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The atomic pair 163Ho and 163Dy, because of its small Q value of about 2.5 keV, seems to be the best pair to use
to determine the neutrino mass by electron capture. The bolometer spectrum measures the full deexcitation energy
of dysprosium (by x rays and Auger electrons plus the recoil of holmium, which can be neglected). The spectrum
has an upper limit given by the Q value minus the neutrino mass. Till now this spectrum has been calculated in
dysprosium allowing excitations with 3s1/2, 3p1/2, 4s1/2, 4p1/2, 5s1/2, and 5p1/2 (and 6s1/2) holes only. Robertson
[R. G. H. Robertson, arXiv:1411.2906v1] also recently calculated the spectrum with two-electron-hole excitations
in Dy. He took the probability for the excitation for the second electron hole from the work of Carlson and Nestor
[T. A. Carlson, C. W. Nestor, T. C. Tucker, and F. B. Malik, Phys. Rev. 169, 27 (1968); T. A. Carlson and
C. W. Nestor, Phys. Rev. A 8, 2887 (1973)] for Z = 54 xenon. The neutrino mass must finally be obtained by
a simultaneous fit of the Q value, together with the properties of the relevant resonances, and the neutrino mass
to the the upper end of the spectrum. Under the assumption that only one resonance (independent of its nature:
one-hole, two-hole, multihole, or of other origin) near the Q value determines the upper end of the spectrum
and that the profile of this leading state is Lorentzian, one has to fit simultaneously four parameters (neutrino
mass, strength, distance of the leading resonance to the Q value, and width). If more than one resonance is of
comparable importance for the upper end of the spectrum, it might be difficult or even impossible to extract the
neutrino mass reliably. Compared to the work of Robertson this work includes the following improvements.
(i) The two-hole probabilities are calculated in the Dirac-Hartree-Fock (DHF) approach for holmium and
dysprosium but not for xenon. (ii) In calculating the probability for the second electron hole in dysprosium the
ns1/2 or np1/2 (n � 3) one-hole states are included self-consistently in the DHF iteration. (iii) Because dysprosium
has Z = 66 electrons and xenon only has Z = 54 electrons, one has at least eight additional two-hole states that
do not exist in xenon and thus their probabilities have not been calculated by Carlson and Nestor and have not
been included by Robertson. They are included here. (iv) For the probabilities of the one-hole states, which
determine the main structure of the spectrum, the overlap and exchange corrections are taken into account. (v)
In solving the DHF electron wave functions the finite size of the nuclear charge distribution is included. (vi) The
nuclear matrix elements for electron capture integrate the charge of the captured electron over the nucleus with
the weight ψ(r)2

e,n,�,j r
2. Thus, for the capture probability the value ψ2

e,n,�,j (R)R2 is taken at the nuclear radius
and not the value ψ2

e,n,�,j (r = 0.0) at r = 0.0, which has the weight r2 zero. (vii) The formulas are derived in
second quantization including automatically the antisymmetrization.

DOI: 10.1103/PhysRevC.91.045505 PACS number(s): 14.60.Pq, 31.15.−p

I. INTRODUCTION

The determination of the absolute value of the neutrino
masses is one of the most important open problems in particle
physics. Presently major efforts are under way to measure
in single-β decay, specifically in tritium decay, the electron
antineutrino mass (KATRIN) [1]. Neutrinoless double-β decay
can distinguish between Dirac and Majorana neutrinos and is
in principle able to measure the effective Majorana neutrino
mass [2]. Electron capture measures the electron neutrino mass
[3–6]. The sensitivity to the electron neutrino mass is increased
(as in single-β decay) in electron capture by a smaller Q
value. Perhaps the best system for the determination of the
absolute scale of the electron neutrino mass (and with the help
of neutrino oscillations also of the muon and tauon neutrinos)
by electron capture is the system 163

67 Ho and 163
66 Dy.

The electron neutrino mass can in principle be determined
by the upper end of the deexcitation (bolometer) spectrum of
163Dy after electron capture in 163Ho. All deexcitation spectra
(x rays, Auger electrons, and the recoil of holmium) end at the

Q value (for 163Ho around 2.5 keV; see Sec. II for the present
Q-value situation) minus the neutrino mass.

Recently Robertson [7] included in the atomic excitations
of dysprosium a second hole. The deexcitation bolometer
spectrum including the two-hole states adds to the leading
contributions of the one-hole spectrum a “fine structure.” For
the probability of the second hole in Z = 66 Dy, Robertson
used results of Carlson et al. [8] and Carlson and Nestor [9]
determined in Z = 54 xenon.

The neutrino mass must be obtained by a simultaneous
fit of the Q value and the neutrino mass to the upper
end of the spectrum including also properties of one-hole,
two-hole, and other excitations close to Q. This complicates
the neutrino mass determination. In cases where several
resonances determine the upper end of the spectrum this can
make the determination of the neutrino mass even impossible.
If only one resonance determines the upper end of the spectrum
and the line profile is Lorentzian, one has to fit four parameters:
neutrino mass, the distance of the leading resonance to the
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Q value, the strength, and the width. Before one fits the
theoretical spectrum to the upper end of the measurement, one
has to fold the detector response including the finite resolution
into the theory.

The improvements compared to the work of Robertson
[7], Carlson et al. [8], and Carlson and Nestor [9] are the
following.

(i) The two-hole probabilities are calculated here with
the fully relativistic Dirac-Hartree-Fock (DHF) code
of Grant [10], Desclaux [11], and Ankudinov et al.
[12] with full antisymmetrization in the atoms
holmium and dysprosium involved in the electron
capture and not in xenon.

