attention to the role of the low-lying 0+ resonance of 4He [6].
While the resonance strength could be obtained, it was not
possible to determine the width of the resonance. The origin
of this deficiency arises from the low density of LIT states
in the resonance region, but it was not really clear why the
density happens to be so low. One may think of various
possible reasons: (i) the LIT method is based on bound-state
techniques and might be incapable of describing the shape of
narrow resonances, (ii) the used expansion in hyperspherical
harmonics (HH) was not extended to a sufficiently large
basis, or (iii) the HH expansion itself is not able to have a
sufficient density of LIT states in the resonance region. The
first possibility can be safely ruled out. In fact, in Ref. [7] it was
shown that for a fictitious two-nucleon system with a narrow
resonance in the 3P1 partial wave, exact information about
the shape of the resonance could be obtained with the LIT
method. Thus the aim of the present paper is to study which of
the two remaining reasons is responsible for the partial failure
of the LIT method in Ref. [6] and how one can improve the
calculation to get precise information on the resonance width.

To clarify the matter, first a classical two-body problem,
namely deuteron photodisintegration in unretarded dipole
approximation, is discussed. It is shown how the density of
LIT states can be increased in this case. In a next step, it is
considered how one can achieve such an increase also for the
above-mentioned isoscalar monopole strength of the 4He(e,e′)
reaction. In order to do so, a central NN potential model [Trento
(TN) potential] is used that had been previously employed
in the very first LIT applications for the calculation of the

electromagnetic breakup of 4He by electrons and real pho-
tons [8,9]. It is interesting to note that in Ref. [8] one already
finds a clear signal of the 0+ resonance in the 4He longitu-
dinal response function; however, at that early stage of LIT
applications the resonance was not studied in greater detail.

The paper is organized as follows. Section II contains a
brief description of the LIT method. In Sec. III the question
of the density of the LIT states is addressed and illustrated
for the above-mentioned two-body case. A LIT calculation
for the isoscalar monopole strength of 4He(e,e′) is discussed
in Sec. IV, where it is shown how an HH calculation can be
modified in order to determine the width of narrow resonances.
Finally, a summary is given in Sec. V.

II. LORENTZ INTEGRAL TRANSFORM (LIT)

Over the years the LIT approach [4] has been applied to a
variety of inelastic electroweak reactions. A rather large num-
ber of applications can be found in the review articles [1,5].

The LIT of a function R(E) is defined as follows:

L(σ ) =
∫

dE L(E,σ ) R(E), (1)

where the kernel L is a Lorentzian,

L(E,σ ) = 1

(E − σR)2 + σ 2
I

(2)

(σ = σR + iσI ); the parameter σI controls the width of the
Lorentzian. Because of the adjustable width, and unlike many
other integral transforms, the LIT is a transform with a
controlled resolution. However, aiming at a higher resolution
by reducing σI might make it necessary to increase the
precision of the calculation. This point is discussed in greater
detail in Sec. III.

For inclusive reactions the LIT L(σ ) is calculated by solving
an equation of the form

(H − σ ) �̃ = S , (3)

where H is the Hamiltonian of the system under consideration
and S is an asymptotically vanishing source term related
to the operator inducing the specific reaction. The solution
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�̃ is localized. This a very important property, since it
allows determination of �̃ with bound-state methods, even
for reactions where the many-body continuum is involved.

Having calculated �̃, one obtains the LIT from the
following expression:

L(σ ) = 〈�̃|�̃〉 . (4)

The response function R(E) is determined from the calculated
L(σ ) by inverting the transform. A general discussion of the
inversion and details about various inversion methods are given
in Refs. [5,7,10,11].

An alternative way to express the LIT is given by

L(σ ) = − 1

σI

Im

(
〈S| 1

σR + iσI − H
|S〉

)
. (5)

This reformulation is useful since it allows a direct application
of the Lanczos algorithm for the determination of L(σ ) [12].
In fact, the calculations discussed in the following sections are
performed using expansions on basis sets with a subsequent
use of the Lanczos technique.

In order to calculate a specific reaction one has to specify
the source term S in Eqs. (3) and (5). In the case of an inclusive
electroweak reaction, response functions have the general form

R(Ef ) =
∫

dEf |〈f |θ |0〉|2δ(Ef − E0 − ω) , (6)

where |0〉 and |f 〉 are ground-state and final-state wave
functions of the system under consideration, while E0 and
Ef are the corresponding eigenenergies and ω = Ef − E0 is
the energy transferred to the system. θ is the specific transition
operator that induces the reaction. Note that unlike the normal
convention, here the argument of the response function R is
Ef and not ω.

