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Examination of fusion cross sections and fusion oscillations with a generalized Wong formula
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We re-examine the well-known Wong formula for heavy-ion fusion cross sections. Although this celebrated
formula yields almost-exact results for single-channel calculations for relatively heavy systems such as 16O +
144Sm, it tends to overestimate the cross section for light systems such as 12C + 12C. We generalize the formula
to take account of the energy dependence of the barrier parameters and show that the energy-dependent version
gives results practically indistinguishable from a full quantal calculation. We then examine the deviations arising
from the discrete nature of the intervening angular momenta, whose effect can lead to an oscillatory contribution
to the excitation function. We recall some compact, analytic expressions for these oscillations and highlight the
important physical parameters that give rise to them. Oscillations in symmetric systems are discussed, as are
systems where the target and projectile identities can be exchanged via a strong transfer channel.
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I. INTRODUCTION

It has been known for many years that fusion cross sections
for several light heavy-ion systems, such as 12C + 12C [1],
12C + 16O [2], and 16O + 16O [3], exhibit an oscillatory
structure as a function of the incident energy. Two recent
papers, by Esbensen [4] and Wong [5], interpret the oscillations
as being due to the addition of successive individual partial
waves as the energy increases. The effect is of course most
important for identical spin-0 nuclei, because in that case the
odd partial waves are totally absent and the relevant energy
spacing between successive contributing angular momenta is
consequently much larger. Both of these authors discuss this
phenomenon in the context of the well-known Wong fusion
cross section [6] derived from the Hill-Wheeler expression [7]
for the penetration of a parabolic potential barrier. See also
Ref. [8] for a recent publication in a similar context.

In fact the above interpretation was first proposed some
30 years ago by Poffé, Rowley, and Lindsay [9], who,
furthermore, gave a compact and accurate analytic expression
for the oscillations that displays succinctly the dependence on
the relevant physical parameters of the system. Our purpose
in this paper is to discuss the derivation of the Wong cross
section—both its smooth and its oscillatory terms—and to
present some inadequacies of the standard fusion formula that
treats the barrier height, position, and curvature [B,RB,�ω]
as being independent of the incident energy E and thus,
implicitly, independent of the angular momentum l. This
reanalysis of the qualities and weaknesses of the Wong
formula is important in order to be able to distinguish
between discrepancies arising from the approximations used
in its derivation and those arising from additional physical
effects such as entrance-channel couplings or limitations on
compound-nucleus formation.

The paper is organized as follows. In Sec. II, we derive
the Wong cross section and propose an extended formula
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which takes into account the energy dependence of the barrier
parameters. We show that the effect of the energy dependence
is significant, particularly for light heavy-ion systems, and
that the generalized formula reproduces well a full quantal
calculation. In Sec. III, we discuss the oscillatory part of fusion
cross sections. We reanalyze the compact formula for these
oscillation using the energy-dependent version of the Wong
formula. We discuss the fusion of two identical nuclei as well
as the fusion between similar nuclei. Fusion oscillations in
heavier systems are also discussed. In Sec. IV, we present
our analyses of the experimental data for the 12C + 12C and
12C + 13C systems. We summarize the paper in Sec. V.

II. THE WONG FORMULA FOR FUSION CROSS
SECTIONS AND ITS IMPROVEMENT

In this section, we compare the results of the Wong
expression for the fusion cross section that contains the
three parameters [B,RB,�ω] (see below) and the fusion cross
section coming from a quantal calculation with a specified
real potential and an absorption that is essentially black box.
This can be achieved either with an ingoing-wave boundary
condition or with an appropriately chosen imaginary potential.
Here we choose the latter method, checking carefully that our
results are insensitive to changes in the imaginary potential
used. With a potential model, the barrier position RB , its
height B, and its curvature �ω are all fixed by the potential
parameters. Indeed it is a very general result that the nuclear
potential is essentially exponential in the tail, the region in
which the Coulomb barrier occurs, at least for relatively light
systems with a low Z1Z2. In that case, all three of the above
parameters are determined by two potential parameters, the
depth V0 and the surface diffuseness a.