(ii) In calculating the probability for the second electron
hole in dysprosium the ns1/2 or np1/2 (n � 3) one-
hole states are included self-consistently in the DHF
iteration. Thus for each one-hole state in dysprosium
a full self-consistent DHF iteration with a hole in the
different one-hole states is performed for all electrons
in the atom. The electron wave functions in Ho and
Dy for the same quantum numbers |n,�,j 〉 but with
different holes change markedly. In a very rough
approximation for a first orientation without the Pauli
correction the probability for the second hole is

P (two-hole) ≈ [1.0 − 〈Ho,n,�,j |Dy,n,�,j 〉2(2j+1)].

(1)

The overlap of electron orbitals with the same quan-
tum numbers in Ho and Dy is typically around 0.999
[see Eqs. (2) and (3)]. Thus a relative change in the
overlap by 1% can change the two-hole probability
by a factor of 10. Equation (1) serves as a lever to
enlarge a small change or error in the overlap into a
large change in the two-hole probability. Therefore
the electron wave functions for the overlaps should
be calculated in holmium and dysprosium, and in
the determination of the Dy electron wave functions
the one-hole state must be self-consistently included
if one wants to obtain reliable probabilities for the
two-hole states.

(iii) Because in Z = 66 dysprosium there are more
electrons than in Z = 54 xenon, there are at least
eight additional two-hole states (3s1/2 4f5/2; 3s1/2

4f7/2; 3p1/2 4f5/2; 3p1/2 4f7/2; 4s1/2 4f5/2; 4s1/2

4f7/2; 4p1/2 4f5/2; 4p1/2 4f7/2), which do not exist
in xenon, and thus their probabilities have not been
calculated by Carlson et al. [8] and Carlson and
Nestor [9]and have not been included by Robertson
[7]. They are included here. The excitation energies
of these states are, according to Tables I and II,
around 2050, 1845, 415, and 335 eV. Two-hole
states involving the one-hole orbital 6s1/2 (P 1) are
not included here, because already the 5s1/2 orbital
has an excitation energy of only 44.7 eV. The 6s1/2

excitation energy is expected to be around 5 eV, i.e.,
100 times smaller than the excitations neglected by
Robertson [7]. In addition the ionization energy of
the 6s1/2 state in the atoms involved seems not to

TABLE I. One- and two-hole states in 163Dy with quantum
numbers n, �, and j . EC is the excitation energy of the one- and the
two-hole states. We adopt here for a better comparison of the values
for Ec and the width � used by Robertson in his arXiv publication [7]
taken from Ref. [13], although there seems to be in some cases better
values in the literature [14–18]. The last two columns give the relative
probabilities of the one- and the two-hole states in relation to 3s1/2

in percent for 163Dy of the present work (P -Fae) and the publication
of Robertson (P -Rob) [7]. One finds surprisingly large differences
for the two-hole probabilities from those of Robertson [7]. To ensure
that the present values are correct, three two-hole probabilities with
about the largest differences from those of Robertson have also
been calculated by hand. The two-hole probabilities are extremely
sensitive to the overlap between the relativistic electron orbitals in
Ho and Dy with the same quantum numbers |n,�,j〉. In a very rough
approximation, Eq. (1) provides a lever to enlarge a small change
in the overlap into a large change in the two-hole probability. The
difference between the Robertson results and the present approach
is largest for the outermost electron orbitals for the second hole.
One expects for the slightly bound states 5s1/2, 5p1/2, and 5p3/2 the
overlaps in Xe and Ho to have the largest differences, because these
states are much weaker bound in Xe than in Ho. See Table III.

One-hole Two-hole Ec (eV) � (eV) P -Fae (%) P -Rob (%)

3s1/2 – 2041.8 13.2 100 100
3s1/2 4s1/2 2474.2 13.2 0.167 0.075
3s1/2 4p1/2 2385.3 13.2 0.103 0.11
3s1/2 4p3/2 2350.0 13.2 0.163 0.25
3s1/2 4d3/2 2201.8 13.2 0.930 1.05
3s1/2 4d5/2 2201.8 13.2 0.126 1.62
3s1/2 4f5/2 2050.4 13.2 0.165 0.0
3s1/2 4f7/2 2047.0 13.2 0.182 0.0
3s1/2 5s1/2 2091.1 13.2 0.132 1.36
3s1/2 5p1/2 2072.6 13.2 0.128 3.12
3s1/2 5p3/2 2065.9 13.2 0.185 7.31
3p1/2 – 1836.8 6 5.080 5.26
3p1/2 4s1/2 2269.2 6 0.005 0.004
3p1/2 4p1/2 2180.3 6 0.009 0.006
3p1/2 4p3/2 2145.0 6 0.007 0.014
3p1/2 4d3/2 1996.8 6 0.005 0.057
3p1/2 4d5/2 1996.8 6 0.005 0.087
3p1/2 4f5/2 1845.4 6 0.005 0.00
3p1/2 4f7/2 1842.0 6 0.012 0.00
3p1/2 5s1/2 1886.1 6 0.005 0.072
3p1/2 5p1/2 1887.6 6 0.008 0.165
3p1/2 5p3/2 1860.9 6 0.008 0.386

be available in the literature and these very lightly
bound electrons are not well described by Slater
determinants due to configuration mixing.

(iv) The electron wave functions in the parent atom and
in the daughter atom get more and more similar with
increasing charge number Z, because the relative
change �Z/Z is smaller. Thus the overlaps of the
wave functions for Z in the parent and (Z − 1) in
the daughter increase closer to unity and the sudden
approximation yields a smaller two-hole excitation
probability, which is very roughly given by Eq. (1).
The overlaps are tabulated in Faessler et al. [4].
They are close to unity. Thus the change of these
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TABLE II. Continuation of Table I with one- and two-hole states
in 163Dy.