The source term S for inclusive reactions has the following
form:

|S〉 = θ |0〉 . (7)

A solution of the LIT equation (5) via an expansion on a
basis with N basis functions can be understood as follows: One
determines the spectrum of the Hamiltonian for this basis, thus
finding N eigenstates φn with eigenenergies En. The energies
En define the positions of the above-mentioned LIT states.
Furthermore, the LIT solution assigns to any eigenenergy a
Lorentzian with strength Sn and width σI . It should be noticed
that the source term |S〉 solely affects the strength, leading to

Sn = |〈φn|θ |0〉|2 . (8)

The LIT result then reads

L(σ ) =
N∑

i=1

Sn

(σR − En)2 + σ 2
I

. (9)

Note that this result is related to the so-called Lanczos response
RLnczs by

RLnczs(ω,σI ) = σI

π
L(σR = E0 + ω,σI ) . (10)

In the limit σI → 0 the Lanczos response is equal to the true
response function R. However, one often calculates RLnczs for

a small but finite σI value and identifies the Lanczos response
with the true response, which in general is an uncontrolled
approximation. In the LIT approach one does not make such
an identification of transform and response function. A proper
treatment requires an inversion (see discussion in Ref. [5]).

It is important to note that the definition of the LIT in
Eq. (1) contains the full response function R with all breakup
channels. For the calculation of the LIT one may use any
complete localized A-body basis set. Automatically, for any
such set, strength from all breakup channels is contained in
the LIT. However, in principle, it can happen that in a specific
energy interval of a given reaction one basis set is more
advantageous than another one. In fact, such a case is discussed
in Sec. IV.

III. A SIMPLE TWO-BODY PROBLEM

To better illustrate the LIT energy resolution, a simple two-
body case is discussed, namely deuteron photodisintegration
in unretarded dipole approximation. The corresponding cross
section is given by

σunret(ω) = 4π2 α ω Runret(Ef = E0 + ω) , (11)

where ω denotes the photon energy and α is the fine structure
constant. The transition operator for the response function
Runret is the dipole operator,

θ =
2∑

i=1

zi

(1 + τi,z)

2
, (12)

where zi and τi,z are the z components of the position vector
and of the isospin operator of the ith nucleon, respectively.
In the case of the deuteron, the dipole operator induces only
transitions to the np final states 3P0,

3P1, and 3P2-3F2. For
simplicity in the following example, only transitions to the 3P1

partial wave are considered. The ansatz for the corresponding
�̃ reads

|�̃〉 = R(r) |(l = 1,S = 1)j = 1〉 |T = 1〉 , (13)

where r , l, S, j , and T = 1 is the relative distance, orbital
angular momentum, total spin, total angular momentum,
and isospin of the np pair, respectively. The resulting LIT
equation can be easily solved by direct numerical methods or
by expansions of R(r) on a complete set. For nuclei with
A > 2 very often HH expansions are used with separate
hyperspherical and hyper-radial parts, where the latter is
usually expanded in Laguerre polynomials L(m)

n times an
exponential fall-off. Therefore a corresponding ansatz is made
here for R(r),

R(r) = r

N∑
n=0

cn L(1)
n (r/b) exp

(
− r

2b

)
, (14)

where cn are the expansion coefficients and b is a parameter
regulating the spatial extension of the basis.

For the following LIT results of the 3P1 channel, the AV18
NN potential [13] is used. First the Hamiltonian eigenvalues
En, entering in Eq. (9), are studied for various basis sets. In the
upper panel of Fig. 1 results are shown with 11 basis functions

054001-2



ENERGY RESOLUTION WITH THE LORENTZ INTEGRAL . . . PHYSICAL REVIEW C 91, 054001 (2015)

1

2

3

4

b-1
 [

fm
-1

]

10
-1

10
0

10
1

10
2

10
3

10
4

E [MeV]

0

1

2

3

(7
0-

N
)/

20

N=10

b=1 fm

b=0.5 fm

b=0.25 fm

b=0.5 fm

N=50

N=30

N=10
(b)

(a)

FIG. 1. (Color online) Spectrum of the Hamiltonian eigenener-
gies for the 3P1 NN channel with the AV18 NN potential for the basis
of Eqs. (13) and (14) with various values of N and b: N = 10 with
b = 1, 0.5, and 0.25 fm in panel (a) and b = 0.5 fm with N = 10,
30, and 50 in panel (b).