We choose to fix these parameters in the following, much
more transparent way: for the l = 0 barrier we have

dV

dr

∣∣∣∣
r=RB

= dVN

dr

∣∣∣∣
r=RB

+ dVC

dr

∣∣∣∣
r=RB

= 0, (1)
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where RB is the position of the barrier. Writing VN (r) =
V0 exp[−(r − RB)/a], we then find

Z1Z2e
2

R2
B

− 1

a
V0 = 0, (2)

thus obtaining

VN (r) = −a Z1Z2e
2

R2
B

exp

(
− r − RB

a

)
. (3)

Furthermore, we then have a Coulomb plus nuclear barrier,

B = V (RB) = Z1Z2e
2

RB

(
1 − a

RB

)
, (4)

and this quadratic equation for RB gives the barrier position as

RB = 1

2
RC

(
1 +

√
1 − 4

a

RC

)
, (5)

where RC is just Z1Z2e
2/B [10]. We see that once the barrier

height B is given, the position depends only on the surface
diffuseness of the potential, and this also fixes the strength
of the nuclear potential. This is the reason that it is generally
sufficient to quote the parameters [B,a] in our coupled-channel
(CCFULL [11]) calculations. It is of course also sufficient for
simpler optical-model/classical calculations of the fusion cross
section. This procedure is useful because the parameter best
determined by the fusion data is B, and furthermore, there
are various prescriptions for obtaining a good theoretical
value for this quantity; for example, the Bass [12] and the
Akyüz-Winther [13] potentials, which give very similar B
values over a wide range of heavy-ion systems, both yielding
B = 6.1 MeV for the 12C + 12C system mainly discussed in
this paper.

As noted above, this reduces the three independent param-
eters of the Wong expression to two, thereby providing a much
more rigorous constraint on the physics of the problem, as we
see below. Note that the exponential potential tends to be deep,
and such deep potentials have been advocated in Refs. [14–16].

If all of the flux crossing the Coulomb barrier fuses, then
the fusion cross section is given by

σ = π�
2

2mE

∞∑
l=0

(2l + 1)Tl, (6)

and using the Hill-Wheeler formula for the transmission Tl

through a parabolic barrier, we have [6]

σ = π�
2

2mE

∞∑
l=0

2l + 1

1 + exp
[

2π
�ω

(
B + l(l+1)�2

2mR2
B

− E
)] , (7)

where in the barrier region, the potential is taken as V (r) =
B + l(l+1)�2

2mR2
B

− 1
2mω2(r − RB)2. (The quantity �ω is the quan-

tum of energy corresponding to the inverted barrier and is
generally referred to as the “barrier curvature” [see Eq. (13)].)
Taking [B,RB,�ω] as fixed and replacing the summation with
an integral, one obtains the very influential Wong formula for
the fusion cross section for a single potential barrier,

σ = �ω

2E
R2

B ln

(
1 + exp

[
2π

�ω
(E − B)

])
, (8)

which yields, in the limit E − B � �ω/2π , the classical result

Eσ = πR2
B (E − B). (9)

The first and second derivatives of this classical equation and
its quantal version yield

d(Eσ )

dE
= πR2

B θ (E − B) → πR2
B

1

1 + ex
(10)

and

d2(Eσ )

dE2
= πR2

B δ(E − B)

→ πR2
B

[
2π

�ω

ex

(1 + ex)2

]
, (11)

where x = (2π/�ω)(B − E) and θ is the Heaviside step
function. These functions (especially the second) have been
extremely important in the development of the notion of
a fusion barrier distribution [17,18], where the fact that
d2(Eσ )/dE2 is strongly peaked near to the barrier is a crucial
point.

It is important to note that higher above the barrier, one
must question the approximations that lead to Eq. (8). Figure 1
shows that for higher angular momenta the barrier in the
full potential (Coulomb + nuclear + centrifugal) occurs at

0 5 10 15
r  (fm)

0

10

20

V l(r
)  

(M
eV

)