One-hole Two-hole Ec (eV) � (eV) P-Fae (%) P-Rob (%)

4s1/2 – 409.0 5.4 24.40 23.29
4s1/2 4s1/2 841.4 5.4 0.021 0.001
4s1/2 4p1/2 752.5 5.4 0.052 0.004
4s1/2 4p3/2 717.2 5.4 0.091 0.01
4s1/2 4d3/2 569.0 5.4 0.088 0.077
4s1/2 4d5/2 569.0 5.4 0.125 0.123
4s1/2 4f5/2 417.6 5.4 0.027 0.0
4s1/2 4f 7/2 414.2 5.4 0.023 0.0
4s1/2 5s1/2 458.3 5.4 0.066 0.254
4s1/2 5p1/2 439.8 5.4 0.039 0.629
4s1/2 5p3/2 433.1 5.4 0.058 1.502

4p1/2 – 328.3 5.3 1.220 1.19
4p1/2 4p1/2 671.8 5.3 0.001 0.0001
4p1/2 4p3/2 636.5 5.3 0.004 0.0005
4p1/2 4d3/2 488.3 5.3 0.005 0.004
4p1/2 4d5/2 488.3 5.3 0.006 0.006
4p1/2 4f5/2 336.9 5.3 0.002 0.0
4p1/2 4f7/2 328.3 5.3 0.001 0.0
4p1/2 5s1/2 377.6 5.3 0.002 0.013
4p1/2 5p1/2 359.1 5.3 0.004 0.031
4p1/2 5p3/2 352.4 5.3 0.002 0.076

5s1/2 5s1/2 44.7 3 3.200 3.45

5p1/2 5p1/2 21.1 3 0.157 0.15

overlaps from xenon to holmium-dysprosium needs
to be only 1% to yield a difference of a factor of 10
or more for the two-hole probabilities. For one hole
in the dysprosium state 3s1/2 or 4s1/2 we have the
following:

hole in 3s1/2: 〈Ho,3s1/2|Dy,3s1/2〉 = 0.999 390,

〈Ho,4s1/2|Dy,4s1/2〉 = 0.999 332; (2)

hole in 4s1/2: 〈Ho,3s1/2|Dy,3s1/2〉 = 0.999 377,

〈Ho,4s1/2|Dy,4s1/2〉 = 0.998 870. (3)

(All numbers in this work are calculated in double
precision.)

(v) For the probabilities of the one-hole states 3s1/2

(M1), 3p1/2 (M2), 4s1/2 (N1), 4p1/2 (N2), 5s1/2

(O1), 5p1/2 (O2), and 6s1/2 (P 1), which determine
the main structure of the spectrum, the overlap
and exchange corrections are included according to
Faessler et al. [4].

(vi) In solving the DHF electron wave functions
[2,10–12] the nuclear charge distribution is included
in the Fermi parametrization determined by
electron-nucleus scattering.

(vii) The nuclear matrix element for electron capture inte-
grates the charge of the captured Ho electron over the
nucleus with the weight ψ2(r)e,n,�,j r

2. Thus, for the
capture probability the value ψ2(R)e,n,�,jR

2 is taken
(R is the nuclear radius) and not the value ψ2(r =
0.0)e,n,�,j at r = 0.0, which has the r2 weight zero.

TABLE III. Ionization energies and two-hole probabilities P (%)
(6) relative to the 3s1/2 state comparing Xe with Ho. A small reduction
of the overlap, which is typically for well-bound electron orbitals
〈Z, n, �, j | Z − 1, n, �, j〉 = 0.999, by an assumed value of 2%
produces by the lever of Eq. (1) a large increase of the two-hole
probability. The reduction of the overlap for going from an atom with
Z to an atom with Z − 1 is largest for very lightly bound electrons.
The 5s1/2, 5p1/2, and 5p3/2 states are in xenon with Z = 54 only
with half the energy E bound as in holmium with Z = 67. The
binding energies of the holmium orbitals in parenthesis are taken from
Robertson [7]. The other values are from the literature [13,15–18]. A
decrease of the overlaps in xenon by an assumed 2% to 0.979 relative
to holmium increases the probability for the second hole P (2-hole)
by a factor of 20. This factor increases the two-hole probabilities in
these states to roughly the values of Robertson [7] (see Tables I and
II), who used the results of Carlson and Nestor [9] calculated for
xenon. It should be stressed that the two-hole probabilities in this
work are not calculated by the very rough Eq. (1) but by the more
accurate expression (21).

E (eV) xenon E (eV) holmium

5s1/2 23.3 49.9
5p1/2 13.4 26.3(30.8)
5p3/2 12.1 26.3(24.1)
Overlap for (−2%) 0.979; P (2-hole) for 0.999; P (2-hole)
j = 1/2 8.1% 0.4%
j = 3/2 15.6% 0.8%

(viii) The formulas are derived in second quantization
including automatically the full antisymmetrization.
This formulation allows one not only to describe
two-hole states but also to extend the description for
three-hole and even more hole states.

