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Finite isospin chiral perturbation theory in a magnetic field
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The phase diagram of finite-isospin, zero-temperature QCD with the pions coupled to photons in a uniform
external magnetic field is explored in the low-field, small-isospin-density regime for which chiral perturbation
theory is a valid description. For realistic pion masses, the system behaves as a type-II superconductor: a uniform
superconducting state is formed at sufficiently low magnetic fields, a vortex state for intermediate magnetic
fields, and finally a normal state for large magnetic fields. In each of these phases (including the vortex phase),
π 0 remains uncondensed just as in the zero-external-field problem. The critical magnetic field where the phase
transition from the uniform superconducting state to a vortex state occurs was found numerically.
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I. INTRODUCTION

QCD in a background magnetic field is of interest due
to its potential relevance to heavy ion collisions, neutron
stars, and perhaps even the early universe. The study of the
QCD at zero density demonstrates a rich array of physical
phenomena in the presence of a background magnetic field.
The system exhibits dimensional reduction [1], which leads to
stronger pairing between quarks and therefore enhances chiral
symmetry breaking [2–5]. Studies have also investigated how
an external magnetic field affects the deconfinement transition
temperature in QCD; while the magnetic field enhances chiral
symmetry breaking, larger temperatures drive the vacuum
towards the restoration of chiral symmetry [6,7]. Furthermore,
it has also been suggested that for sufficiently large magnetic
fields, the QCD vacuum may exhibit superconductivity due to
the condensation of ρ mesons. [8]

While QCD at zero density in a magnetic field can be
studied by both analytical and lattice methods, a more relevant
question in the study of neutron stars relates to how magnetic
fields affect finite-density matter. This problem is largely
unsolved except for a limited regime of asymptotically large
baryon densities where a phase of color superconducting is
expected to form [9]. In particular, the effect of magnetic
fields on baryons may significantly affect the properties of
magnetars—neutron stars with large magnetic fields [10].
However, the study of finite-baryon-density problems using
lattice methods is hindered by the fermion sign problem
[11–13]. It should be noted that neutron stars possess not
only a finite baryon density but also a finite isospin density,
which arises due to isospin asymmetry. The study of QCD at
finite isospin density (and zero baryon density) is, however,
unencumbered by the fermion sign problem [14–19]. While
this system differs from the physical system of relevance in
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neutron stars, it does give a distinct handle to get insights into
how QCD behaves in extreme environments.

Recently, finite-isospin QCD in a background magnetic
field and finite temperatures was studied on a lattice [20].
The study shows the existence of the fermion sign problem at
finite-isospin QCD with a magnetic field even though the sign
problem is absent in finite-isospin QCD when the magnetic
field is absent. This occurs due to the breaking of flavor
symmetry of the finite isospin system by the external magnetic
field. Note that the electromagnetic charge of the up and down
quarks are opposite in sign but different in magnitude, unlike
their chemical potentials, which are equal and opposite. The
study circumvents the fermion sign problem by doing a Taylor
expansion in the magnetic field. The results in that work
suggest that, at low temperatures, the system exhibits a uniform
diamagnetic phase (i.e., negative magnetic susceptibility) for
isospin chemical potentials that are larger than the pion mass
but not asymptotically large.

In the present study, we study finite-density isospin matter
in a uniform magnetic field in a regime in which analytic
calculations are legitimate. We work at leading order in chiral
perturbation theory (χPT) and consider the regime where all
physical parameters are much smaller than the typical hadronic
scale (�Had ∼ 4πfπ ). More specifically, the ratio

x

�Had
� 1, (1)

where x can be the isospin chemical potential μI, pion mass
mπ , pion momenta p, or

√
eH , where e is the charge of a

pion and H is the external magnetic field. This ensures the
validity of chiral perturbation theory. Additionally, we assume
that the baryon density is zero and only consider the effects
of the isospin chemical potential. We show the existence not
only of a uniform diamagnetic, superconducting state which
persists at low magnetic fields but also show the existence of
a topological vortex phase.