(N = 10) and different values for the extension parameter b.
One sees that a greater spatial extension of the basis functions
leads to a shift of the spectrum to lower energies. As lowest
(highest) eigenenergies one finds 5.17 (7424), 1.27 (2689), and
0.32 (790) MeV for b = 0.25, 0.5, and 1 fm, respectively. To
obtain a higher density of LIT states one has to increase the
number of the basis states N . This is illustrated in the lower
panel of Fig. 1, where the cases with N = 10, 30, and 50 are
shown for b = 0.5 fm. It is evident that the increase of basis
functions leads not only to a higher density of LIT states but
also to an extension of the eigenvalues En both to lower and
higher energies. In fact as lowest (highest) values one has now
1.27 (2689), 0.19 (11056), and 0.076 (25457) for N = 10, 30,
and 50, respectively. If one chooses the energy range up to pion
threshold, one finds that in all three cases about two-thirds of
the N LIT states are located therein.

After having discussed the energy distribution of the LIT
states we come to the transform L(σ ) itself. First, in Fig. 2,
the case with σI = 10 MeV and b = 0.5 fm is illustrated. The
upper panel of the figure shows that an increase of the number
of basis functions from 11 (N = 10) to 51 (N = 50) does not
lead to noticeable differences. In other words, in this case, the
LIT is already quite well converged with a rather small basis.
This nice agreement of both results is not obvious, since Fig. 1
exhibits rather different positions and densities of the LIT
states for both cases. This has to be interpreted as follows. A
discretization of the continuum has no direct physical meaning
and leads in principle to random results. On the contrary, one
can use the discretization to calculate integral transforms, as
for example the LIT, which leads in convergence to a unique
result despite the randomness of the discrete eigenenergies.

In order to find differences between the two results of
Fig. 2(a), one has to present them in a different way, as is done
in Fig. 2(b). There one sees that the agreement is extremely
good up to about 30 MeV and thus one can consider the LIT
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FIG. 2. (Color online) LIT L(σ ) of the 3P1 channel with σI =
10 MeV and b = 0.5 fm. (a) N = 10 and 50; and (b) the ratio r of the
LIT with N = 10, 20, 30, and 40 to the LIT with N = 50 (the values
0.995 and 1.005 are illustrated by full lines).

for σI = 10 MeV to be already converged in this energy range
with only very few basis functions. Beyond 30 MeV the LIT
is not yet converged with N = 10 and starts oscillating about
the LIT with N = 50 with differences becoming even greater
than 5%. Because of the regular oscillations about the more
precise result, it should not lead to serious inversion problems
as long the response does not contain any specific structure at
higher energies. If one wants to check the existence of such
structures, one should improve the precision of the calculation
by enlarging the basis. In fact, with larger N values of 20,
30, and 40, one finds an increased high-precision range with
relative differences compared to the case with N = 50 of less
than 0.5% up to about 50, 60, and 85 MeV, respectively.
However, in order to search for possible structures it is not the
proper strategy to just enlarge the basis. One has to consider
that a resonance with a width considerably smaller than σI is
smoothed out in the LIT such that the details of the shape are
hidden in tiny contributions to the transform. To disentangle
the details one should reduce σI , increasing in this way the
energy resolution of the LIT.

The situation for smaller values of σI is illustrated in Fig. 3,
where LIT results are shown up to about pion threshold for
σI = 0.1, 1, 2.5, and 10 MeV and for various values of N .
For the smallest value, N = 10 [Fig. 3(a)], one finds isolated
Lorentzian peaks. In the case of σI = 0.1 MeV they appear
already at low energy, for σI = 1 MeV at somewhat higher
energy, and for σI = 2.5 MeV at even higher energy. Since
the density of LIT states grows with growing N (see other
panels of Fig. 3) isolated peaks are pushed to higher energies
if N is increased. In addition one notes that any decrease of
σI , i.e., any increase of the resolution, shrinks the convergence
range for a given value of N . For the smallest σI value of
0.1 MeV a rather strong oscillatory behavior is still present at
very low energies even with N = 50. In order to get a smooth
and converged LIT also in this case one would need to increase
N considerably.