II. DESCRIPTION OF ELECTRON CAPTURE AND THE
ATOMIC WAVE FUNCTIONS

The bolometer spectrum of the deexcitation of 163Dy after
electron capture in 163Ho can be expressed as in Refs. [3] and
[4] assuming Lorentzian line profiles:

d�

dEc

∝
∑

i=1,...,Nν

(Q − Ec)U 2
e,i

√
(Q − Ec)2 − m2

ν,i

×
∑
f =f ′

λ0Bf

�f ′

2π

1

(Ec − Ef ′)2 + �2
f ′

/
4
. (4)

Here Q = 2.3 to 2.8 keV [5,14,19–21], with a recommended
value [22] Q = (2.55 ± 0.016) keV; U 2

e,i is the probability
for the admixture of different neutrino mass eigenstates i =
1, . . . ,Nν into electron neutrinos; Ec is the excitation energy
of the final dysprosium; Bf are the overlap and exchange
corrections; λ0 contains the nuclear matrix element squared
[23]; Ef ′ are the one- and two-hole excitation energies in
dysprosium; and �f ′ are the widths of the one- and two-hole
states in dysprosium [4].

Here, as in all other calculations for the deexcitation of
Dy after electron capture, a Lorentzian shape is assumed.
This is probably a good description. Holmium in the ECHo
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experiment is built into a gold film positioned as an interstitial
or it occupies a position in the gold lattice. A Gaussian shape
would be expected in a gas from Doppler broadening. Even
collision and pressure broadening yield usually a Lorentzian
profile. But because the shape of the resonance lines are
important for the determination of the neutrino mass, the line
shapes should be studied in the future more carefully.

Results of the ECHo Collaboration [14] for electron capture
in 163Ho to 163Dy yield the following Q value:

Q(ECHo) = (2.80 ± 0.08) keV. (5)

The highest two-hole state in Dy has an energy of 2.474 keV
(see Table I), far below the Q value. So three-hole and
multihole states (and perhaps also states from configuration
mixing), which can be higher in energy, might be more
dangerous for the determination of the neutrino mass.

We assume, that the total atomic wave function can be
described by a single Slater determinant. Bf takes into account
the overlap and the exchange terms between the parent |G〉 and
the daughter atom in the state |A′

f 〉 with a hole in the electron
state |f ′〉. We use the sudden approximation like Faessler et al.
[24]. Bf is the overlap and exchange correction for the electron
capture probability from the state f relative to the capture from
3s1/2 in Ho with one hole in f ′ in the Dy atom, given in Eq. (6)
in the Vatai approximation [25,26]. But the numerical values
used here are calculated with the full overlap and exchange
corrections of Faessler et al. [4]:

Bf = |ψf (R)〈A′
f |af |G〉|2

|ψ3s1/2(R)|2 = Pf

|ψf (R)|2
|ψ3s1/2(R)|2 . (6)

For two-hole final states one has to multiply Eq. (6)
according to Eq. (15) with the probability to form a second
hole characterized by the quantum numbers “p′ ”. One has to
replace 〈A′

f ′ |ai |G〉 by
〈A′

f ′,p′;q ′ |ai |G〉 with the two electron holes f ′ and p′ and
the additional electron particle q ′ in dysprosium above the
Fermi surface F . The probability for the leading expression
(Wick [27] contracted) to form one hole in Dy in f ′ = f = i
is

Pf = |〈A′
f ′ |ai=f |G〉|2 ≈

∏
k=1,...,Z;�=f

|〈k′|k〉|2. (7)

The corresponding probability for two final hole states f ′ and
p′ and an additional electron in q ′ summed over all q ′ > F of
the unoccupied bound and the continuum states is

Pp′/f ′ =
∑
q ′>F

|〈A′
f ′,p′;q ′ |ai |G〉|2. (8)

The antisymmetrized Slater determinants for the wave func-
tions of the initial holmium in the ground state |G〉 and the
excited one-electron-hole state |A′

f 〉 in dysprosium read in
second quantization as follows:

|G〉 = a
†
1a

†
2a

†
3 · · · a†

Z|0〉, (9)

|A′
f 〉 = a

′†
1 a

′†
2 · · · a′†

f ′−1a
′†
f ′+1 · · · a′†

Z |0〉. (10)

The antisymmetrized two-hole state in Dy is

|A′
p′,f ′ 〉 = a

′†
1 a

′†
2 · · · a′†

f ′−1a
′†
f ′+1 · · · a′†

p′−1a
′†
p′+1 · · · a′†

Za
′†
q ′>F |0〉.

(11)

The primes with the dagger indicate the single-electron spinor
creation operators for the daughter nucleus (dysprosium) with
one electron hole in the single-particle state |f ′〉 in Eq. (10) and
two holes |f ′〉 and |p′〉 in Eq. (11). The following expressions
have to be calculated with the help of Wick’s theorem [27]:

Pf = |〈A′
f |ai |G〉|2 = |〈0|a′

Za′
Z−1 · · · a′

f +1a
′
f −1 · · · a′

1

· af · a
†
1a

†
2a

†
3 · · · a†

Z|0〉|2, (12)

Pp/f = |〈A′
p′,f ′ |af |G〉|2 =

∑
q ′>F

|〈0|a′
q ′a

′
Z · · · a′

p′+1a
′
p′−1

· · · a′
f +1a

′
f −1 · · · a′

1 · af · a
†
1a

†
2a

†
3 · · · a†

Z|0〉|2. (13)

One considers the Wick contractions as an expansion with the
“nondiagonal” overlaps as small parameters. The leading term
is the expression without nondiagonal overlaps. The leading
expression (without the sub-leading exchange terms, which
contain at least one nondiagonal overlap in the amplitude) is
obtained in Eq. (12) for electron capture in holmium from the
state i if the captured electron i in Ho has the same quantum
numbers n, �, and j as the final hole state f ′ in Dy, i.e., for
the quantum numbers i = f = f ′. The probability for two-
hole states, Eq. (13), is next to the leading order, because it
contains always at least one nondiagonal overlap 〈q ′|p〉 for the
amplitude and the square for the probability. If the sequence
of f ′ and p′ is reversed in dysprosium the Fermion creation
operators produce automatically a “−” sign for the amplitude,
which does not matter for the probability.

