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Hadron resonance gas and mean-field nuclear matter for baryon number fluctuations
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I give an estimate for the skewness and the kurtosis of the baryon number distribution in two representative
models; i.e., models of a hadron resonance gas and relativistic mean-field nuclear matter. I emphasize formal
similarity between these two descriptions. The hadron resonance gas leads to a deviation from the Skellam
distribution if quantum statistical correlation is taken into account at high baryon density, but this effect is not
strong enough to explain fluctuation data seen in the beam-energy scan at RHIC/STAR. In the calculation of
mean-field nuclear matter, the density correlation with the vector ω field rather than the effective mass with the
scalar σ field renders the kurtosis suppressed at higher baryon density so as to account for the experimentally
observed behavior of the kurtosis. Finally, I discuss the difference between the baryon number and the proton
number fluctuations from correlation effects in isospin space. The numerical results suggest that such effects are
only minor even in the case of complete randomization of isospin.
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I. INTRODUCTION

The phase diagram of matter described by quantum chro-
modynamics (QCD) in terms of quarks and gluons, i.e., the
QCD phase diagram, has not been unveiled yet in spite of
tremendous theoretical and experimental efforts [1,2]. The
most severe obstacle lies in the notorious sign problem
which prevents the first-principle lattice QCD simulation from
working at high baryon density, although there is steady
progress to circumvent it [3]. There are so many theoretical
speculations on the QCD phase structures but it is next to
impossible to constrain them enough to pin down the right
one or to eliminate unphysical ones. Even if there were a
way to evade the sign problem, it would still be a highly
nontrivial question whether the numerical simulation can
correctly identify the genuine ground state if it includes a
possibility of spatial modulation [4]. Taking the continuum
limit and overcoming the discretization error should be crucial
to resolve intricate structures such as the critical point [5]
(see also Ref. [6] for a heuristic argument) and, if any, the
crystalline condensates [7,8] (see Ref. [9] for an argument
parallel to Ref. [6] and also Ref. [10] for a comprehensive
review).

It is thus our hope that the experimental data should
be able to constrain diverse candidates of the QCD phase
diagram, so that we can identify the correct answer. Now
that there is reasonable evidence of the formation of a new
state of matter out of quarks and gluons, which is called
the quark-gluon plasma, at sufficiently high energy, some of
future heavy-ion collision programs are directed toward higher
baryon density with lower collision energies. Such a project to
explore the QCD phase diagram by tuning the collision energy
is often called the beam-energy scan (BES) and the STAR
Collaboration at the Relativistic Heavy Ion Collider (RHIC)
already published the first BES (i.e., BES-I) results [11]. The
primary mission of the BES was to discover the so-called
QCD critical point by looking at fluctuations of conserved
quantities such as the baryon number and the strangeness
[5,12,13].

So far, there is no appreciable indication of the critical
behavior,1 and nevertheless, the BES has turned out to be
extremely intriguing for QCD physics, for our understanding
of finite-density QCD is severely limited and any hint would
be useful. With accumulation of abundant experimental data, it
might even be feasible to find a way for drastic simplification,
leading to pragmatic modeling. We have already witnessed
such a simplification in RHIC at high temperature T and
low baryon chemical potential μB; the statistical thermal
fit [14–16] and the hadron resonance gas (HRG) model
(see Ref. [17] and references therein and also Ref. [18]
for a recent study) stunningly reproduce the experimental
yields of particles and are also consistent with lattice-QCD
thermodynamics. Nobody believed in the reality of such an
oversimplified description of noninteracting hadrons before
the good agreement to experimental data was confirmed.
Although the theoretical foundation needs more investigation,
this expedient but profitable tool for data analysis is as effective
for analyzing experimental data taken by the ALICE Collab-
oration at Large Hadron Collider (LHC) (see Ref. [19] and
references therein), although minor deviations were reported.