A system of finite isospin density was first considered by
Son and Stephanov in Refs. [14,15], where it was seen that, for
isospin chemical potential μI larger than the pion mass mπ , it
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is energetically favorable for pions to condense. In that work,
both weak and electromagnetic interactions were turned off.
Here we continue to ignore pion decay via weak interactions;
this is innocuous since the contributions of weak interactions
are small. The electromagnetic interactions among the pions,
however, are potentially problematic: if a system with isospin
density nI is confined to a region of spatial extent R, then
energy due to pion-pion electrostatic interactions scales as

Eelectrostatic ∼ e2n2
IR

5, (2)

where nI is the isospin density which at these low densities
is effectively the density of pions. The energy associated
with strong interactions and the interaction with the external
magnetic field in the regime of validity of χPT scales as

EχPT ∼ f 4
π g

(
m2

π

f 2
π

,
nI

f 3
π

,
eH

f 2
π

)
R3, (3)

where g is a calculable dimensionless function of order
unity. Clearly, in the thermodynamic limit R → ∞, Eelectrostatic

dominates. Nevertheless, we will neglect it here even though
we work in the thermodynamic limit.

It is important to justify the neglect of the electrostatic
interactions between pions. Here, the calculations are not being
used to directly describe a realistic physical situation but rather
to gain some insight into how QCD behaves by working in a
particular more-tractable regime. The issue is somewhat anal-
ogous to studies of infinite nuclear matter [21]. Clearly, infinite
nuclear matter has the same difficulty—the electrostatic energy
per particle diverges. Despite this, knowledge of the properties
of infinite nuclear matter neglecting the electrostatic energy
give important insights into nuclear physics even in regimes
where the electrostatic energy cannot be neglected.

For real-world parameters, there are two regimes for
which the approximation of simultaneously neglecting elec-
tromagnetic interactions between pions and working in the
thermodynamic limit appears to be appropriate. One is the
regime in which the system is confined to a finite region
satisfying

1

f 2
π

� R2 � 1

e2f 2
π

. (4)

The first condition is what is needed to justify the thermody-
namic limit when other parameters are in the typical regime of
validity of χPT ; the second condition is what ensures that the
electrostatic energies are small. Note that, in the Heaviside con-
vention used here, 1/e2 ∼ 137 so that there exists an R2 which
is an order of magnitude bigger than 1/f 2

π while being an order
of magnitude smaller than 1/(e2f 2

π ). An alternative regime is
a thermodynamically large one in which the positive electric
charge of the isospin matter is neutralized by a background of
electrons. This situation is complicated by the fact that these
“background” electrons also couple to the external magnetic
field and are known to exhibit superconducting properties
which might affect the behavior of the pions. However, the
fact that electrons are so much lighter than the pions renders
the electrons innocuous over the region of interest. As shown
in Refs. [22,23], the zero-angular momentum, positive-parity
(0+) pairing of relativistic electrons can exhibit either type-I or

type-II superconductivity. Since electron masses are negligible
compared to pion masses, electrons in our system move
ultrarelativistically, where the behavior of the superconductor
is strongly type I. The magnetic field He

c at which the phase
transition from a superconducting state to a normal state
occurs is of O(kFkBTc) at zero temperature. Here, kF is the
Fermi momenta, kB is the Boltzmann constant (and in our
units is just 1) and Tc is the critical temperature below which
superconductivity occurs. As will be shown later, the magnetic
fields required for which pions undergo phase changes are
much larger and of O(f 2

π ), where fπ is the pion decay
constant. Therefore, except for a narrow regime below He

c , the
superconducting properties of the ultrarelativistic electrons do
not interfere with that the pions.

II. χPT LAGRANGIAN AT FINITE ISOSPIN

We begin with a brief review of the finite isospin Lagrangian
at leading order in χPT that was first considered by Son and
Stephanov in Refs. [14,15]. The relevant regime where the
Lagrangian is valid is when x

�Had
� 1, where x could be the

pion momenta, pion mass (mπ ), the isospin chemical potential
μI , or

√
eH , where H is the external magnetic field and e is

the pion charge. The effective Lagrangian has the form

Leff = f 2
π Tr(Dμ�†Dμ�) + m2

πf 2
π Tr(� + �†), (5)

where � represents SU(2) matrices, mπ is the pion mass, and
fπ is the pion decay constant. The covariant derivatives are
defined as follows:

Dμ� = ∂μ� − i[δμ0μI,�], (6)

with the isospin chemical potential entering the Lagrangian
as the zeroth component. The values of the pion mass and
pion decay constant are approximately 135 and 93 MeV,
respectively. In order to proceed, we choose the following
ansatz for the SU(2) matrix �:

� = 1

fπ

(σ1 + iπxτ1 + iπyτ2 + iπzτ3)

= cos ψ[cos θ1 + i sin θ (cos ατ1 + sin ατ2)] + i sin ψτ3.