RE RB

l=0

l=lg

E
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FIG. 1. For an incident energy E above the Coulomb barrier B,
the radius for the barrier with grazing angular momentum lg occurs
at a separation RE < RB . The sum of the Coulomb and nuclear
potentials at this point is VE < B. Furthermore, the curvature �ωE

of the barrier in the total potential is larger than its value for l = 0.
Curves are calculated for an exponential potential with a = 0.8 fm
and a depth that yields B = 6.22 MeV for the 12C + 12C system. For
l = 0 this potential has RB = 7.44 fm and �ω = 2.52 MeV.
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a separation RE smaller than its l = 0 value, RB . Now the
grazing angular momentum is given by

lg(lg + 1)�2

2mR2
E

= E − VE, (12)

where VE is the sum of the Coulomb and nuclear potentials
at RE . Of course the curvature changes too, not only because
the position of the barrier has shifted, but also because there is
now a centrifugal contribution,

�ωE = �

(
−V ′′

m

)1/2

= �

(
−V ′′

C + V ′′
N + V ′′

l

m

)1/2

, (13)

where the second derivatives are evaluated at r = RE . A better
approximation for the fusion cross section is now just

σ = �ωE

2E
R2

E ln

(
1 + exp

[
2π

�ωE

(E − VE)

])
, (14)

which is simply the standard Wong formula but with an energy
dependence [B,RB,ω] → [VE,RE,ωE] derived for the grazing
angular momentum lg at the energy in question. See Ref. [19]
for a similar extension to the classical formula, Eq. (9).

Of course we are still making an approximation here,
because it is clear from Fig. 1 that the barrier height, position,
and curvature depend explicitly on l. Of course if one does
not assume the same values of the parameters for all l, then
the integral over l leading to Eq. (14) cannot be performed
analytically. But there is nothing to prevent one choosing a
different parameter set (for all l) at each energy. Clearly the
set of values for lg is the best choice. One then still obtains
the compact expression, (14), though we should stress that one
now needs to derive numerically the parameters [VE,RE,ωE]
(see Appendix A).

We show in Fig. 2 some calculations for the system
12C + 12C that we concentrate on in this paper. For the
moment, they ignore the Bose symmetry of this identical
spin-0 system and sum over all even and odd partial waves.
The dashed line in Fig. 2(a) shows the Wong cross section with
[B,RB,ω] fixed at all energies to their values for l = 0. That is,
[B,RB,ω] = [6.22 MeV, 7.42 fm, 2.52 MeV], generated by
a potential with a = 0.8 fm that gives this barrier height. The
results are seen to be very different from the dot-dashed line,
which uses the energy-dependent values of these parameters.
In Fig. 2(b) we compare the latter results with a quantum
mechanical calculation of the cross section. The scale of the
vertical axis has been chosen to emphasize the high quality of
the fit when the parameters are energy dependent. However, it
also shows that even with all partial waves, there are small
oscillations in the full quantal calculations. We derive an
expression for these in the next section.

The following comments are appropriate at this point.

(i) The approximation with parameters fixed at their l = 0
values is poor, especially for light systems. For these
systems, the Coulomb interaction is relatively small
and also the reduced mass m is small, therefore the
centrifugal potential may play a more important role
than the Coulomb potential. For heavier systems, on
the other hand, the Coulomb potential is strong and
thus the barrier is rigid against a variation of angular
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FIG. 2. (Color online) (a) Fusion cross sections for the
12C + 12C system obtained with the Wong formula with l = 0 values
of [B,RB,�ω] (dashed curve) and with their energy-dependent values
(dot-dashed curve). The Bose symmetry of the identical spin-0 system
is ignored, and both even and odd partial waves are summed up
in the cross sections. (b) The energy-dependent Wong result agrees
extremely well with a full quantal calculation shown by the solid line.
However, the latter shows very weak oscillations (≈1 mb) coming
from the partial-wave sum, (6), even though all l’s are summed.

momentum. In that situation, the conventional Wong
formula is reasonable. Figure 3 shows the barrier po-
sition RB and the barrier curvature �ω as a function of
the angular momentum l for two systems, 12C + 12C
and 16O + 144Sm. One can see that the variation is
marginal for the heavier system, 16O + 144Sm, while
both RB and �ω change considerably as a function of
l for the lighter system, 12C + 12C.

(ii) However, note that experimental fusion cross sections
(especially if they are not terribly precise) can fre-
quently be fitted even for light heavy-ion systems
with parameters that are simply chosen to do so
and do not necessarily bear much relation to the
physical potential. For example, we see in Sec. III D
that the 12C + 12C experimental fusion cross section
can be reasonably well fitted with [B,RB,�ω] =
[5.6, 6.3, 3.0] (see Fig. 8).