We cannot, of course, trust the HRG model over the entire
QCD phase diagram away from the chemical freeze-out line.
It is obvious that the HRG should break down in the region of
nuclear matter at low T and high μB. Nuclear physics at T = 0
has revealed that a first-order liquid-gas phase transition (or
liquid vacuum at T = 0) should take place at μB = MN − B
with MN and B being the nucleon mass and the binding energy
B � 16 MeV [20]. Some years ago an interesting possibility
was demonstrated [21]; the chemical freeze-out condition at

1A new analysis including higher-pt data (that was motivated to
improve the statistics) suggests critical behavior. It is still under
dispute; I should note that, if T ∼ �QCD ∼ 0.2 GeV, the kinetic
energy should be; p2

t /2mN ∼ T/2 leading to pt ∼ 0.4 GeV. It should
be explained why higher-pt data (above 0.8 GeV) enhance the
criticality. So, in this work, I focus on the published data only.
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low T and high μB could be rather sensitive to nuclear matter
properties. The present work aims to pursue the idea along the
same line to show the agreement for not only the chemical
freeze-out condition but also the fluctuations.

One might have an impression that the HRG is a sort of
opposite to nuclear matter and that one should abandon the
HRG immediately to switch to the nuclear physics terrain.
This intuition is not totally correct, however, and we know that
the independent quasiparticle picture makes good sense inside
of nuclei and nuclear matter. Hence, on the formal level, the
HRG-like model with “renormalized” parameters may have a
chance to work continuously from low μB to high μB. Indeed,
the relativistic mean-field (RMF) model of nuclear matter is
designed in this spirit. The simplest setup of the RMF is the
σ -ω model [22] as was adopted in Ref. [21]. This model deals
with nucleons as relativistic quasiparticles moving in the scalar
mean field σ and the vector mean field ω. I note that we can
safely neglect π fluctuations as long as we are concerned with
the baryon number at small T . If needed, I can extend my
present analysis so as to include π fluctuations; for example,
with the renormalization group improvement [23].

This paper is organized as follows: I give a detailed
description of fluctuations within the framework of the HRG
model in Sec. II. Then, based on the similarity to the HRG
model, I introduce the RMF model in Sec. III and I present my
central numerical results from the RMF model in Sec. IV.
In Sec. V I give more considerations on the microscopic
structures of my numerical results. I also discuss the difference
between the baryon number and the proton number to discover
that the diffusion in isospin space does not affect my results
as long as the Boltzmann approximation makes sense, which
is addressed in Sec. VI. Finally, I summarize this work in
Sec. VII.

II. FLUCTUATIONS AND HADRON RESONANCE GAS

First of all, before going into the descriptions of the HRG
model, I should elucidate the physical observables of interest.
I follow the standard convention used in Ref. [18] for thermal
fluctuations which are derived from the derivatives of the
pressure with respect to the relevant chemical potentials. For
the baryon number fluctuation, thus, I calculate the following
dimensionless quantities:

χ
(n)
B ≡ ∂n

∂ (μB/T )n
p

T 4
, (1)

from which I can construct the mean value (i.e., the particle
number); M ≡ V T 3χ

(1)
B . For an arbitrary distribution I can

define the Gaussian width σ 2 together with the non-Gaussian
fluctuations such as the skewness S and the kurtosis κ
as [12,18]

σ 2

M
≡ χ

(2)
B

χ
(1)
B

, Sσ ≡ χ
(3)
B

χ
(2)
B

, κσ 2 ≡ χ
(4)
B

χ
(2)
B

. (2)

Therefore, once some theoretical estimates provide us with the
pressure p as a function of μB, I can give a prediction for these
fluctuations under an assumption of the dominance of thermal
fluctuations.

Second, to make a contact with the collision experiment,
it is necessary to relate the collision energy

√
s

NN
and T

and μB. Fortunately, such a parametrization of T (
√

s
NN

)
and μB(

√
s

NN
) has been well established along the chemical

freeze-out line [14], which reads

T (μB) = a − bμ2
B − cμ4

B, (3)

μB(
√

s
NN

) = d

1 + e
√

s
NN

, (4)

where the parameters are chosen as a = 0.166 GeV, b =
0.139 GeV−1, c = 0.053 GeV−3, d = 1.308 GeV, and e =
0.273 GeV−1 to reproduce experimentally observed particle
yields. Charge and strangeness chemical potentials, μQ and
μS , are also parametrized in a similar manner. In my present
analysis, I numerically checked that the inclusion of μQ and
μS hardly changes the fluctuation results, so I neglect them for
clarity of presentation. These definitions and parametrizations
are robust and unchanged for any model applications.

