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Zemach moments of the proton from Bayesian inference
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The first and the third Zemach moments are obtained, 〈r〉(2) = 1.1108 ± 0.0021 fm and 〈r3〉(2) = 2.889 ±
0.008 fm3, from the Bayesian analysis of the elastic ep scattering data. The quantitative discussion of
the dependence of the results on the parametrization choice is presented and the corresponding systematic
uncertainties are estimated—about 0.6% and 1.6% for the first and the third Zemach moments, respectively.
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I. INTRODUCTION

The moments of the electric charge distribution, ρE(r), of
the proton are the input for the theoretical calculations of
hadronic structure corrections to the energy spectrum in simple
atomic systems [1,2]. They contain the information about the
structure of the proton. For instance, the second moment of
charge distribution (mean square radius),

r2
p ≡ 〈r2〉 =

∫
d3r r2 ρE(r), (1)

gives the definition of the proton radius rp.
The analysis of the measurements of the energy spectrum in

simple atomic systems allows one to study the theory of bound
states and the relativistic effects of quantum electrodynamics
(QED) and also presents the opportunity to investigate the
hadronic proton structure, in particular, the electromagnetic
proton form factors.

On the other hand the electric, GE , and magnetic, GM ,
proton form factors are extracted from the elastic ep scattering
data. In some approximations [3,4] the GE and GM proton
form factors can be related to the distributions of the electric
charge and the magnetic moment inside the proton.

The value of the proton radius obtained from hydrogen atom
measurements is consistent with the values of rp extracted by
many groups from elastic ep scattering data [5,6] including
recent low-Q2 ep cross-section measurements [7,8] (for a
more complete list of references see Ref. [9]). However, they
cannot be reconciled with a recent, currently the most accurate,
value of the proton radius obtained from the Lamb-shift
measurement in the muonic atom [10]. On the other hand
the latter is in agreement with the results of the analysis of the
scattering data within the dispersion-based approach [11,12].
The source of this discrepancy is not well understood [13,14]
and it is referred to as the proton radius puzzle.

The theoretical value of the Lamb shift in the muonic
hydrogen is dominated by the QED contribution but the
corrections due to the nucleus finite size are non-negligible.
They are determined by the moments of the electric charge
distribution [15,16]. Indeed, the theoretical value of the Lamb
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shift reads [1,17,18]

Lth = 209.9779(49) − 5.2262
〈r2〉
fm2 + 0.00913

〈r3〉(2)

fm3 , (2)

where the energy above is in meV, while

〈r3〉(2) =
∫

d3r′d3rρE(r′)ρE(r)|r′ − r|3 (3)

is the third Zemach moment [19]. The experimental value is
Lex = 206.2949(32) meV [10].

From comparison of Lth and Lex it follows that the Lamb-
shift measurement can be reconciled with the rp ∼ 0.87–
0.89 fm supported by many analyses of scattering data and
hydrogen spectroscopy, if the third Zemach moment 〈r3〉(2)

is large enough—about 36 fm3 (see discussion in Ref. [20]).
However, the value of 〈r3〉(2) calculated from the empirical fits
of the form factors ranges from 2.00 to 2.90 fm3 and is too
small to explain the proton radius puzzle [21,22]. Nevertheless,
this contribution to Lth must be taken into account to obtain
an accurate value of the proton radius with a precise estimate
of the uncertainty.

The aim of this paper is to infer the values of the Zemach
moments from the Bayesian analysis of the ep scattering
data. In particular we discuss the dependence of the Zemach
moments on the choice of form factor parametrization. We
concentrate on 〈r3〉(2) but obtain also the first Zemach moment,

〈r〉(2) =
∫

d3r d3r′′ρE(r)ρM (r − r′′)|r′′|, (4)

which contributes to the finite-size correction to the hydrogen
hyperfine splitting interval [2] [ρM (r) is the distribution of
the magnetic moment inside the proton]. As is discussed
in Ref. [23], its accurate estimate can be relevant for the
extraction of the magnetic proton radius from spectroscopic
measurements.

The present paper is a natural continuation of our previous
work [24], where we utilized the Bayesian framework to
extract the value of the proton radius from the global analysis
of the ep scattering data. The results obtained in Ref. [24] are
used here to estimate the Zemach moments.

One of the problems of the extraction of the proton radius
from the scattering data is the dependence of the results
of the analysis on the model assumptions, in particular,
on the choice of the functional form of the form factor
parametrization [8,25]. Indeed in Ref. [24] we considered
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about 40 distinct form factor parametrizations and obtained
proton radius values ranging from 0.81 to 0.90 fm. Another
problem is the choice of the optimal number of parameters in
the fit. If this number is large the fits tend to reproduce exactly
the data, i.e., overfit data, and lose predictive power. If it is too
small the model cannot properly reproduce the data. This is
the so-called bias-variance trade-off dilemma.