For a reliable inversion of L(σ ) the transform has to be
sufficiently converged for a given σI . In particular, isolated
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FIG. 3. (Color online) LIT L(σ ) of the 3P1 channel with σI =
0.1, 1, 2.5, and 10 MeV in all four panels (b = 0.5 fm), but different
N values in the various panels: 10 (a), 20 (b), 30 (c), and 50 (d).

peaks of single Lorentzians should not appear; i.e., for any σR

value one should have a significant contribution from more
than one Lorentzian. Of course, for the present two-body case
one could increase N further without greater problems, but
in a general many-body calculation this might not be easily
possible. On the other hand, it is not necessary to work with a
single σI value only. Considering again the LIT results of Fig. 3
with N = 50 one sees that for σI = 1 MeV a rather converged
result is obtained up to about 10 MeV. Thus structures of
a relatively small width would leave a visible signal in the
transform in this energy range. In fact, one can use this LIT
in the low-energy range and combine it with a LIT with a
larger σI for higher energies. In general one can proceed as
follows: one defines a new transform T in an interval [σ0,σM ]
by combining M transforms Lm = L(σR,σI,m) such that only
the LIT with the specific σI = σI,m enters significantly in the
energy range [σR,m−1,σR,m]:

T = L1f1 +
M−1∑
m=2

amLm(1 − fm−1)fm + aMLM (1 − fM−1) .

(15)

The function fm in Eq. (15) is a smooth cutoff from 1
to 0 at σR = σR,m, for example, fm(σR � σR,m) = 1 and
fm(σR > σR,m) = exp(−[(σR − σR,m)/�]2n), where one has
to take reasonable values for the parameters � and n. The
coefficients am in Eq. (15) can be chosen such that size
of the transform does not change too drastically from one
energy range to the next. Thus, for the case of the LITs of
Fig. 3 with N = 50, one could set σI,1 = 1, σI,2 = 2.5, and
σI,3 = 10 MeV with σR,1 = 10 and σR,2 = 30 MeV. In order
to improve the precision in the threshold region even further
one could include the case with σI = 0.1 MeV, but one would
need to further increase N . Alternatively, keeping N = 50,
one could check the convergence behavior of a LIT with a
somewhat larger σI , for example, σI = 0.25 MeV.

The discussion above shows that the LIT is an approach
with a controlled resolution. In an actual calculation one should
check which lowest σI leads in a specific energy range to a

sufficiently converged and smooth LIT without a single LIT
state sticking out. Structures which are considerably smaller
than such a σI value cannot be resolved by the inversion. A
helpful criterion is given in Ref. [7] (see discussion of Fig. 7
in Ref. [7]).

IV. 4He ISOSCALAR MONOPOLE RESPONSE FUNCTION

The isoscalar monopole response function M(q,Ef =
E0 + ω) can be determined in inclusive electron scattering
(q and ω represent momentum and energy transferred by
the virtual photon to the nucleus). In this case the transition
operator θ of Eq. (6) becomes q dependent and takes the form

θ (q) = Gs
E(q2)

2

A∑
i=1

j0(qri) , (16)

where Gs
E(q2) is the nucleon isoscalar electric form factor,

r i is the position of nucleon i, and j0 is the spherical Bessel
function of 0th order.

Experimental investigations of the 4He(e,e′) reaction in
Refs. [14–16] revealed a 0+ resonance located less than 1 MeV
above the 4He breakup threshold with quite a narrow width of
about 250 keV. It is interesting to note that very recently a
EIHH-LIT calculation was carried out, where it is pointed
out that the resonance might be interpreted as a breathing
mode [17]. Unfortunately, this and the preceding EIHH-LIT
calculations [6] were only able to determine a resonance
strength but not a resonance width since the density of LIT
states in the resonance region was too low. On the other hand,
with the experience made in the previous section it seems to be
easy to increase the density of LIT states also in the region of
the 4He isoscalar monopole resonance, namely by increasing
the number of HH basis states. Unfortunately with an HH
expansion this does not work very well in the energy region
below the three-body breakup threshold. To illustrate this, the
first LIT application [8], already mentioned in the introduction,
is considered in the following: The calculation was carried out
for inclusive electron scattering off 4He and used a correlated
HH (CHH) basis, where NN short-range correlations are
introduced to accelerate the convergence of the HH expansion.
The NN interaction (TN potential, Coulomb force included)
consisted of a central spin-dependent interaction active only in
even NN partial waves. In Fig. 4 we show an unpublished result
for the LIT of the response function M from this calculation.
One sees that there is only an isolated LIT state in the resonance
region. In this specific case one finds the next LIT state only
about 0.1 MeV below the four-body breakup threshold at
σR = 0 MeV. On the contrary, for positive values of σR one has
quite a high density of LIT states. An increase of the number of
hyperspherical and/or hyper-radial basis states does not change
the general picture of having only very few LIT states for
negative σR values, as in fact it was the case in the LIT-EIHH
calculations [6,17]. In addition it was checked for the present
work that an increase of the parameter b in the hyper-radial
functions (∼L(8)