(7)

Note that the neutral pion is represented by πz and the posi-
tively and negatively charged pions by πx ± iπy , respectively.
Plugging this ansatz into Eq. (5), the effective Lagrangian
becomes

Leff = −f 2
π

2
[cos2 ψ{sin2 θ ( �∇α)2 + ( �∇θ )2} + ( �∇ψ)2]

+m2
πf 2

π (cos θ cos ψ − 1) + μ2
I f

2
π

2
sin2 θ cos2 ψ. (8)

Note that the Lagrangian has been normalized such that Leff =
0 when θ = 0, which is the normal QCD vacuum state at zero
isospin or as shown in Refs. [14,15], the vacuum at finite
isospin for isospin chemical potentials less than or equal to the
pion mass.

From the Lagrangian density, it is straightforward to deduce
the ground state of the system that was worked out in
Refs. [14,15]. In order to do so, we assume that the kinetic
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energy is zero and maximize the remaining Lagrangian.
Since each of the potential-energy contributions are of the
same sign and are a function of cos ψ , the “energy” (more
specifically H + μn, where H is the Hamiltonian, μ is the
chemical potential, and n is the number density) is minimized
for ψ = 0. Then the Lagrangian has to be maximized with
respect to θ , which leads to two possible solutions: either
sin θ = 0 or cos θ = m2

π/μ2
I . If sin θ = 0, then Leff = 0 but if

cos θ = m2
π/μ2

I , thenLeff = f 2
π (μ2

I − m2
π )2/(2μ2

I ). Therefore,
when the isospin chemical potential is greater than the pion
mass, the condensed phase (θ 	= 0) is energetically more
favorable compared with the normal phase (θ = 0).

III. GIBBS FREE ENERGY

Here we want to study the effect of coupling the pions
to dynamical photons and a uniform, external magnetic
field. The effective Lagrangian for this particular system is
easily obtained by introducing photon fields and changing
the covariant derivation of Eq. (6) to include electromagnetic
gauge fields. The new covariant derivative is as follows:

Dμ� = ∂μ� − i[δμ0μI,�] − ieAμ[Q,�], (9)

where Q is the charge matrix for the quarks and is defined as

Q = 1
6 1 + 1

2τ3, (10)

where 1 is a 2 × 2 identity matrix and τ3 is the third Pauli
matrix. The resulting effective Lagrangian using the definition
� from Eq. (7) is as follows:

Leff = −1

4
FijF

ij − f 2
π

2
[cos2 ψ{sin2 θ ( �∇α + e �A)2

+ ( �∇θ )2} + ( �∇ψ)2]

+m2
πf 2

π (cos θ cos ψ − 1) + μ2
I f

2
π

2
sin2 θ cos2 ψ, (11)

where Fij ≡ ∂iAj − ∂jAi is the electromagnetic tensor. We
have assumed here that the zeroth component of the four-
potential Aμ vanishes.

In order to consider the thermodynamics of the finite isospin
system (with photons) coupled to a uniform background
magnetic field, it is standard to consider the Gibbs free-energy
density, which is defined as1

G = Heff − �M · �H. (12)

Here, the magnetization �M is defined as �M ≡ �B − �H , with
�B ≡ �∇ × �A. Because it is standard, we will assume that the
external magnetic field, which we will label �H only has a
z component. Since we are considering a time-independent
system, the Hamiltonian density is given by the relationHeff =
−Leff , where the Leff is defined in Eq. (11).

1Note that we are using Lorentz–Heaviside units where explicit
factors of 4π do not appear.