Now I take a step toward the HRG model. Let us start
with a simple demonstration of free nucleon gas and then
proceed to the realistic HRG model next. In the estimate with
noninteracting hadrons (in which the canonical factor γ is not
included) I make use of the standard expression of the free
grand canonical partition function. That is, the pressure from
baryons (fermions) is prescribed as

pfree(mN,μB) =
N∑
i

2T

∫
d3p

(2π )3
{ln[1 + e−(εp−μB)/T ]

+ ln[1 + e−(εp+μB)/T ]}. (5)

Here N is 2 for nucleons corresponding to the isospin
degeneracy and the pressure depends on the nucleon mass mN

through the energy dispersion relation εp ≡ ( p2 + m2
N)1/2. I

can then take the derivatives of the above expression, which
results in

χ
(n)
B = 4

T 3

∫
d3p

(2π )3 X(n) (p) , (6)

where the factor of four appears from the spin and the isospin
degeneracy (for N = 2) and the integrands read

X(1) = np − n̄p,

X(2) = np(1 − np) + n̄p(1 − n̄p),

X(3) = np(1 − np)(1 − 2np) − n̄p(1 − n̄p)(1 − 2n̄p),

X(4) = (
1 − 6np + 6n2

p

)
np(1 − np)

+ (
1 − 6n̄p + 6n̄2

p

)
n̄p(1 − n̄p), (7)

with np ≡ [e(εp−μB)/T + 1]−1 and n̄p ≡ [e(εp+μB)/T + 1]−1 be-
ing the Fermi–Dirac distribution functions for nucleons and
antinucleons, respectively. I can continue taking the derivatives
for even larger n if needed.

In the Boltzmann approximation, which is valid when np

and n̄p are both dilute, I can neglect the quantum statistical
factors of nonlinear np and n̄p terms. Then, I can approximate
Eq. (7) because X(2) ≈ X(4) ≈ (eμB/T + e−μB/T )e−εp/T and
X(3) ≈ (eμB/T − e−μB/T )e−εp/T . In this particular limit I can
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FIG. 1. (Color online) Skewness of the baryon number estimated
in the HRG (THERMUS2.3) is shown by the (red) fine mesh. The (blue)
sparse mesh represents the Skellam expectation, tanh(μB/T ).

readily derive

Sσ = tanh (μB/T ) , κσ 2 = 1, (8)

which are nothing but the Skellam expectations. I can easily
generalize the above derivation of Eq. (8) to a superposition of
arbitrary N with different masses to find that Eq. (8) still holds
after all. This is because eμB/T ± e−μB/T is always factored
out and the remaining integrand is common for X(2), X(3),
and X(4).

Let us then quantify the breakdown of the Boltzmann
approximation explicitly by scanning the three-dimensional
(3D) landscape of Sσ and κσ 2 for various T and μB. In
Figs. 1 and 2 we show our results from (not a free nucleon
gas but) the HRG model by using the particle data contained
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FIG. 2. (Color online) Kurtosis of the baryon number estimated
in the HRG (THERMUS2.3) is shown by the (red) fine mesh. The (blue)
sparse mesh represents the Skellam expectation, which is unity.
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FIG. 3. (Color online) HRG-estimated baryon density (including
not only nucleons but also all baryonic resonances of the particle data
contained in the THERMUS2.3 package) as a function of T and μB.
The nucleon contribution is nearly a half of the results shown. The
vertical lines represent the collision energy with spacing of 1 GeV.
The extremal point corresponds to

√
s

NN
� 8 GeV. The chemical

freeze-out line is drawn according to Eqs. (3) and (4).

in the THERMUS2.3 package (by red fine mesh) as well as the
Skellam predictions (by blue sparse mesh). It is clear from the
figures that the quantum correlation certainly suppresses both
Sσ and κσ 2 in the high-density region where np is not really
dilute. I should note that the HRG model can describe the onset
behavior of finite baryon density but does not have dynamics
enough to realize a first-order liquid-gas phase transition of
nuclear matter (and this is why I do not show HRG results
at temperatures smaller than a few tens of MeV in Figs. 1
and 2). Although this suppression effect is noticeable along the
chemical freeze-out line as in Figs. 4 and 5, it is not sufficiently
strong for reproducing the trend of the experimental data. In
short, the quantum correlation is weak, as correctly speculated
in Ref. [18], because the baryon density never gets large
enough on the chemical freeze-out line.