n (ρ/b) exp(−ρ/2b)) in the four-body CHH
calculation of Ref. [8] does not lead to any significant change
concerning the low-energy density of LIT states.
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FIG. 4. LIT L(σ ) of M(q,ω) at q = 300 MeV/c (TN potential)
of 4He with four-body CHH basis from Ref. [8].

At first sight it is not understandable why an increase of the
HH basis states does not have a significant effect on the density
of LIT states in the energy range below the three-body breakup
threshold. On the other hand one has to consider that the
dynamical variable for a two-body break-up, i.e., the relative
vector r′

4 = r4 − ∑3
i=1 ri/3 between the free nucleon and

the bound three-body system, does not appear explicitly in the
HH formalism. Therefore it might be helpful to use a different
basis, where r′

4 is taken into account as variable explicitly.
In the following, the four-body calculation is switched to
such a basis. The new basis states consist of a product of a
three-body CHH basis state for the first three nucleons times
a single-particle basis state for the fourth nucleon. The CHH
basis state is then again a product of a hyperspherical basis
state Y[Kα]() times a hyper-radial basis state Rn(ρ), where
the former depends on the grand angle  and is characterized
by the grand-angular quantum number K and a set of other
quantum numbers [α], whereas the latter is proportional to
L(5)

n (ρ/b) exp(−ρ/2b) (for a detailed definition of the HH
basis, see, for example, Ref. [3]).

The single-particle states are defined as follows:

|�(r′
4)〉 =

∑
l4ms4 mt4

φl4 (r ′
4) |l4ml4〉 |s4ms4〉 |t4mt4〉 , (17)

where l4, s4 = 1/2, and t4 = 1/2 are the orbital angular
momentum, spin, and isospin quantum numbers, respectively,
and ml4 , ms4 , and mt4 denote the corresponding projections.
The radial wave function φl4 (r ′

4) is given by

φl4 (r ′
4) = (r ′

4)l4
3∏

i=1

f (ri4)
N4−1∑
n4=0

cn4L
(2)
n4

(r ′
4/b4) exp

(−r ′
4

2b4

)
,

(18)
where f (ri4) = f (|ri − r4|) is the NN correlation function
(same correlation as in CHH basis). The CHH basis provides
antisymmetric states for the first three nucleons, whereas
the product of the CHH basis states and the single-particle
states has to be antisymmetrized in order to have totally
antisymmetric basis states for all four particles. In order to

TABLE I. Convergence of 4He binding energy BE with the TN
potential (Coulomb force included): l4 denotes the orbital angular
momentum of the single-particle motion [see Eqs. (17) and (18)], K3

is the grand-angular quantum number of the three-body CHH states,
“sym” and “mixed” indicate that the CHH state is symmetric and
mixed symmetric, respectively (note that for l4 > 0 two symmetric
CHH states and only the lowest mixed symmetric state are taken).

l4 K3 CHH symmetry No. CHH states BE (MeV)

0 0 sym 1 28.66
0 4 sym 1 30.11
0 6 sym 1 30.56
0 8 sym 1 30.67
0 10 sym 1 30.77
0 12 sym 2 30.82
0 14 sym 1 30.85
0 2 mixed 1 31.28
0 4 mixed 1 31.32
1 1,3,5 sym and mixed 3 31.39
2 2,4 sym and mixed 3 31.41

calculate the 4He ground state or the transitions induced by
the action of the operator θ (q) of Eq. (16) on the 4He ground
state one has to couple the CHH basis states with those of
Eq. (17) to a total angular momentum L equal to zero, and
also the total spin (isospin) wave function of the four nucleons
has to be coupled to a total spin S (isospin T ) equal to zero.

The calculations described in the following proceed in the
same way as in Refs. [8,9], namely by using a nine-dimensional
Monte Carlo integration for the evaluation of the various
Hamiltonian and norm matrix elements. Such an approach
leads to reliable results (see the benchmark test in Ref. [18]).