III. DERIVATION OF THE PROBABILITIES

It has been already stressed that the leading contribution
for the one-hole state in Eq. (12) and for the two-hole state
in Eq. (13) is obtained if the orbital quantum numbers for the
captured electron in holmium, |i〉 = |n,�,j,m〉, are the same
as the hole quantum numbers in Dy, |f ′〉 = |n′,�′,j ′,m′〉; thus
i = f ′ = f and n = n′, � = �′, j = j ′, and m = m′.

The leading expression for the probability to excite the hole
state in Dy corresponding to the quantum numbers of the state
of the captured electron in holmium is

Pf = |〈A′
f |af |G〉|2 =

∏
k=k′<F,�=f

〈k′|k〉|2

=
∏

(n,�,j )(Ho=Dy)<FDy

|〈(nlj )Dy|(n,�,j )Ho〉|2Nn,�,j (14)

The definition of Nn,�,j is given in Eq. (23). (n,�,j )Ho and
(n,�,j )Dy indicate electrons in the Ho atom and in the Dy
atom with the same quantum numbers. Such states have a
large overlap only slightly below unity.

For the following one needs some elementary laws of
probability calculus:

P (A and B) = P (A) · P (B),

P (A or B) = P (A) + P (B),

if A andB exclude each other. (15)

If one wants to include the leading contribution for two
holes in the final Dy atom, one must multiply expression Pf
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in Eq. (14) with the probability Pp/f to form an additional
electron particle q ′ > F (F is the Fermi surface) and an
electron hole state p′ < F . The excited electron q ′ can be in
an unoccupied bound state or in the continuum of the Dy atom:

Pp/f (q ′ > F ) = |〈0|a′
q ′a

′
Z · · · a′

p′+1a
′
p′−1 · · · a′

f ′+1a
′
f ′−1

· · · a′
1′af a+

1 · · · a+
Z |0〉|2

= |〈A′
p′,f ′<F ;q ′>F (2 holes)|af |G〉|2

≈ |〈q ′
>F |p<F 〉

∏
k=1...Z �=f,p

〈k′|k〉|2, (16)

where q ′ is an empty electron orbit in Dy, into which the
electron p is scattered, and p is the occupied state in Ho, from
which this electron is removed. Here again k and k′ and also
f and f ′ and p and p′ stand for the same electron quantum
numbers n, �, and j in the parent atom k, f , and p and the
daughter atom k′, f ′, and p′. The product over k runs over
occupied states k′ = k = (nk, �k, jk, mk) in Ho and Dy with
the exemption of f = ( nf , �f , jf , mf ). q ′, an empty state in
Dy, can be bound or in the continuum. If q ′ is in the continuum,
one speaks of “shake off.” Because now a nondiagonal overlap
is involved in Eq. (16) with 〈q ′

Dy|pHo〉 already in the amplitude
and this expression must be squared for the probability, the
two-hole contributions are reduced by a nondiagonal overlap
squared. If one exchanges the states f ′ and p′, one obtains
an additional “−” sign. But because one has to square the
expression, a phase is irrelevant.

To evaluate the probability for an additional electron
particle-hole state (16) one sums incoherently over all un-
occupied states q ′ (this assumes that the different two-hole
excitations do not influence each other):

Pf ′,p′ =
∑
q ′>F

|〈p<F,Ho|q ′
>F,Dy〉〈q ′

>F,Dy|p<F,Ho〉|

×
∏

k=k′<FDy �=f,p

|〈k′
Dy|kHo〉|2 (17)

Here, as stressed above, the sum over q ′ runs only over the
unoccupied bound and continuum states in Dy. One can now
use the completeness relation to shift the sum over q ′ to
states away from the continuum states, which one can more
easily calculate. One divides the completeness relation into two
pieces, up to the last occupied state below the Fermi surface F
and all states above the last occupied state including also the
continuum:

1 =
∑
q ′<F

〈p|q ′〉〈q ′|p〉 +
∑
q ′>F

〈p|q ′〉〈q ′|p〉. (18)

The sum in Eq. (17) is the last part of Eq. (18) and one can
transcribe Eq. (17) into

Pp/f =
⎛
⎝1 −

∑
q ′<F

〈pHo|q ′
Dy〉〈q ′

Dy|pHo〉
⎞
⎠

×
∏

k=k′<FDy;�=p,f

〈k′
Dy|kHo〉. (19)

In the literature one uses often the Vatai approximation
[25,26]: Exchange corrections have already been neglected
in the previous expressions. In addition one assumes that the
overlaps of electron wave functions in the parent atom and
the daughter atom with the same quantum numbers [given in
the product term in Eq. (19)] can be approximated by unity.
Typically the overlaps have values [4] 〈k′

Dy|kHo〉 ≈ 0.999 and
thus for Dy minus two holes 0.99964 ≈ 0.94. In the Vatai
approximation [26] one replaces this value by 1.0:

Pp/f =
⎛
⎝1 −

∑
q ′<F

〈pHo|q ′
Dy〉〈q ′

Dy|pHo〉
⎞
⎠

=
⎛
⎝1 − 〈pHo|p′

Dy〉〈p′
Dy|pHo〉

−
∑

q ′<F,�=p′
〈pHo|q ′

Dy〉〈q ′
Dy|pHo〉

⎞
⎠ . (20)