(iii) The E-dependent Wong formula works well because
the parabolic approximation is good, since the energy
E coincides with the barrier height for l = lg . Even
though this approximation breaks down at energies
below the barrier, only a small number of partial waves
in the vicinity of lg contribute. The cross section is
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FIG. 3. (Color online) (a) Barrier position, RB , and (b) barrier
curvature, �ω, as a function of angular momentum, l, for the
12C + 12C system (solid line) and the 16O + 144Sm system (dashed
line).

relatively large above the barrier and the resulting
discrepancies are small.

(iv) At sub-barrier energies, there is no lg as such, and the
best one can do is to take the parameters for l = 0,
though one is already below the barrier for this value
of l. For higher l values, the situation is worse, but
taking an l-dependent value of the parameters does
not improve matters, as the parabolic approximation
is, in any case, intrinsically poor below the Coulomb
barrier [20,21]. Here the cross section is small, so the
errors are relatively more important.

III. FUSION OSCILLATIONS

A. Fusion of two identical nuclei

In most situations, the value of �ω is irrelevant at energies
above the Coulomb barrier, simply determining the rate of
fall-off for E < B. (Note that in that region the parabolic
approximation itself will become inadequate at sufficiently
low energies [20,22].) However, (as first pointed out by Poffé
et al. [9] and, more recently, in Refs. [4] and [5]) there is
a rather unique situation, where �ω is important above the
barrier, principally for light symmetric spin-0 systems (though
see below for other examples). Here, only even values of the
grazing angular momentum are allowed and their barriers may
be sufficiently well separated in energy for their successive
addition to the cross section to give rise to fusion oscillations.

Let us now derive the earlier expression of Poffé et al. [9]
for these fusion oscillations. This is obtained by using the exact
Poisson summation formula [23],∑

l

f (l) =
∑
m

(−1)m
∫ ∞

0
f (λ) exp(2π miλ) dλ. (15)

When applied to Eq. (7), the m = 0 term gives the usual
Wong result, (14). The terms m = ±1, however, give rise to
an oscillatory contribution from the poles of the transmission
function above and below the real-λ axis, respectively. In the
energy region E − B � �ω/2π , the nearest poles simply give
(see Appendix B)

Eσosc = 2πR2
E�ωE exp(−2ξ ) sin(2πlg), (16)

where lg is the continuous, energy-dependent grazing angular
momentum of Eq. (12), and the quantity ξ is given by

ξ = �ωE

2lg + 1
· πmR2

E

�2
≡ π

2

�ωE

∂VE/∂lg
. (17)

The resultant oscillations are shown on top of the smooth part
of the cross section in Fig. 2(b). They are of the order of 1 mb,
and it is unlikely that any reasonable experiment would be able
to observe these. Terms from |m| > 1 and from more distant
poles merely introduce higher multiples of the exponent in the
above equation and are clearly completely negligible.

However, for a system of two identical spin-0 bosons (for
example, 12C + 12C) the Bose symmetry forbids odd angular
momenta, and the fusion cross section is given by twice the
sum over the even partial waves. This can be achieved by
including the factor

1 + [−1]l ≡ 1 + exp(πil) (18)

in Eq. (15). The 1 gives the usual nonsymmetrized result but
the extra term now gives an oscillatory contribution (from
m = 0 and m = −1),

Eσosc = 2πR2
E�ωE exp(−ξ ) sin(πlg), (19)

which is significantly larger than before, because the (neg-
ative) exponent has been reduced by a factor of 2. This is
demonstrated in Fig. 4, where the dashed curve represents
the sum of the smooth, energy-dependent Wong cross section
and the above expression for the oscillatory part. The solid
curve is the full quantal calculation, and it can be seen that
the above expressions give an excellent approximation to the
exact result. The dot-dashed curve shows the smooth part of the
Wong cross section. One sees an order-of-magnitude increase
in the oscillations arising from symmetrization.