In Table I the convergence of the 4He binding energy is
illustrated. It is evident that the dominant contribution comes
from the basis functions where the three-body CHH basis is
in a symmetric state and the relative angular momentum l4 of
the single-particle motion is equal to zero. Mixed symmetric
CHH states together with l4 = 0 enhance the binding energy
by about 0.5 MeV. The contribution of states with l4 > 0 is
very small and leads to a further increase of about 0.1 MeV
(antisymmetric CHH states have been neglected). The final
result of 31.41(5) MeV agrees very well with the converged
result of the four-body CHH calculation of 31.40(5) MeV.

For the calculation of the LIT of the 4He isoscalar monopole
response function M(q,ω) hyper-radial and radial basis states
are chosen with a rather large extension in space. This should
lead to a sufficiently high density of LIT states at low energy
(see Fig. 1). The following choice is made: b = 4 fm (hyper-
radial CHH states) and b4 = 1.33 fm (radial single-particle
states). For the hyper-radial part, 15 basis functions are
taken, whereas the number of the radial single-particle basis
states is kept variable and denoted by N4. Since the main
interest of this investigation is concentrated on the low-energy
part of M(q,ω) only those three-body CHH basis states
which lead to a significant contribution to the 4He binding
energy (see Table I) are taken into account: symmetric CHH
states up to K3 = 6 and the mixed symmetric CHH state
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gies for the 4He(J π = 0+) states with the TN NN potential for the
basis described in the text with N4 basis functions for the radial
single-particle basis.

with K3 = 2. All the remaining states contribute only with
0.42 MeV to the 4He binding energy. Thus it is reasonable
to expect also a shift of the position of the 4He 0+ resonance
by about 0.5 MeV towards higher energies with respect to
the four-body CHH calculation of Fig. 4, leading to a value of
about −5.9 MeV. To take into account only four hyperspherical
three-body CHH states reduces the numerical effort of the
calculation quite a bit, but even with such a reduced basis
the calculation requires considerable numerical effort (note
that due to the rather weak fall of the hyper-radial/radial basis
functions the relevant integration volume becomes much larger
than for the bound-state calculation).

In Fig. 5 the energy distribution of LIT states is shown up to
the four-body breakup threshold with three different N4 values.
As has been anticipated, the density of LIT states increases
with a growing number of radial single-particle states. Due
to the interplay of CHH basis states and radial single-particle
basis states the pattern is not as regular as in the two-body
example of Fig 1.

It is obvious that a further increase of N4 would lead
to an even higher density of low-energy LIT states, but,
unfortunately, the precision of the nine-dimensional Monte
Carlo integration is not sufficiently high and a solution with
N4 > 20 becomes problematic. In this respect it is a drawback
to work with a correlated HH basis because one loses the
orthogonality. Nonetheless, as shown in the following, the
present calculation allows a determination of the width of the
4He isoscalar monopole resonance.

In Fig. 6 the LIT of M(q,ω) is shown for N4 = 20 and
N4 = 22. In the latter case the basis function with n4 = 20
[see Eq. (18)] is dropped because it makes the numerical
solution of the corresponding eigenvalue problem problematic
(precision of Hamiltonian and norm matrices is not sufficiently
high). The figure illustrates that with increasing resolution, i.e.,
with decreasing σI , the resonance becomes more pronounced
against the background. One also finds that the anticipated
peak position of about −5.9 MeV is roughly confirmed.
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FIG. 6. (Color online) LIT L(σ ) of M(q,ω) at q = 250 MeV/c
(TN potential) of 4He with σI = 0.01, 0.1, 0.25, 1, and 5 MeV
calculated with the new basis states [three-body CHH basis times
single-particle basis of Eqs. (17) and (18)]: in panel (a) the single-
particle basis with 20 and in panel (b) with 21 states (see text).