The physics of the two terms subtracted from 1 in Eq. (20)
is as follows: The first subtracted term gives the probability
that the state p′ in Dy is occupied. The second terms take
into account the Pauli principle and prevent the electrons
from being moved into occupied states in Dy. The single
electron states like |p〉 = |n,�,j,m〉 include also the angular
projection quantum number m. This projection is irrelevant
for the description of the data. The first subtracted term in
Eq. (20) gives the probability that a specific magnetic substate
m′ is occupied in p′. The probability that all magnetic substates
of p′ are occupied is an “and” situation (15). The probabilities
for the substates have to be multiplied and one obtains the N th
power of the single-electron probability with Np′ = Nn,�,j ;p′ =
(2j + 1)p′ , |〈(n,�,j )p,Ho|(n,�,j )p′,Dy〉|2Nn,�,j ;p′ :

Pp/f = (1 − |〈(n,�,j )p,Ho|(n,�,j )p′,Dy〉|2·Np′

−
∑

(n,�,j )q′ ,Dy; �=p′<F

Nn,�,jNn′,�,j

2j + 1

× |〈(n,�,j )p,Ho|(n,�,j )q ′,Dy〉|2) (21)

for n and n′ with

Nn,�,j = 2j + 1. (22)

However, for the primary hole state f and the 4f7/2 state one
has special factors:

N(n,�,j )f = 2jf andN4f7/2 = 5. (23)

Here |f 〉 is the orbital in Ho from which the electron is
originally captured. The electron p′ is moved to 4f7/2 with
now five electrons in this orbit to guarantee the correct number
of electrons. Nn,�,j /(2j + 1) is the averaged probability to find
an electron in the |p,n,�,j,m〉 orbital and Nn′,�,j is the number
of electrons in the |q ′,n′,�,j 〉 state. For the probability of the
second hole we used the Vatai [25,26] approximation with
the overlaps of corresponding electron wave functions with
the same quantum numbers in Ho and Dy equal to unity and we
neglected the exchange corrections. For the diagonal overlaps
of the order of ≈ 0.999 this is a good approximation.
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Here some details of the determination of the one- and
two-hole probabilities are listed:

(i) In the formation of the first-hole state in orbital f in
Ho and f ′ in Dy, the electron can be captured from
each projection quantum number m. One has an “or”
situation. According to Eq. (15) the probabilities add
up. However, because one has capture only from the
s1/2 and p1/2 states, this yields a common factor of 2 in
the amplitude and thus is not relevant for the relative
probabilities.

(ii) The probability amplitude for the second hole is
calculated in the sudden approximation [24] by the
overlap of the ground state of Ho with the captured
electron f removed with Dy with a hole in f ′ and the
particle-hole excitation (q ′1p′−1). The overlap squared
|〈(n,�,j )p,Ho|(n,�,j )p′,Dy〉|2 gives the probability, that
a specific magnetic substate mp′ is occupied. To obtain
the probability that all magnetic substates of p′ are
occupied, one has the “and” situation (15), which
requires one to multiply all these probabilities with
each other, which yields the power of N(n,�,j )p′ .

(iii) The second subtracted term in Eq. (21) takes care of
the Pauli principle of the occupied states excluding p′.
One has an “or” situation. Thus one obtains a factor
of Nn,�,j according to Eqs. (15) and (23).

(iv) The one hole f ′ and the particle-hole excitation
(q ′1p′−1) are in an “and” situation. Thus the prob-
abilities have to be multiplied P (f ′−1)P (q ′1,p′−1)
according to Eq. (15). One multiplies the probabilities
(14) with Eq. (16). These probabilities relative to 3s1/2

(6) are listed in Tables I and II.

IV. COMPARISON WITH CARLSON AND NESTOR

Carlson et al. [8] and Carlson and Nestor [9] derived by
physics arguments for the antisymmetrization and the Pauli
principle the probability to excite apart from a hole in f ′ also
an additional particle-hole state:

PCarlson;f,p = (1 − (|〈(n,�,j )p′,Dy|(n,�,j )p,Ho〉|2)Nn�j

−
∑

n′<F ;�=n′
p

Nn,�,jNn′,�,j

2j + 1

× |〈n′,�,j (Dy)|n,�,j (Ho)〉|2). (24)

The definition of Nn,�,j is given in Eq. (23). (n,�,j )p,Ho and
(n,�,j )p′,Dy indicate electrons in the Ho atoms and in the Dy
atoms with the same quantum numbers.

Equations (21) and (24) are in the Vatai approximation
[25,26] identical with the expressions of Carlson and Nestor
[9]. That means one neglects exchange terms and assumes
that the overlaps of equivalent electron orbitals with the same
quantum numbers in the parent atom and in the daughter atom
are equal to unity. Thus we have in the Vatai approximation
[25,26] verified the formula of Carlson and Nestor [9]
including here more rigorously the antisymmetrization and
the Pauli principle and showing also expressions beyond the
Vatai approximation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Bolometer Energy [keV]

-4

-3

-2

-1

0

1

2

3

lo
g 10

 B
ol

om
et

er
 S

pe
ct

ru
m

 [a
rb

itr
ar

y 
un

its
]

This work
Parameters of Robertson [7]

Bolometer Spectrum: EC in 163Ho
Q-value = 2.8 keV

FIG. 1. Logarithmic10 (with basis 10) bolometer spectra (4) and
(21) for the one- and two-hole probabilities calculated in this work
(dashed line) and with the parameters of Robertson (solid line) [7]
with the assumed Q value = 2.8 keV for the bolometer energy
between 0.0 and 2.8 keV. Apart from the excitation of one-hole states
in 163Dy after electron capture in 163Ho, the excitations of the two-hole
states in 163Dy are also included. The logarithmic10 plot stresses the
effect of the two-hole states. In a linear plot (see Fig. 2) the two-hole
states are hardly to be seen. The values at the ordinate have to be read
as 10ordinate. So “−2” is 10−2.