The above result is easily generalized to two identical spin-
1/2 fermions such as 13C + 13C. Because the oscillatory cross
section for odd partial waves is clearly just minus that for the
even ones, the total σosc is simply given by the difference of the
statistical weights for S = 0 (which gives even l with weight
1/4) and for S = 1 (giving odd l with weight 3/4). Thus we see
that the oscillations will be reduced by a factor of 2 and will
have the opposite phase from the symmetric system. Similarly,
the oscillations for 14N + 14N (1 ⊗ 1) will be reduced by a
factor of 3 [9].
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FIG. 4. (Color online) Symmetrized cross section (even l only)
for 12C + 12C is compared with the cross section for all l. One sees
an order-of-magnitude difference in the oscillatory terms (see text).
It is unlikely that the oscillations shown in Fig. 2 (b) (≈1 mb) could
be observed in a system without some asymmetry between odd and
even l values.

B. Fusion between similar nuclei: The role of elastic transfer

The other interesting problem of this type is that of a system
such as 12C + 16O, which has also been discussed earlier
by Kabir, Kermode, and Rowley [24]. Here, one can again
consider the oscillations from even l and odd l separately.
Without any further effect, they will cancel out. However,
the presence of the elastic α-transfer channel will introduce
a parity dependence into the problem. This is most easily
seen by considering the total elastic scattering, where, to the
amplitude fel(θ ) for direct elastic scattering of the 12C, we
must add an exchange term, ftrans(π − θ ), the amplitude for
elastic transfer at the angle and energy in question. This yields
a total amplitude,

ftotal(θ ) → fel(θ ) + ftrans(π − θ ), (20)

and using Pl(cos(π − θ )) = (−1)lPl(cos θ ), we obtain

Seff
l = S el

l + (−1)lS trans
l , (21)

that is, different effective S-matrix elements for the odd
and even partial waves. This effect can be simulated (as
in Refs. [24–29]) by introducing a parity-dependent optical
potential. However, to obtain a simple orientation of the
effect of transfer (and, again, an analytic expression for the
oscillations), we note that the S matrix for direct reactions
is generally peaked around the grazing angular momentum
and can be approximated by α ∂S el/∂l. For relatively small
α (which is, of course, limited by unitarity), this gives an
effective S matrix,

S eff(l) = S el(l + [−1]l α). (22)

That is, the transfer dynamics results in a small shift of the
original elastic S matrix in opposite directions for odd and
even l values. Clearly for a nonzero α the poles giving rise to
Eq. (19) come into play, and indeed for α = 1/2, we obtain
oscillations of the same magnitude with a shift in phase. The
general result is that the trigonometric function in Eq. (19) is

replaced as follows:

sin(πlg) → sin(π [lg + α]) − sin(π [lg − α])

2
= cos(πlg)sin(πα). (23)

Of course in this expression α may be energy dependent,
and indeed if one uses a parity-dependent potential, this will
naturally give rise to a shift that depends on the grazing l and
thus on E. Reference [24] demonstrated that it is possible to
obtain a reasonable fit to both the large-angle elastic scattering
and the fusion oscillations with the same parity-dependent
potential.

C. Heavier systems

The presence or absence of measurable fusion oscillations
arising from the symmetrization for identical systems depends
mainly on the quantity ξ in Eq. (17) because it appears in the
exponent in Eq. (19). Using an exponential nuclear potential,
Eq. (13) yields exactly

�ωE = �

(
2E − VE − a

RE
ε

a m RE

)1/2

, (24)

with ε ≡ 4(E − VE) + VCE , where VCE is the Coulomb poten-
tial at RE . Close to the s-wave barrier B, the nuclear potential
is relatively small, and there ε ≈ 4E − 3VE . However, at
higher energies and higher grazing l values, the barrier is
pushed to lower radii and the nuclear potential gives the
dominant contribution. Here VCE can be neglected so that
ε ≈ 4(E − VE), yielding

ξ ≈ π

2

√
RE

2a

(
2E − VE

E − VE

− 4a

RE

)1/2

(25)

or, in terms of B,

ξ ≈ π

2

√
RE

2a

(
1 − 4a

RE

+
[

1 − 2a

RE

]
E

E − B

)1/2

. (26)

Asymptotically, (E � B) this reduces to

ξ ≈ π

2

√
RE

a

(
1 − 3a

RE

)1/2

, (27)

and this gives a good idea of the mass dependence of the
magnitude of the resulting oscillations. For heavy systems,
RE is larger, and so is ξ . Thus the oscillations will become
more difficult to observe experimentally in heavier systems.