In order to determine a resonance width the LIT has to
be inverted. The procedure of the inversion in presence of a
resonance is described in Ref. [7]. As rule of thumb one can say
that the chosen σI should not be much larger than the resonance
width. However, in principle, if the LIT is calculated with a
very high precision one can choose also a considerably larger
σI . In fact in the model study [7] it is nicely demonstrated
that the obtained width is independent from the used σI over
a very large range, and even with σI = 5 MeV the shape of a
resonance with a width of 270 keV was exactly determined.
In the present case the precision of the calculated LIT is not
as high as in Ref. [7]. The actual inversion was made with two
different σI values [see discussion of transform T introduced
in Eq. (15)], σI,2 = 5 MeV beyond −4 MeV, whereas σI,1 was
varied in the range from 0.1 to 0.5 MeV in the low-energy
region. The various results for the width were quite stable
(maximal difference: 0.01 MeV) and lead to the following
values: 120(10) keV (N4 = 20) and 240 keV (N4 = 22); the
mean value amounts to 180(70) keV. The result lies in the
same ballpark as the experimental value of 270(50) keV
[14]. One could try to increase the theoretical precision of
the determination of the width by a further increase of N4.
Because of the problem just mentioned, this would require a
non-negligible effort in the present calculation. On the other
hand, it is much more desirable to make such a calculation
with a realistic nuclear force instead of having a very precise
result for a simple NN interaction like the TN potential model.

For the inversion of the LIT it is assumed that there is only
a single peak in the resonance region. In principle, from an
increase of the precision of the calculation, one could also
find out that the resonance has a more complicated structure,
for example, a double peak. It is evident from Fig. 6 that
in the present calculation one controls the resonance with a
resolution of about 100 keV; thus it is not possible to resolve
structures with an even smaller width. The situation is similar
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to an experiment, where one works with a given resolution of
the experimental apparatus.

V. SUMMARY

In this work first a brief outline of the LIT approach
is given, a method that allows calculation of continuum
observables with bound-state techniques. In a next step the
energy resolution that can be obtained with the method is
discussed. To this end a specific channel of the final state in
deuteron photodisintegration is studied in unretarded dipole
approximation. In order to do so the LIT equation is solved
using a bound-state basis to calculate the relevant quantities.
It is shown how the spatial extension and the number of basis
states affect the calculation. The role of the width parameter σI

of the LIT is discussed, especially which σI values should be
chosen in a specific situation. The discussion makes clear that
the LIT constitutes an approach with a controlled resolution.
In particular it allows determination of the width of narrow
resonances in the continuum. However, for LIT calculation
with an arbitrary many-body bound-state basis, this is not
always guaranteed. Usually narrow resonances of an A-body
system in the continuum are located below the three-body
breakup threshold. If one intends to study the resonance in
a scattering state calculation it is mandatory to take into
account the relevant dynamical variable, i.e., the relative vector
between the two fragments. In spite of the LIT bound-state
character this dynamical variable should also appear explicitly
in a LIT calculation. It guarantees that the density of LIT
states can be enhanced in the resonance region by increasing
the number of those basis states that directly depend on
the dynamical variable. On the contrary, if this variable is
not included explicitly, as for example in an A-body HH
calculation, it is difficult, maybe even impossible, to obtain
detailed information about the resonance.

In a general case of a resonance with various open channels
the resonance can have a partial decay width to all these
channels, which then results in a total decay width. In this
case it is sufficient to choose just one of the various possible
dynamical variables. The only aim which has to be fulfilled is
a sufficient density of LIT states. The LIT then by definition
collects strength from all open channels and a determination
of the width via inversion leads to the total width.

In order to illustrate the situation in greater detail the
isoscalar monopole response function M of 4He is considered
as test case using a simple spin-dependent central NN interac-
tion (Coulomb force is included). In fact, here one finds a nar-
row resonance in the continuum below the three-body breakup
threshold. Obviously, in this case the dynamical variable is
given by the relative vector of the free nucleon and the bound
three-nucleon system. Using a proper basis as described above
it is indeed found that the density of LIT states grows in the
resonance region if the number of single-particle basis states
is enhanced. It is shown that the LIT state density becomes
sufficiently high to determinate the resonance width via an
inversion of the transform. In fact, a width of 180(70) keV
is found, a result that is not too far from the experimental
value of 270(50) keV. It would be very interesting to perform
such a calculation also with modern realistic nuclear forces, as
have been used in the LIT-EIHH calculations of the response
function M [6,17]; however, the effective interaction approach
has to be a bit redesigned, since one would not have a pure HH
basis.

The present approach is advantageous not only in the
case of cross sections with narrow resonances, but also for
nonresonant two-body breakup cross sections at very low
energies. The possibility to increase the LIT state density
allows work with smaller σI values, thus enhancing the
energy resolution of the calculation. This might be particularly
interesting in the case of astrophysical reactions.
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