IV. SUPERCONDUCTIVITY

At finite isospin, the condensed phase of pions is a
superfluid with one of the charged pions forming a massless
mode while the neutral pion and the other charged pion is
massive [14,15]. It is natural to expect then that this superfluid
phase exhibits superconducting behavior in the presence of
an external magnetic field: the system sets up currents that
produce opposing magnetic fields to cancel out the external
magnetic field. For the finite isospin system in an external
magnetic field, a natural question that arises then is the nature
of superconductivity that the system exhibits, either type
I or type II. The paradigm for studying superconductivity
is Ginzburg–Landau theory or the Abelian Higgs model.
However, the effective Lagrangian of Eq. (11) for the finite
isospin system is neither isomorphic to Ginzburg–Landau
[24–26] or consequently the Abelian Higgs model. Also note
that the finite isospin system consists of an additional degree of
freedom (namely, the neutral pion) in addition to the charged
pions. Therefore, relative to Ginzburg–Landau, there is an
extra degree of freedom in our problem. Furthermore, the
effective Lagrangian for our system seems highly nonlinear
due to the presence of infinite number of nonlinear terms
present through the sine and cosine functions that characterize
the pion fields through � defined in Eq. (7).

While the Gibbs free energy of our problem seems quite
different from that of either Ginzburg–Landau theory or the
Abelian Higgs model, it is still useful to borrow insights from
the well-known problems. It is well known in these theories
that the system exhibits type-I superconductivity if

ξ >
√

2λ, (13)

and type-II superconductivity if

ξ <
√

2λ. (14)

Here, ξ is the coherent length of the macroscopic state, and
λ is the penetration depth of the external magnetic field.
The superconductivity type is determined by considering the
surface energy of the interface consisting of a half-infinite
normal state and a half-infinite superconducting state at the
critical magnetic field, where the normal and superconducting
states have the same Gibbs free energy. If the surface energy
is positive at the critical magnetic field, then the system makes
a first-order transition from the superconducting state to a
normal state. However, if the surface energy is negative, then
an intermediate state of Abrikosov vortices are formed such
that the transition to the normal state from the superconducting
state becomes second order.

While the exact mathematical results of when supercon-
ductivity is type I or type II does not directly apply for the
case of finite-isospin QCD, it is still useful to compare the
relative sizes of the coherence length and penetration depth in
our problem. Since the coherent length and penetration depth
are related to the masses of the pions and the photons, we
proceed by expanding the effective Lagrangian of Eq. (11)
about the ground state of the condensed, superfluid phase
θg.s. = arccos(m2

π/μ2
I ) and ψg.s. = 0. In doing so, we find that
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FIG. 1. (Color online) The region where mA > mθ is shown in
blue, the region where mθ > mA is shown in orange, and the green
region represents the normal phase, i.e., μI � mπ .

the photon mass mA is

mA = efπ sin2 θg.s. = qfπ

(
1 − m4

π

μ4
I

)
, (15)

and the mass of the charged pion is given by

mθ =
√(

m2
π cos θg.s. − μ2

I cos 2θg.s.
) = μI

√(
1 − m4

π

μ4
I

)
.

(16)
Note that here e is the pion charge, fπ is the pion decay
constant, and mπ is the pion mass in the normal phase. We do
not consider the mass of the neutral pion. As will be seen later,
this is justified since the neutral pions do not condense.

Since the coherent length is inversely proportional to
the pion mass, i.e., ξ ∼ 1

mθ
and the penetration depth is

inversely proportional to the photon mass, i.e., λ ∼ 1
mA

, it is
useful to compare the masses of the pion and the photon to
determine whether our system behaves as a type-I or type-II
superconductor.

In Fig. 1 we have a plot showing a region where the mass of
the photon is larger than the mass of the pion (in orange) and
a region where the photon mass is smaller than the pion mass
(in blue). The green region is where the normal phase exists
and is therefore irrelevant.

While the regions do not exactly delineate regions where
the superconductivity is type I or type II, they do still prove
some qualitative insight into the nature of superconductivity
we might expect. For instance, it is reasonable to assert that the
regime of parameter space where mA � mθ should be a type-I
superconductor and the regime where mA � mθ should be
a type-II superconductor. Therefore, there is a narrow region
at low isospin chemical potentials and small (but unrealistic)
pion masses (near the origin) where the system will behave as

a type I (suggesting the existence of a critical point for small
pion masses since the system goes from type I to type II with
increasing isospin chemical potentials). However, for most of
the parameter space, and in particular for realistic pion masses,
the system will behave as a type-II superconductor.