To have a feeling about how the baryon density behaves
on the chemical freeze-out line, I plot the integrated baryon
density in the standard unit of fm−3 in Fig. 3. The vertical
thin lines correspond to the collision energy

√
s

NN
with a

spacing of 1 GeV. The lowest collision energy in Fig. 3
starts with

√
s

NN
= 2 GeV, and the maximum of the baryon

density is found at
√

s
NN

∼ 8 GeV. It is interesting that this
maximum position precisely coincides with the triple-point-
like region as speculated in Ref. [24]. This coincidence is
not accidental; in Ref. [24] the triple-point-like region was
recognized based on the horn structure in K+/π+, which is
sensitive to the strangeness chemical potential μS . If the bulk
system maintains zero strangeness, it is not hard to confirm
that μS is almost proportional to μB within an effective model
framework [25]. In this way, naturally, K+/π+, �/π−, �/π−,
etc. have a peaked structure at

√
s

NN
� 8 GeV with which the

baryon density is maximized.
As a final related remark I point out that the effect of

the strangeness and the charge conservation is only of a few
percent in Sσ and κσ 2 along the chemical freeze-out line.
I have checked this numerically by adopting μQ and μS

parametrized along the chemical freeze-out line [18]. I then

044910-3



KENJI FUKUSHIMA PHYSICAL REVIEW C 91, 044910 (2015)

0

0.2

0.4

0.6

0.8

1.0

1.2

2 3 6 10 20 40 100 200

S
Σ

Collision Energy [GeV]

BES/STAR
HRG
RMF

FIG. 4. (Color online) Skewness of the baryon number distribu-
tion. The red dot, the green dotted line, and the blue dashed line
represent the results from the BES-STAR, the HRG, and the RMF,
respectively. The bands represent uncertainty from the freeze-out μB

by ±10%.

observed that Sσ and κσ 2 in Figs. 4 and 5 are pushed down by
a few percent at most compared with the current μQ = μS = 0
case. This check justifies my discussion without μQ and μS

taken into account.

III. SIMILARITY BETWEEN HADRON RESONANCE GAS
AND RELATIVISTIC MEAN FIELD

Nuclear matter (which is a self-bound system of infinite
nucleons) lies at the opposite limit to the noninteracting matter
described by the HRG model. Nevertheless, theoretically
speaking, the formulation of nuclear matter, namely the RMF,
is not so far from the HRG model or they actually share
similarity to some extent.
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FIG. 5. (Color online) Kurtosis of the baryon number distribu-
tion. The legend convention is the same as in Fig. 4. The bands
represent uncertainty from the freeze-out μB by ±10%.

The simplest RMF is known as the σ -ω model defined by
the partition function

p = (2)2T

∫
d3p

(2π )3
{ln[1 + e−(εp−μ∗

B)/T ]

+ ln[1 + e−(εp+μ∗
B)/T ]} − m2

σ σ 2

2
+ m2

ωω2

2
, (9)

where the quasiparticle dispersion relation is εp ≡
( p2 + m∗2

N )1/2. Here, quantities with an asterisk are “in-
medium” or “renormalized” quantities which contain a shift
by the mean field as

m∗
N ≡ mN − gσσ, μ∗

B ≡ μB − gωω. (10)

These mean fields of σ and ω, or equivalently, m∗
N and

μ∗
B are determined with the stationary conditions ∂�/∂σ =

∂�/∂ω = 0, which lead to the gap equations. By choosing the
model parameters appropriately [26]; i.e., mN = 939 MeV,
mσ = 550 MeV, mω = 783 MeV, gs = 10.3, gω = 12.7, we
can reproduce the saturation properties of symmetric nuclear
matter with the saturation density given by 0.17 nucleons/fm3

and the binding energy per nucleon given by 16.3 MeV. I note
that this simplest σ -ω model fails in reproducing the empirical
value of the compressibility of symmetric nuclear matter [27].
It is possible to overcome this problem by extending the
model with the self-coupling potential of the mean fields.
For the fluctuations of my present interest, however, such
improvement of the model makes only minor modifications to
the final results [28]. This also implies that a different choice of
mσ , e.g., 500 MeV would not change the final results because
gs and gω should be readjusted to reproduce the saturation
density and the binding energy, and so the difference would be
the compressibility only.