Figure 5(a) compares the value of ξ for the 12C + 12C
system (dot-dashed line) with that for 28Si + 28Si (solid line).
For the former reaction, we have used the same potential
as in Fig. 2, while we have used an exponential potential
with [B,a] = [28.8 MeV, 0.8 fm] for the latter system. Even
though the ξ parameter for 28Si + 28Si is larger than that for
the 12C + 12C system by a factor of only about 2, its effect on
the amplitude of the fusion oscillations is dramatic, as shown
in Fig. 5(b). The oscillations shown here are obtained from
Eq. (19) but they can also be simply obtained from the quantum
mechanical sum over l: because the oscillations arising from
symmetrization are exponentially larger than those with no
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FIG. 5. (Color online) (a) The ξ parameter defined by Eq. (17) in
the oscillatory part of fusion cross sections. Dot-dashed and solid lines
show the ξ parameters for the 12C + 12C system and the 28Si + 28Si
system, respectively, as a function of the energy measured from the
barrier height B of each system. Both lines are obtained with an
exponential potential with the diffuseness parameter of a = 0.8 fm.
(b) The oscillatory contribution of fusion cross sections given by
Eq. (19). (c) Total fusion cross sections for the two systems given as
the sum of the smooth part and the oscillatory part.

symmetry, they are essentially given by the difference between
these two cross sections. This reduces to

σosc = π�
2

2mE

( ∑
l even

(2l + 1)Tl −
∑
l odd

(2l + 1)Tl

)
, (28)

where we note that this result is true only if the sum over all
partial waves is sufficiently smooth.

Of course experimentally it is not possible to separate
the oscillations out of the total cross section, and although
they stand out in the 12C + 12C system [see Fig. 5(c)], they
are not apparent in the total cross section for 28Si + 28Si.
For this reason the relevant experimental data are sometimes
represented in the form of d(Eσ )/dE [4]. This is a useful
representation since the derivative of the smooth part of Eσ is
essentially constant. We look at this again below.

In Fig. 5(b), we have seen that the oscillations for the
28Si + 28Si system are largely damped out at energies less

0
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FIG. 6. (Color online) First energy derivative of the penetrability
for each angular momentum l, dTl/dE, for (a) the 12C + 12C system
and (b) the 28Si + 28Si system. Numbers above the peaks are the
corresponding values of l.

than around 10 MeV above the barrier, while they start much
earlier, and are much stronger, for the 12C + 12C system. In
order to understand this, Fig. 6 compares the derivative of
the penetrability for each angular momentum with respect
to the energy, that is, dTl/dE, for the 12C + 12C system
[Fig. 6(a)] with that for the 28Si + 28Si system [Fig. 6(b)].
For the latter system, the individual peaks are narrower (due
to smaller values of �ω), but they are pushed much closer
together, making them less well resolved from the peaks for
adjacent values of l. In order to obtain the same resolution that
one has for l = 12 in the 12C + 12C system (that is, the same
degree of overlap between adjacent peaks), one has to go to
an l value of around 36 or bigger in the 28Si + 28Si system.
This corresponds to a much higher energy compared with the
former system, and indeed the limiting angular momentum for
fusion for 28Si + 28Si appears to be lmax = 38, according to
Vineyard et al. [30].

Several other data sets for the 28Si + 28Si system exist
[31–33] and indeed one of the aims of Aguilera et al. [33] was
to search for oscillations in this system. Unfortunately, they
were unable to conclude the existence of structures within
the 3% statistical error in their experiment. Their data are
represented in the form Eσ in the upper panel in Fig. 7 (open
circles), along with data from Ref. [31] (filled circles). It can
be seen that the normalizations of the two data sets disagree
somewhat, presumably simply due to systematic differences in
the experiments. Also shown in the figure are two uncoupled
optical-model calculations with a = 0.6 and 1.2 fm (both
with B = 28.7 MeV). The slope of the former fits that of
the Aguilera data but the larger diffuseness is required to fit
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FIG. 7. (Color online) Two sets of measurements [31,33] for
fusion in the 28Si + 28Si system are shown as Eσ in the upper
panel and as d(Eσ )/dE in the lower one. Data are compared with
uncoupled calculations with two values of surface diffuseness in the
nuclear potential. See text.

the slope of the data in Ref. [31]. In the lower panel in Fig. 7
the two data sets and calculations are again shown, but in
terms of d(Eσ )/dE. Neither data set has the precision to
prove the existence of oscillations, but it is interesting to note
the significant difference in the magnitude of the oscillations
produced by the different values of the potential diffuseness
a [see Eq. (27)]. Better data are clearly required to resolve
this question and to establish the existence or absence of any
oscillations due to symmetrization.