A. Type I

Here, we briefly consider type-I superconductivity and
determine the critical magnetic field at which the transition
from the normal to the superconducting state occurs. First, we
consider the Gibbs free-energy density of the normal state,
which occurs when θ = 0. In this case, the external field
completely penetrates the vacuum state such that the magnetic
field �B of the normal state is equal to the external magnetic
field �H . The Gibbs free energy of the system in its normal
phase is

Gn = Hn − �Mn · �H = 1
2

�H 2. (17)

Here, Hn represents effective Hamiltonian in the normal
phases and Mn is the magnetization in the normal phase.
The second equality is obtained by using Eqs. (12) and (11)
and the fact that the phase is spatially homogeneous with
θ = 0, ψ = 0.

However, in the condensed phase with θ 	= 0, the magnetic
field cannot penetrate the state. The photon fields readjust
themselves such that the field entering the system is zero, i.e.,
�B = 0. Therefore, the Gibbs free energy of the condensed
phase, which is superconducting, is

Gs = Hs − �Ms · �H = −f 2
π

(
μ2

I − m2
π

)2

2μ2
I

+ �H 2, (18)

where Hs is the Hamiltonian and �Ms is the magnetization of
superconducting phase. In the superconducting ground state
θ = arccos(m2

π/μ2
I ) and ψ = 0.

The critical magnetic field at which the phase transition
from the normal state to the superconducting state occurs when
the Gibbs free energy of the normal state equals that of the
superconducting state, i.e., Gn = Gs. This gives a critical field
�Hc, which has the following magnitude:

| �Hc| = fπ

(
μ2

I − m2
π

)
μI

. (19)

It is not surprising that the size of the critical field increases
with increasing isospin chemical potentials. The density of
pions that condense increases with increasing chemical poten-
tials, which in turn means that larger currents are generated and
the superconducting state persists at larger external magnetic
fields.

B. Type II

Next, we consider type-II superconductivity, which as
discussed previously is expected to occur for realistic pion
masses. Here, we will determine the first critical magnetic
field Hc1 at which the transition from the uniform super-
conducting state to the vortex state occurs. We will also
give a theoretical estimate of the second critical magnetic
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field Hc2 where the transition to the normal state occurs.
However, we do not calculate explicitly the surface energy,
which determines whether the system actually behaves as a
type-II superconductor. Alternatively, we can just compare the
first critical magnetic field (Hc1) with the critical magnetic
field of Eq. (19) to determine that the system actually is type
II. If the first critical field Hc1 is smaller than the critical field
Hc of the type I, then the Gibbs free energy of the vortex state
is lower than the normal state and, therefore, the system is
type II.

The intermediate vortex state is a cylindrically symmetric
state. In order to determine the first critical point, we consider
a single vortex state with the following ansatz:

α = −nφ, (20)

where φ is the polar angle in cylindrical coordinates, which
goes from 0 to 2π and n is an integer. It determines the amount
of flux that is quantized within the vortex. This flux (�) is given
by the relation

� =
∫

C∞

�A · d�l =
∫

C∞

�B · d �A = 2nπ

e
, (21)

where the path integral is performed on the boundary of some
region C∞, enclosing the vortex. The second equality arises
through the use of the definition �B ≡ �∇ × �A and Stoke’s
theorem. Note that the n that appeared in Eq. (20) also appears
here.

We can now write down the Gibbs free energy of a single
vortex state with the lowest amount of flux going through it,
i.e., n = 1. We do so using the following choice of gauge
fields:

�A = (Ar,Aφ,Az) = {0,Aφ(r),0}. (22)

Again, we have defined the gauge choice in cylindrical
coordinates owing to the cylindrical symmetry of the vortex
state. The physical implication of the vortex ansatz is easy to
understand from the definition of the electromagnetic current,
which is easily determined through the effective Lagrangian
of Eq. (11):

�j = ∂L
∂ �A = q cos2 ψ sin θ ( �∇α + e �A). (23)

Noting that the flux quantization condition implies that

lim
r→∞ Aφ(r) = 1

er
, (24)

which, along with the definition of the electromagnetic current
in Eq. (23), implies that the current at the boundaries of the
vortex vanishes.