Such problems are addressed within the framework of
Bayesian statistics as described in Ref. [24] where we con-
structed and calculated a probability measure, which provided
a criterion for choosing the model most favorable by the
data. In this approach the overfitting problem is also solved
because too complicated fits are naturally penalized by the
Bayesian algorithm. A different approach to these problems
was presented in Ref. [25] where analytic properties of the
form factors were utilized to construct the optimal form factor
parametrization.

In this paper we use the results of Ref. [24] to estimate the
Zemach moments and discuss their dependence on the choice
of form factor parametrization. It is done based on the analysis
of about 200 statistical models. We obtained 〈r3〉(2) = 2.889 ±
0.008 ± 0.046 (sys) fm3 and for the first Zemach moment we
obtained 〈r〉(2) = 1.1108 ± 0.0021 ± 0.0071 (sys) fm.

This paper is organized as follows. In Sec. II all necessary
formulas needed for computing the Zemach moments are in-
troduced. In Sec. III the Bayesian approach is briefly reviewed
and the numerical results are presented and discussed.

II. ZEMACH MOMENTS

In elastic ep scattering the energy transfer between the
electron and the proton vanishes in the Breit frame; hence
in this frame the four-momentum transfer is qμ = (0,q). In
this frame the distributions of the electric charge ρE(r) and
the magnetic moment ρM (r) can be related to the electric GE

and magnetic GM form factors of the proton by the Fourier
transformations [3]:

GE(−q) =
∫

d3rρE(r)e−ir·q, (5)

GM (−q)

μp

=
∫

d3rρM (r)e−ir·q, (6)

where μp is the magnetic moment of the proton. The form
factors are Lorentz scalars depending only on Q2 = −qμqμ,
which in the Breit frame is equal to q2. A comparison of
ρE(r) distributions obtained from the dipole form factor and
the Bayesian fit (Q2

max = 1) [24] of GE is shown in Fig. 1.
The third Zemach moment can be approximated by the

integral [26] (see Eq. (59) in Ref. [17]):

〈r3〉(2) ≈ lim
c→∞ I3(c,GE), (7)

I3(c,GE) = 48

π

∫ c

0

dq

q4

(
G2

E(−q) − 1 + q2

3
〈r2〉

)
, (8)

〈r2〉 = −6
dGE

dq2

∣∣∣∣
q2=0

, (9)

FIG. 1. (Color online) Charge distribution inside the proton ob-
tained from Eq. (5) for the dipole form factor (15) (dashed blue line)
and the Bayesian fit (Q2 < 1 GeV2) from Ref. [24] (solid red line).

while the first Zemach moment (4) is given by the integral:

I1 = lim
c→∞ I1(c,GE,GM ), (10)

I1(c,GE,GM ) = − 4

π

∫ c

0

dq

q2

(
GE(−q)GM (−q)

μp

− 1

)
. (11)

III. BAYESIAN ANALYSIS AND NUMERICAL RESULTS

The idea of the Bayesian framework utilized in Ref. [24] to
extract the proton radius from scattering data is described in
more detail in Refs. [27–29]. In this approach the electric and
magnetic form factors are simultaneously parametrized by one
feed-forward neural network (with one hidden layer of units)
with two outputs:1

NH (Q2; {wi}) = (
oH

M, oH
E

)
, (12)

where {wi} is the set of neural network parameters, and oH
M

and oH
E parametrize the departure from the dipole shape of the

form factors:

GH
M (Q2)

μp

= [
1 − Q2oH

M (Q2)
]
GD(Q2), (13)

GH
E (Q2) = [

1 − Q2oH
E (Q2)

]
GD(Q2), (14)

GD(Q2) = (
1 + Q2/M2

V

)−2
, (15)

where M2
V = 0.71 GeV2. H denotes a number of hidden units

in the neural network and ranges from 2 to 40.
Within each class of parametrization NH , with given

H , we found the most optimal configuration of neural
network parameters {wi}MP that maximizes the prior prob-
ability2P ({wi}|D,NH ), where D denotes the data, which
in this case includes cross-section and polarization-transfer

1According to the Cybenko theorem [30–32] any continuous
function can be approximated by a function from this class with
arbitrary precision.

2The construction of the objective prior probability for neural
network parametrization is much easier than in the case of the typical
form factor parametrization.
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TABLE I. The numerical values (in fm3 units) of the third
Zemach moment (last column) and integral I3(c,GE,GM ) calculated
for several values of c.

c (GeV) 1.0 3.0 10 ∞
Fit Q2 < 1 GeV2 2.091 2.404 2.609 2.865 ± 0.005
Fit Q2 < 3 GeV2 2.099 2.411 2.617 2.872 ± 0.004
Fit Q2 < 10 GeV2 2.129 2.440 2.645 2.899 ± 0.012

measurements. From the cross-section data the two-photon
exchange corrections, calculated in Ref. [33], have been
subtracted. It was an important point of the analysis; indeed
the results for two-photon exchange corrected data were
characterized by much smaller variance than in the case of
not modified data.

For every parametrization class NH the evidence P (D|NH )
was calculated. This probabilistic measure ranks the models—
the most probable model, favorable by the data, is the one that
maximizes the evidence.