From Eq. (9) it is obvious that the RMF estimate should
reduce to nothing but the HRG estimate or Eq. (5) if I freeze the
implicit dependence on μB through the solutions of σ and ω
or, equivalently, m∗

N and μ∗
B. In this sense we can interpret the

RMF treatment as a variation of the HRG model augmented
with mean fields. Unlike the HRG model, however, the mean
fields have an implicit dependence on μB, from which I should
anticipate nontrivial contributions for the fluctuations.

In closing this section, I make an explicit statement about
the validity regions of the HRG model and the RMF models.
The HRG model is the most successful at the top energy of
the RHIC, but the agreement of the thermal model fit to the
experimental data becomes slightly worse for the LHC data.
There is no clear explanation for this, but it is conceivable
that the HRG model works the best near the crossover region
of deconfinement. The meson sector of the HRG model is
a valid picture in a fictitious world of Nc → ∞ with which
meson interactions would be turned off. The baryon sector
behaves differently, however, and so the HRG model should
naturally break down at high baryon density. A conservative
estimate for this would suggest a validity region, μB < T ,
that corresponds to

√
s

NN
� 10 GeV. On the other hand, the

RMF model is supposed to describe nuclear matter which is
reached at small

√
s

NN
, and the validity region is limited by my

approximation of neglecting pion fluctuations. Although the
effect of pions is indirect for the baryon number fluctuations,
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it could make a quantitative modification if the temperature is
comparable to the pion mass. This condition would translate
into the validity region

√
s

NN
� 10 GeV in the energy unit. So,

one may well expect that the HRG model at high energy should
be taken over smoothly by the RMF model in the intermediate
energy

√
s

NN
∼ 10 GeV, which could be of course understood

as another manifestation of the triple-point-like region [24].

IV. CENTRAL NUMERICAL RESULTS

Figures 4 and 5 show my results for Sσ and κσ 2 estimated
in the HRG (green dotted line) and in the RMF (blue dashed
line) on top of the BES-STAR data (red dots). I note that
the parametrization of the chemical freeze-out line, Eqs. (3)
and (4), may have some uncertainty particularly at small

√
s

NN
.

To quantify the sensitivity I varied μB by ±10% to add the band
on each line in Figs. 4 and 5. Now let me briefly discuss in
particular two of the nontrivial features noticeable in these
figures.

One feature is that the HRG model may have a richer
structure than the Skellam distribution. Actually, it was clearly
stated in Ref. [18] that the Skellam predictions come from
the Boltzmann approximation. If the baryon density gets
large, therefore, one naturally expects modifications on the
distribution. More specifically, as seen in Figs. 4 and 5, the
kurtosis is not necessarily unity at small

√
s

NN
. This effect is

not so substantial, but it would be interesting to reveal how the
quantum correlation would affect the distribution in a wider
region away from the chemical freeze-out line.

The other feature is that κσ 2 in the RMF is suppressed at
smaller

√
s

NN
thus larger μB. In fact the RMF-estimated κσ 2

happens to approach the experimental data. It is, of course,
the interaction effect that modifies Sσ and κσ 2. Then, an
immediate question that comes to my mind is which of σ and ω
should be more responsible for the suppression seen in Fig. 5.
One may well consider that, the in-medium effective mass
can bring about the leading effect of the interactions, which is
indeed the case whenever the Hartree approximation works.
In the present problem, as we will see in the next section, the
situation is rather involved. Because I take the μB derivatives
to compute the baryon fluctuations, it turns out to be μ∗

B and
thus ω that play the essential role for forming a peculiar shape
of κσ 2 in Fig. 5. Therefore, my study, as I will explain later,
brings me to conclude that the renormalization of μB caused
by ω suppresses κσ 2, while the in-medium mass coupled
with σ does the opposite. I comment that, in view of Figs. 4
and 5, the fluctuations grow again when

√
s

NN
reaches below

∼4 GeV. This low-
√

s
NN

enhancement of the fluctuations is
simply because of the criticality when the chemical freeze-out
line hits the liquid-gas critical point of nuclear matter [29] that
is located at T � 21 MeV and μB � 906 MeV in my RMF
setup.