Very recently Stefanini et al. [34] have made more detailed
measurements for this system with a very small energy step
(around 0.25 MeV in the center-of-mass system) and with
better statistics (better than 1%). Their experimental data,
when displayed as d(Eσ )/dE, indicate distinct structures
at energies only around 5 MeV above the barrier. They are
much more pronounced than those shown for the uncoupled
calculation with a = 1.2 fm in Fig. 7. This observation is
incompatible with the mechanism discussed here, and the
oscillations in the new experimental data must have a different
origin. Their presence appears to be related to strong couplings
to the low-lying collective modes that exist in the 28Si nucleus
but also seems to depend on the nature of the absorptive
potential used in the calculations [4,34].

In order to look for the effects of channel couplings,
the “experimental barrier distribution” [17,18], D(E) =
d2(Eσ )/dE2, is frequently used, and in the present context
one should remember that the function d(Eσ )/dE can also
have structures close to the unperturbed Coulomb barrier
due to couplings. The width of a typical barrier distribution

is proportional to Z1Z2 and will lead to obvious structures
in d(Eσ )/dE for heavier systems with strong collective
modes. However, for heavier systems, the “symmetrization”
oscillations will not be measurable. The system 28Si + 28Si
may be a special intermediate system where both types of
structure are present simultaneously.

IV. COMPARISON WITH EXPERIMENTAL
DATA ON LIGHTER SYSTEMS

A. 12C + 12C fusion reaction

Let us now analyze the actual experimental data for fusion
of carbon isotopes and discuss the observed fusion oscillations.
We first discuss the fusion of the 12C + 12C system using a
single-channel optical model.

We have already shown in Fig. 3 the energy dependence
of the parameters RE and �ωE entering both the smooth part
of the Wong cross section and its oscillatory term for the
potential in Fig. 1 that gives a good fit to the experimental
12C + 12C fusion cross section, including its oscillations.
(Some of these energy variations have also been discussed
in Ref. [19], where they are expressed in terms of universal
functions.) The function dTl/dE shown in Fig. 6(a) is for an
optical-model calculation with the same potential and various
l values. Its width is 0.56 �ωE [17], and this compares well
with the values of �ωE from Fig. 3, taken at the appropriate
peak energies (where the l values in question are grazing). The
variation of all of these Wong parameters is very significant
over the energy range in question, and it is important to
remember that their l = 0 values do not even fit the average
data when inserted into Eq. (14).

In Fig. 8, the data are reasonably well fitted [9,21] (at
least up to around 20 MeV) with an energy-independent set
of [B,R,�ω] = [5.6, 6.3, 3.0] but these parameters do not
correspond to those coming from the potential-model fit shown
in Fig. 9(a). [Though the value of the oscillatory term is similar
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E (MeV)

400

600

800

1000

σ 
(m

b)

FIG. 8. (Color online) Parametrized 12C + 12C cross section
[9,21] with [B,RB,�ω] = [5.6, 6.3, 3.0]. The smooth-only cross
section is shown by the dashed curve. Experimental data are taken
from Refs. [1,35].
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FIG. 9. (Color online) (a) Potential-model fit to the same data as
in Fig. 8 with [B,a] = [6.22,0.8] (even l only). (b) Same as (a), but
with the transmission of l = 14 reduced by a factor of 2 and all higher
waves absent.

to the potential-model value in the region where the oscillations
are important, because expression (19) was used for it.] For
instance, Eq. (4) indicates that this parameter set corresponds
to an exponential potential with the diffuseness parameter of
a = 2.0 fm, which is unphysically large. The Wong cross
section can, therefore, be considered only as providing a simple
parametrization of the fusion data, although as pointed out
earlier this is extremely useful if one remains close to the
barrier.