The logarithmic (with basis 10) bolometer spectra (4) and
(21) for the one- and two-hole probabilities of Fig. 1 is
calculated with the parameters of Robertson [7] and a Q value
= 2.8 keV for the energy between 0.0 and 2.8 keV. In Fig. 2
the one-hole energies and the widths from Table IV are used.
The excitations of one-hole states in 163Dy after electron
capture in 163Ho and also the excitations of two-hole states
in Dy are included. For the widths of the resonances we
assumed in this work, if they are not known experimentally, the
estimates of Robertson [7] to allow a better comparison. In a
linear plot of the bolometer spectrum the two-hole excitations
are hard to see and the spectrum calculated in this work and
the one calculated with the probabilities of Robertson [7]
and Carlson and Nestor [9] look almost identical, although
the two-hole probabilities are in some cases very different as
shown in Tables I and II. The two-hole modifications of the
bolometer spectrum show up clearly in a logarithmic plot, but
are suppressed in a figure with a linear ordinate.

In Fig. 2 the theoretical results for the bolometer spectrum
in electron capture in 163Ho to 163Dy of this work are compared
with the experimental data of Ranitzsch et al. [28] and Gastaldo
et al. [29] in a linear plot assuming a Q value of 2.8 keV.

In Fig. 3 the upper end (2.70 to 2.80 keV) of the theoretical
linear bolometer spectrum of the present approach including
one- and two-hole states is shown for an electron neutrino mass
of 0.0 and 2 eV. A similar result is obtained for the following
Q values: Q = 2.3 keV and Q = 2.5 keV.

What happens if the Q value falls within the width of a two-
hole resonance? This situation is displayed in Fig. 4. The two-
hole resonance 3s1/2, 4p3/2 lies at 2.350 keV with a width of
� = 13.2 eV. The figure shows the upper part of the bolometer
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FIG. 2. Experimental (solid line) and theoretical (dashed line)
linear bolometer spectra (4) and (21) for electron capture in 163Ho
to 163Dy with the Q value = 2.8 keV [see Eq. (5)] including the
one- and two-hole probabilities calculated in this work and compared
to the Heidelberg experiment of Ranitzsch et al. [28] and Gastaldo
et al. [29] for the total bolometer energy from 0.02 to 2.80 keV.
The theoretical spectrum is normalized to the data of the N1 (4s1/2)
peak at 0.42 keV. The three small experimental lines between 1.2 and
1.6 keV originate from small admixtures of 144Pm. The experimental
counts are binned in 2-eV intervals. Due to background subtraction
the number of counts in some bins can be negative. In some regions
of the energy the number of counts per bin is zero or one. Due to
negative and zero counts in a bin it is not possible to plot the data
logarithmically as in Fig. 1, which would show the small effects of
the two-hole excitations in Dy better. The theoretical spectrum is
calculated for zero neutrino mass and with the excitation and the
width of the one-hole states of the ECHo Collaboration [28,29] listed
in Table IV.

spectrum from 2.345 to 2.355 keV for a neutrino mass of
mν = 0 eV and mν = 2 eV.

Figure 5 shows the upper end of a theoretical spectrum with
a mixture of two mass eigenstates for the electron neutrino.
The mixing probabilities are adopted from Capozzi et al. [30].
The onset of the 10-eV admixture at 2.790 keV can be seen.

The importance of excited states in Dy for the neutrino
mass determination does not depend on whether they are
one-hole, two-hole, or multihole states or whether they are
of a different nature. Under the assumption that the shape of
the resonances are Lorentzian, the importance of a specific
state for the determination of the neutrino mass can be seen

TABLE IV. The electron binding energies and widths of hole
states in 163Ho from the literature [13,15–18] and recent ECHo data
[28,29]. Electrons below 3s1/2 cannot be captured in 163Ho. Due to
the Q value of about 2.8 keV they are energetically forbidden.

n,�,j Elit (keV) EECHo (keV) �lit (eV) �ECHo (eV)

M1 3s1/2 2.047 2.040 13.2 13.7
M2 3p1/2 1.836 1.836 6.0 7.2
N1 4s1/2 0.420 0.411 5.4 5.3
N2 4p1/2 0.340 0.333 5.3 8.0
O1 5s1/2 0.050 0.048 5.0 4.3
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FIG. 3. The upper 10 eV of the bolometer spectrum from 2.790
to the Q value = 2.800 keV for neutrino masses mν = 0.0 eV (dashed
line) and mν = 2 eV (solid line).

from Eq. (4). A measure of the importance of a state for the
determination of the neutrino mass is

importance ∝ Bf �f ′

(Q − Ef ′)2 + �2
f ′

/
4

≈ Bf �f ′

(Q − Ef ′)2
. (25)

The dependence on the resonance energy Ef ′ is (Q −
Ef ′)−2, if the distance of the energy to the Q value is larger
than the width. So states near the Q value normally have the
largest influence on the determination of the neutrino mass.
In general one needs a simultaneous fit of the neutrino mass,
the Q value, and the parameters (Ef ′ , Bf ′ , and the width �f ′)
of the most important resonance (or even resonances). This
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mν=2 eV

Q-value = 2.355 keV

2 Hole
Resonance
Energy

Two Hole Resonance 3s1/2, 4p3/2
at Ec=350 keV, width Γ = 13.2 eV,
relative probability to 3s1/2 = 0.2 %