V. WHAT CAUSES THE SUPPRESSION?

As I mentioned previously, if I fix m∗
N and μ∗

B at the vacuum
values; i.e., mN and μB, and then take the μB derivatives, the
results for Sσ and κσ 2 are identical to what is referred to by the
HRG in Figs. 4 and 5, which I have numerically checked. They
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FIG. 6. (Color online) Kurtosis calculated in the RMF for various
vector couplings.

are not exactly the same because the genuine HRG results have
contributions also from higher baryonic resonances.

If I include the in-medium mass effect only, the μB

derivative hits the implicit dependence in np and n̄p and, for
example, the first derivative reads

∂np

∂(μB/T )
= (1 − ε′

p)np(1 − np) � (1 − ε′
p)np (11)

in the Boltzmann approximation. Here, ε′
p represents

∂εp/∂μB. I find a similar expression for n̄p with an overall
minus sign and with −ε′

p changed to +ε′
p.

At high density I can neglect the antiparticle contribution
from n̄p and, moreover, ε′

p is negative because the effective
mass m∗

N generally decreases with increasing density. This
means that ∂np/∂(μB/T ) is greater than np by an enhance-
ment factor 1 − ε′

p > 1. In the approximation to neglect higher
derivatives in terms of μB, therefore, Sσ and κσ 2 should get
larger, respectively, by (1 − ε′

p)3 and (1 − ε′
p)4.

In contrast to this behavior of m∗
N, the effect of the renor-

malized chemical potential μ∗
B yields a suppression factor by

∂μ∗
B/∂μB = 1 − gω(∂ω/∂μB) where ω is proportional to the

baryon density, so that I can conclude that ∂ω/∂μB > 0. The
above-mentioned arguments have been carefully confirmed in
my numerical calculations.

Let us see the numerical check from a different viewpoint.
I change the strength of the vector coupling gω by hand to
find that κσ 2 is certainly modified in a way consistent with
the above qualitative arguments, as is transparent in Fig. 6;
the entire curve goes down for larger gω. I should note,
however, that I cannot infer gω from a fit of the model results
to the experimental data. This is because I simply vary gω

not adjusting other parameters to reproduce the saturation
properties of nuclear matter. In this sense, thus, my results
in Fig. 6 should not be regarded as anything beyond a test.

VI. EFFECTS OF ISOSPIN CORRELATIONS

So far, I have discussed a quantitative comparison assuming
that the experimentally measurable quantities of the proton
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number fluctuations are somehow to be identified as the baryon
number fluctuations. One may wonder if it really works or not.
In fact, such identification requires a nontrivial assumption
about independence between neutrons and protons as is the
case in the HRG calculation. One can readily understand
this by expanding higher powers of NB = Np + Nn where
Np and Nn are, respectively, the (net) proton number and the
(net) neutron number. For the simplest example, the quadratic
fluctuation consists of

χ
(2)
B = 1

V T 3

(〈
N2

B

〉 − 〈NB〉2
) = χ (2)

p + χ (2)
n + 2χ (2)

pn , (12)

where

χ (2)
pn ≡ 1

V T 3
(〈NpNn〉 − 〈Np〉〈Nn〉). (13)

If the proton and the neutron behave independently from their
isospin partners, there is no connected contribution in the
correlation function of Np and Nn; i.e., 〈NpNn〉 = 〈Np〉〈Nn〉
and the last term involving χ (2)

pn in Eq. (12) vanishes. As long
as I do not consider isospin symmetry violation, the neutron
fluctuation should be just identical with the proton fluctuation,
so that I can conclude χ

(2)
B = 2χ (2)

p immediately from Eq. (12).

I can continue similar arguments to deduce that χ
(n)
B = 2χ (n)

p

in general. Therefore, obviously, this factor of two is canceled
out in the dimensionless ratios and Sσ and κσ 2 of protons take
the same value as those of baryons (nucleons).