Certainly the results of the analysis may depend on the
selection of the data. We treated each data set on the same
footing but to discuss the impact of the data selection on the
final results we considered three subsets of the measurements
denoted as DQ2

max
and obtained by removing data points with

Q2 above Q2
max = 1, 3, and 10 GeV2, respectively. It turns

out that the proton radius results weakly depend on this
cut.

The main result of the analysis [24] is the family of
the statistical models. Each model contains the optimal
configuration of parameters {wi}MP and the corresponding
posterior probability as well as the evidence:

GQ2
max

= {(
GH

E ,GH
M

)
, P

({wi}MP|DQ2
max

,NH

)
,P

(DQ2
max

|NH

)}
,

(16)

where H = 2, . . . ,40. This distribution of models is used to
calculate the Zemach moments and to discuss their dependence
on the choice of the functional form.

In principle, the given fit is valid for Q2 lower than
cutoff Q2

max. Above this limit some functional form factor
parametrization should be assumed to calculate the inte-
grals (8) and (10). However, for Q2 > Q2

max the dominant
contributions to the moments in Eqs. (8) and (10) are given
by the last terms of the integrand functions, namely, r2

p/q2

and 1/q2, respectively. They do not depend on form factor
parametrization. We verified that assuming a typical high-
Q2 form factor tail (see the Appendix) leads to systematic
uncertainty smaller than 10−4%.

In Tables I and II the numerical values of the third and first
Zemach moments obtained for the best fit within each selection
of the data are presented. The 1σ uncertainty is calculated
from the covariance matrices of the fits. To investigate the
dependence of the Zemach moment on the choice of the form
factor functional form we calculate the average values of I3

TABLE II. The numerical values (in fm units) of the first Zemach
moment (last column) and integral I1(c,GE,GM ) calculated for
several values of c.

c (GeV) 1.0 3.0 10 ∞
Fit Q2 < 1 GeV2 0.852 0.957 1.022 1.1018 ± 0.0004
Fit Q2 < 3 GeV2 0.853 0.958 1.024 1.1030 ± 0.0004
Fit Q2 < 10 GeV2 0.877 0.983 1.048 1.1276 ± 0.0025

and I1 over the GQ2
max

:

〈Ii〉 = 1

NN

40∑
H=2

Ii(NH )P(NH |D), i = 3,1, (17)

NN =
40∑

H=2

P(NH |D), (18)

whereP(NH |D) ≈ P(D|NH ). The averaged values are shown
in Table III. The systematic uncertainty due to parametrization
choice is given by the square root of the variance due to the
evidence probability distribution.

Similarly as in the case of the most probable values for
Zemach integrals (Tables I and II) the average values weakly
depend on the cutoff Q2

max.
Since we do not know the relative normalization between

the evidence probability distributions calculated for different
subsets of dataDQ2

max
the best fits from these analyses cannot be

quantitatively compared but we see that the Zemach moments
do not significantly depend on Q2

max. As the final result we
take the average of the three cutoff results from Tables I and II,
respectively:

I3 = 2.889 ± 0.008 ± 0.046 (sys) fm3 (19)

I1 = 1.1108 ± 0.0021 ± 0.0071 (sys) fm. (20)

The systematic uncertainty is also the appropriate average.
Our estimate of the third Zemach moment is consistent

with the results of other groups, 2.71(13) fm3 in Ref. [26],
2.5–2.7 fm3 in Ref. [21], and 2.85 fm3 in Ref. [22], but is much
smaller than the value of 36.6(6.9) fm3 obtained in Ref. [20].
Our estimate of the first Zemach moment is larger then the
previous results: 1.047(16) fm [34], 1.037(16) fm [35], and
1.082(37) fm [36].

Summarizing, we presented the results of the estimate of
the Zemach moments obtained from the Bayesian analysis of
elastic ep scattering data. Within this approach we conducted

TABLE III. The expected values of the third and first Zemach
moments [see Eq. (17)] together with systematic uncertainty due to
the choice of parametrization.

〈r3〉(2) (fm3) 〈r〉(2) (fm)

Fit Q2 < 1 GeV2 2.865 ± 0.003 1.1018 ± 0.0002
Fit Q2 < 3 GeV2 2.872 ± 0.014 1.1031 ± 0.0018
Fit Q2 < 10 GeV2 2.865 ± 0.122 1.1153 ± 0.0194
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a quantitative discussion of the dependence of the results on
the choice of form factor parametrization. The corresponding
systematic uncertainties are 1.6% and 0.6% for the third and
first Zemach moments, respectively.
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APPENDIX: FORM FACTOR TAIL

The form factors parametrizations discussed for Q2 >
Q2

max are as follows:

GH
E,M

(
Q2

) = C

⎧⎨
⎩

GD(Q2)
GD(Q2

max)(Q2
max

Q2

)n
, (A1)

where C = GH
E,M (Q2

max), n = 3, 4, and 5.
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