By using the flux quantization condition then, the Gibbs
free energy of a single vortex state with n = 1 is

Gvortex = Gt − Gs,

Gt = 1

2

(
1

r

∂(rAφ)

∂r

)2

+ f 2
π

2

[
cos2 ψ

{
sin2 θ

(
−1

r
+ eAφ

)2

+
(

∂θ

∂r

)2}
+

(
∂ψ

∂r

)2]

−m2
πf 2

π cos θ cos ψ − μ2
I f

2
π

2
sin2 θ cos2 ψ − �Mt · �H,

�Mt = ( �Bt − �H ), �Bt = ẑ
(

1

r

∂(rAφ)

∂r

)
, (25)

where Gs is the Gibbs free energy of the uniform supercon-
ducting state, which was calculated in Eq. (18).

Since it is not possible to find the solutions of the vortex
analytically by solving for the gauge field �A and the pion
field implicitly represented by θ and α, we will proceed
to numerically find the solution of the vortex state. An
important question arises in the context of solving for the
vortex state. It pertains to the fact that in chiral perturbation
theory, in addition to the charged pions there are also neutral
pions. These neutral pions are uncondensed as was shown
in Sec. II based on results of Refs. [14,15]. It is important
to establish that that this remains the case in finite magnetic
fields.

Formally, checking that the neutral pion fields indeed do
not condense, i.e., ψ = 0, amounts to finding solutions for
charged pions under the assumption that the neutral pions
do not condense and checking that the solutions are stable
against fluctuations of the pion field. This can be done using
the equation of motion for ψ fields. Assuming radial symmetry

for this field, the equation of motion is as follows:

∂2
t ψ(r) − �∇2ψ(r)

= f 2
π

[
2 cos ψ sin ψsin2 θ

(
−1

r
+ eAφ

)]

−m2
πf 2

π cos θ sin ψ − μ2
I f

2
π sin2 θ cos ψ sin ψ. (26)

Expanding ψ around its ground-state value, i.e., ψg.s. =
0, such that ψ = ψg.s. + δψ and assuming δψ =
Re

∑
n exp(iEnt)δψ̃n(r), we obtain the following equation:

−�∇2δψ̃n + fvδψ̃n = E2
nδψ̃n,

fv =
[

sin2 θ (r)

(
−1

r
+ eAφ(r)

)2

+
(

∂θ (r)

∂r

)2]

−m2
πf 2

π cos θ (r) − μ2
I f

2
π sin2 θ (r),
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where fv is obtained by plugging the vortex solutions found by
assuming that the neutral pions do not condense. If none of the
the eigenvalues of the above equation are negative, i.e., they
satisfy E2

n � 0 for all n, the vortex is stable against neutral-pion
condensation; if E2

n < 0 for some n, then the vortex is unstable.
However, it is difficult to explicitly determine the sign of even
just the smallest valued E2

n since we can only numerically
solve for the vortex solution, which in turn affects the exact
nature of fv. Therefore, we will proceed by minimizing the
free energy of the vortex state with respect to all the degrees
of freedom including the gauge field A and the pion fields θ
and ψ . In doing so we find that it is energetically favorable for
the neutral pion to remain uncondensed.

C. Numerical results

In this section, we solve for the vortex solutions of the
system directly by minimizing the Gibbs free energy of
Eq. (25) and determine the first critical field. For the purposes
of this numerical work, we will use the pion decay constant fπ

to set the scale in the problem. We will introduce the following
change of variables:

r̃ = fπr,

m̃π = mπ

fπ

,

(27)
μ̃I = μI

fπ

,

Ãφ = Aφ

fπ

.

The numerical work is performed by discretizing the
Hamiltonian and minimizing the energy per unit length,
which is obtained from the discretized Hamiltonian through
a numerical integration. The numerical error is dominated by
the discretization of the Hamiltonian and the error that arises
in the energy per unit length is of O(a2), where a is the size
of each cell. The error arising from the numerical integration
itself is O(�r3

N2 ), where N is the number of discretized points
and �r̃ is the length of the integration region. Therefore, the
numerical estimation of the critical magnetic field of Eq. (28),
in particular H̃c1 = Hc1/f

2
π has an error approximately of

O(a2). For our calculation the maximum value of �r is 22
and N was chosen to be 160. Therefore, the numerical errors
in the results we present are relatively small.