This argument is valid as long as I consider a free gas
of baryons only. It is known, however, that off-diagonal
components of the susceptibility such as χud ∝ χ (2)

pn are
nonvanishing as observed in the lattice-QCD simulation [30] as
well as in the model studies [31,32]. I do not go into technical
details here but simply note that nonzero χud is induced
by different behavior of the Polyakov loop and the anti-
Polyakov loop in a finite-density environment described by the
Polyakov-loop extended Nambu–Jona–Lasinio model [33,34].
Physically speaking, different flavors communicate with each
other through confining gluons to form pions. It is important
to mention that χud itself is finite also in the HRG calculation,
which is attributed to pions rather than baryons. Then, a
nonzero χ (2)

pn of baryons should be induced by χud �= 0 after
all. Since I cannot avoid relying on another assumption to give
a concrete estimate of induced χ (2)

pn , I shall postpone numerical
analyses along this line to another presentation.

Recently, a more dynamical origin of isospin correlations
has been discussed in Ref. [35]. That is, residual interactions
after the chemical freeze-out can change p into n and vice
versa. Of course, in the first approximation, I do not have
to think of weak processes because the lifetime of matter in
the heavy-ion collision is of order of the strong interaction.
Still, such a mixing between p ↔ n is allowed by the strong
interaction involving π0 and π− through an intermediate
state of +(1232) and 0(1232). It should be a quite
complicated procedure to establish any reliable evaluation
for these contributions to χ (2)

pn , but I can drastically simplify
the theoretical calculation in the limit of complete mixing
or randomization, which is the limit opposite to complete
independence in isospin space.

In this special case of complete randomization of isospin,
it is a natural anticipation to presume that each (anti-) nucleon
is either a (anti-) proton or a (anti-) neutron with equal
probability. Therefore, the distribution of Np is binomial
with the mean value given by NB/2 [35], where Np and
NB are not the net quantities but the absolute proton
number and the absolute baryon (nucleon) number. That
is, Np = Np − Np̄, NB = NB − NB̄ , etc. Thus, for a given
NB and NB̄ (for which the average is denoted by 〈· · · 〉B),
I expect

N̄p = 〈Np〉B = 1
2NB, (14)

〈(Np − N̄p)2〉B = 1
4NB, (15)

〈(Np − N̄p)3〉B = 0, (16)

〈(Np − N̄p)4〉B = 1
16NB(3NB − 2), (17)

and so on according to the binomial distribution. I note
that Eqs. (14)–(17) are T independent, unlike the thermal
distribution.

I am now ready to express the proton number fluctuations
in terms of baryon number fluctuations. For nth-order fluctu-
ations I have

χ (n)
p = 1

V T 3

〈〈 〈(
Np − Np̄ −

〈〈NB − NB̄

2

〉〉)n〉
B

〉〉
, (18)

where 〈〈· · · 〉〉 represents an average over the distribution of NB

and NB̄ .
By using these relations I can easily prove, for example, the

following of the quadratic (n = 2) fluctuation:

χ (2)
p = 1

4
χ

(2)
B + 1

4V T 3
〈〈NB + NB̄〉〉, (19)

where I used independence of the baryon and the antibaryon
distributions. It should be noted that Eq. (19) exactly coincides
with the formula derived in Ref. [35].

Let us see how large the second term could be; and for this
purpose, I make use of an expression for the free baryon gas.
Then, I numerically confirm that this second term is very close
to the first term at good precision; i.e., 〈〈NB + NB̄〉〉 ≈ χ

(2)
B

within 1% at large
√

s
NN

and at most 5% at smaller
√

s
NN

of a

few GeV. I can then approximate χ (2)
p as χ (2)

p ≈ (1/2)χ (2)
B . This

means that both Eq. (19) and the previous relation in the HRG
model eventually lead to the same answer; χ (2)

p = (1/2)χ (2)
B

after all, although they superficially look quite different from
each other.

I next proceed to the n = 3 case. Then, after some
calculations, I can arrive at

χ (3)
p = 1

8
χ

(3)
B + 3

8

(X (2)
B − X (2)

B̄

)
, (20)

where I defined X (2)
B and X (2)

B̄
as

X (2)
B ≡ 1

V T 3

(〈〈N 2
B

〉〉 − 〈〈NB〉〉2), (21)

X (2)
B̄

≡ 1

V T 3

(〈〈N 2
B̄

〉〉 − 〈〈NB̄〉〉2
)
. (22)
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FIG. 7. (Color online) Ratio of χ (4)
p to χ

(4)
B which is close to 1/2

and the deviation from 1/2 is less than 10% at small
√

s
NN

.