FIG. 4. The upper 10 eV of the bolometer spectrum from
2.345 keV to the assumed Q value = 2.355 keV for neutrino masses
mν = 0.0 eV (dashed line) and mν = 2 eV (solid line). The two-hole
state 3s1/2, 4p3/2 at Ec = 2.350 keV in 163Dy is just below the assumed
Q value = 2.355 keV within the width � = 13.2 eV. In a simultaneous
fit of the neutrino mass and the Q value, also the position, the width,
and the strength of the resonance state must also be included. A finite
neutrino mass produces at the upper end of the spectrum a special
fingerprint, which cannot be produced by a resonance state. Thus one
can hope, that even in this situation the upper end of the spectrum
shows the fingerprint of a finite neutrino mass.
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FIG. 5. The upper 20 eV of the bolometer spectrum in 163Dy
for a neutrino with mass mν = 0 eV (dashed line) and an electron
neutrino, which is a mixture of two mass eigenstates with mν = 2 eV
and mν = 10 eV (solid line) for the assumed Q value = 2.8 keV.
The mixing coefficients are adopted from Ref. [30] assuming only
mixing of two neutrinos with probabilities of U 2

e,1(2 eV) = 0.636
and U 2

e,2(10 eV) = 0.364. The neutrino with mν = 0 eV is assumed
to have U 2

e,1 = 1.0 and U 2
e,2 = 0.0. The onset of the heavy neutrino

of mν = 10 eV at (Q − 10) eV = 2.790 keV can be seen in the
theoretical spectrum. Finite experimental energy resolution will at
least partially smear out this effect.

makes the determination of the neutrino mass very difficult or
perhaps even impossible.

To analyze how many and which parameters must be fitted
to the upper end of the experimental spectrum, we introduce
the definitions �EC and �Ef ′ in Eq. (26), and we assume that
only one resonance determines the upper end of the spectrum
near the Q value and that the profile of this line is Lorentzian:

EC = Q − �EC, Ef ′ = Q − �Ef ′ . (26)

�EC describes the variable energy and �Ef ′ the distance of
the leading resonance to the Q value, and �f ′ is the width of
this resonance:

d�

dEc

∝ (Q − Ec)
√

(Q − Ec)2 − m2
ν

S

(Ec − Ef ′)2 + �2
f ′/4

= �EC

√
�E2

C − m2
ν

S

(�f ′ − �EC)2 + �2
f ′

/
4
. (27)

Here S ∝ λ0Bf �f ′ is the strength of the resonance.
An estimate shows that the one-hole states play the decisive

role in the behavior at the Q value, assuming that the more
accurate value of Q = 2.8 keV of the ECHo Collaboration [14]
is correct. The relative weight 174 for the highest one-hole state
3s1/2 at 2.0418 keV with P1-hole = 100% is at the Q value, the
important area for the neutrino mass, by a factor of 100 larger
than the weight 1.6 of the highest two-hole state at 2.4742 keV
with P2-hole = 0.167 % from Table I:

relative weight ∝ P1-hole%

(Q − Ef ′)2
= 100%

(2.80 − 2.04)2
= 174,

relative weight ∝ P2-hole%

(Q − Ef ′)2
= 0.167%

(2.80 − 2.47)2
= 1.6. (28)

The widths of the one- and the two-hole states of the highest
energies are assumed to be the same � = 13.2 eV (see Table I)
and thus are not changing the relative weights. This means for
a Q value of Q = 2.8 keV the two-hole states seem not to play
the dominant role for the determination of the neutrino mass,
at least judging from the states of energies closest to the Q
values.

Under the assumption, that one resonance determines the
upper end of the spectrum at the Q value, one has four
parameters to fit simultaneously: the neutrino mass mν , the
distance of the resonance to the Q value �Ef ′ , the strength S,
and the width �f ′ . To include the experimental resolution in
the fit, one must fold the experimentally determined profile of
the detector into the upper end of the theoretical spectrum.

V. CONCLUSIONS

In the present work the bolometer spectrum after electron
capture in 163Ho for the deexcitation of 163Dy has been calcu-
lated including the one- and two-hole excitations in Dy. The
main improvements compared to Robertson [7] and to Carlson
and Nestor [9] are as follows. The two-hole probabilities are
calculated in the atoms holmium and dysprosium directly
involved in electron capture, by which one wants to determine
the neutrino mass. Robertson [7] used for electron capture in
Z = 67 holmium the results for Z = 54 xenon calculated by
Carlson and Nestor [9].

The present work also takes into account self-consistently
in the relativistic DHF approach the different hole states in
163Dy. So for each one-hole state the remaining 65 electron
wave functions are calculated self-consistently and used to
determine the two-hole probabilities. The larger number of
electrons in Dy than in Xe allows additional two-hole states,
which previously have not been included. The two-hole
probabilities in Dy calculated here are quite different from
the probabilities of Robertson [7] and Carlson and Nestor [9]
calculated in Z = 54 xenon. To test the numerical results
of this work three two-hole probabilities have also been
calculated by hand.

The neutrino mass must be determined by a simultaneous
fit together with the Q value and the properties of the relevant
resonances (assuming a Lorentzian profile, these properties
are positions, strengths, and widths), to the upper end of the
spectrum. The finite neutrino mass provides at the upper end
of the spectrum a characteristic deviation from the usual line
shape, which cannot be simulated by a resonance in Dy. This
fingerprint close to the Q value should show up in the fit to
the data. The finite experimental energy resolution has to be
folded into the theoretical spectrum before one fits it to the
data. Thus an excellent resolution of the measurement near the
Q value is essential.
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