For realistic pions masses, m̃π = 1.5 and we solve for single
vortex solutions up to an isospin chemical potential of μ̃I =
2.5. These values are well within the regime of validity of chiral
perturbation theory, which was discussed earlier. In Figs. 2
and 3, we plot the radial profile of a single vortex solution. We
omit the plot for ψ(r) since it remains uniformly zero.

In generating the solutions, we assumed that e = 1. Note
that, at the center of the vortex, both θ (r) and Aφ(r) must
vanish to prevent a singularity from occurring at the origin.
(This can be easily understood from the equations of motion
written in cylindrical coordinates.) Additionally, far away from
the vortex θ assumes its ground-state value for a uniform
superconducting state and the magnetic field �B ≡ �∇ × �A also
vanishes.

FIG. 2. (Color online) The plot shows the density of the charged
pion as a function of radial distance from the center of the vortex,
which is at the origin. The result is for m̃π = 1.5 and μ̃I = 2.0.

We also determine numerically the first critical magnetic
field (Hc1) at which occurs the transition from a uniform
superconducting state, which exists at low magnetic fields,
to a state with a single vortex. It is a standard result [27,28]
that the critical field is given by the relation

Hc1 = Evortex/L

�0
, (28)

where Evortex/L is the energy per unit length of the vortex
state, which is determined by integrating the Hamiltonian of
the vortex over the cross section of the vortex, and �0 is a
single quanta of flux passing through the vortex. The size of
this flux is 2π

e
with e being the charge of the pion. The relation

itself is easily determined by using the fact that, at the critical
field Hc1, the Gibbs free energy of the superconducting state
is equal to the Gibbs free energy of the single-vortex state, i.e.,
Gs = Gvortex.

The first critical magnetic field is presented in Fig. 4. The
size of the critical field increases with increasing isospin
chemical potential. This is expected since larger isospin
chemical potential results in a larger density of condensed
pions in the condensed phase, which further means that larger

FIG. 3. (Color online) The plot shows the magnetic field, i.e.,
�B ≡ �∇ × �A as a function of radial distance from the center of the
vortex. The result is for m̃π = 1.5 and μ̃I = 2.0.
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FIG. 4. (Color online) The plot shows the critical magnetic field
for the formation of the vortex state for realistic pion mass m̃π = 1.5
as a function of isospin density.

currents to oppose the external magnetic field can be generated
at the boundaries.

D. Second critical field

While it is possible to numerically determine the lower
critical magnetic field, where the transition from a uniform
superconducting state to a vortex state occurs, it is generally
harder to determine the upper critical point from which the
transition from a vortex state to a normal state occurs. As the
magnetic field increases past the first critical point, the density
of vortices also steadily increase, forming Abrikosov lattices.
Close to the upper critical point, the cores of the vortices (the
size of which is determined by the charged pion mass mθ ) begin
to overlap such that the average spacing between the vortices is

of O(m−1
θ ). Each vortex, however, continues to carry a single

quantum of flux, �0 ≡ 2π
e

. Then, using Eq. (21), an estimate
for the second critical point is given by

Hc2 ∼ �0m
2
θ , (29)

where mθ is given in Eq. (16).

V. FINAL COMMENTS

In this paper, we have investigated finite isospin QCD in an
external magnetic field at lowest order in chiral perturbation
theory. We have shown here that the system forms a type-II
superconductor for realistic pion masses and possibly also
a type-I superconductor for small pion masses. It will be
interesting to see if the vortex phases that have been observed
here are also seen in lattice calculations. It is noteworthy that
lattice simulations of finite isospin systems in a magnetic field
have already been carried out [20]. We note, however, that
the setup of this calculation apparently excluded the physics
associated with type-II superconductivity, for which vortices
form and thereby alter the magnetic fields, i.e., the back
reaction of the pion field dynamics on the B field appears
to be absent.
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