So, the ordinary quadratic fluctuation is given as χ
(2)
B = X (2)

B +
X (2)

B̄
. My result above is again equivalent to the formula listed

in Ref. [35]. It is also easy to check that this latter term in
Eq. (20) gives the same answer as χ

(3)
B within a few percent as

long as the baryon distribution is thermal. Therefore, χ (3)
p ≈

(1/2)χ (3)
B follows.

Now I can make a guess that probably χ (4)
p ≈ (1/2)χ (4)

B

again and let us explicitly make it sure. In the same way I can
write χ (4)

p as

χ (4)
p = 1

16
χ

(4)
B + 3

8

(X (3)
B + X (3)

B̄

)

+ 3

16
χ

(2)
B − 1

8V T 3
〈〈NB + NB̄〉〉. (23)

This is indeed close to (1/2)χ (4)
B but shows a deviation as√

s
NN

gets smaller. I present our numerical results in Fig. 7. It

is clear from Fig. 7 that χ (4)
p ≈ (1/2)χ (4)

B is the case as long
as

√
s

NN
is sufficiently large, while it increases by about 10%

at smaller
√

s
NN

. My conclusion is that, contrary to what is
claimed in Ref. [35], the isospin correlation does not help
us with explaining a suppression tendency in the kurtosis at
smaller

√
s

NN
; the effect is in a wrong direction. In any case,

the 10% correction is just too minor to account for almost 50%
suppression in the experimental data as seen in Fig. 5.

Here I make a remark that I can easily give a general proof of
χ (n)

p ≈ (1/2)χ (n)
B if I can make the Boltzmann approximation

for the baryon distribution. Therefore, in this sense, the 10%
deviation seen in Fig. 7 can be attributed to the violation of the
Boltzmann approximation that is quantified by the deviation
from unity in Fig. 5, which is also of the 10% level. The
bottom line of my analysis is that I can safely neglect the
difference between the baryon number and the proton number
fluctuations.

VII. SUMMARY

I investigated the baryon number fluctuations by using
the hadron resonance gas model and the mean-field model
of nuclear matter. I found that the mean-field description
yields fairly good results which look quite consistent with
the skewness and the kurtosis measured in the beam-energy
scan.

Because the mean-field approximation is based on the
quasiparticle treatment, in fact, it is not much different from
the hadron resonance gas model except for the interaction
effects incorporated in terms of the scalar and the vector mean
fields. I numerically checked that the kurtosis is suppressed
at smaller collision energy (i.e., higher baryon density) due
to the vector mean field, which is directly coupled to the
baryon density. I would emphasize that my main point is to
draw attention to a realistic possibility to interpret the BES
data as an extrapolation from nuclear matter, and not to make
a serious comparison between models and the experimental
data. To this end I need to take account of canonicalness
in a finite volume [36] and also diffusion effects in rapidity
subspace [37].

Finally, in the present study, I discuss the effects of
isospin correlations and reach the conclusion that such effects
are only minor such that I can ignore them in the first
approximation. Even in the case of strong residual interactions
that realize complete randomization in isospin space, I find
that the deviation from the HRG prediction is at most 10%
at the smallest collision energy of a few GeV. Therefore,
for a semiquantitative estimate, I can simply identify the
proton number fluctuations as (half of) the baryon number
fluctuations.

In this paper I only mentioned another possibility of
flavor mixing through the off-diagonal susceptibility χud . This
nonzero χud arises from the pion dynamics, so it is quite
nontrivial how we relate χud to the correlations purely among
the proton number Np and the neutron number Nn. I am now
making progress in this direction in order to refine relationship
between χ (n)

p and χ
(n)
B .

Although the σ -ω model is one of the simplest methods
to capture the essential features of nuclear matter, it would
be more desirable to develop quantitative investigations by
means of more systematic approaches such as the chiral
perturbation theory. It would be definitely worth attempting
the fully quantitative comparisons for Sσ and κσ 2 within the
framework of the chiral perturbation theory and also more
established Bruckner-type calculations. This is one of my
future problems and the results shall be reported in followups
hopefully soon.
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