This point is well demonstrated by the failure to fit the cross
section at energies above E ≈ 25 MeV, and Fig. 9(b) shows
that a likely explanation of this is the failure of higher partial
waves to fuse. This fit is obtained with the transmission Tl=14

reduced by a factor of 2 and all higher partial waves completely
removed from the cross section.

This assumption is not unreasonable, because in this region
of the compound nucleus spin I , the excitation energy of the
24Mg formed in the 12C + 12C reaction at the barrier height
corresponding to an angular momentum l = I , is not sufficient
for s-wave particle emission. That is,

Q + E barrier(l) ≡ E∗
barrier(I = l) < E yrast(I ) + Sx, (29)

where Q is the reaction Q value (13.93 MeV), Eyrast is the
yrast energy of 24Mg [36], and Sx is the appropriate particle
separation energy (where x ∈ neutron, Sn = 16.53 MeV;
proton, Sp = 11.69 MeV; or α particle, Sα = 9.31 MeV).
But, for l � 12 we find E∗

barrier(I = l) > Eyrast(I − 1) + Sα ,
permitting the emission of an L = 1 α particle. Similarly
for particle angular momentum L = 2, proton emission also
becomes possible. However, such emissions are inhibited by
the penetration of the corresponding centrifugal barriers as
well as the relevant Coulomb barriers, and thus competition
with fission will become important in the spin range above
I = 12.

In Fig. 10 we show potential model fits to the data with
different values of the surface diffuseness a. While a good
fit was obtained with a = 0.8 fm as shown in Fig. 9(b),
Figs. 10(a) and 10(b) show the best fits with slightly smaller
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FIG. 10. (Color online) Fits to the 12C + 12C cross section with
different potential parameters. The surface diffuseness a is con-
strained both by the magnitude of the smooth cross section and by the
presence of oscillations. Results with (a) a = 0.6 fm and B = 6.54
and (b) a = 0.9 fm and B = 6.06 MeV. The intermediate value of
a = 0.8 fm appears to be best (see Fig. 9).

and larger values, a = 0.6 and a = 0.9 fm, respectively. In
each case, the value of B is adjusted slightly to obtain the
best fit and a clear pattern emerges. If one decreases a, this
increases RB [Eq. (5)], which in turn increases the higher-E
cross section. This can be compensated by a slight increase
in the barrier height, which correspondingly decreases the
radius again. Thus there is a little “play” in the value of
the potential parameters but one cannot stray too far from
the “best” values without destroying the fit at either higher or
lower energies. Furthermore, the presence of the oscillations
provides an additional strong constraint. For the smaller a
value of 0.6 fm, the average cross section is fitted very well,
but the magnitude of the oscillations is strongly damped. For
the larger a value of 0.9 fm, the magnitude of the oscillations is
increased (possibly improved) but the smooth part of the cross
section starts to deviate. Thus we see that the data provide
strong physical constraints on the physical properties of the
nucleus-nucleus potential that are lost when the parameters
[B,RB,�ω] are regarded as independent variables. Thus while
the elegance and simplicity of the Wong cross section should
be recognized, so should its limitations.

So far we have discussed the fusion oscillations for the
12C + 12C system based on the single-channel potential model
calculations. In order to discuss the role of channel couplings,
Fig. 11(a) shows results of a coupled-channel calculation for
the 12C + 12C system. To this end, we include the rotational
coupling to the first 2+ state in both the projectile and the target
nuclei with the deformation parameter of β = −0.40 [39]
(with a radius parameter r0 = 1.06 fm). In order to remove
the potential renormalization due to the coupling [21,40,41],
we slightly adjust the depth parameter of the nuclear potential.
We use a modified version of CCFULL [11] to solve the coupled-
channel equations. The solid and dashed lines in Fig. 11
denote the results of the coupled-channel and single-channel
calculations, respectively. One can see that the main feature
of the fusion oscillations, including the peak energies and
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FIG. 11. (Color online) (a) Effect of channel coupling on the
fusion excitation function for the 12C + 12C system. The dashed line
is the same as the solid line in Fig. 9(b) obtained with the potential
model. The solid line, on the other hand, was obtained by including
the rotational coupling to the first 2+ state in both the projectile and the
target nuclei. The depth parameter of the nuclear potential is slightly
adjusted in order to remove the trivial barrier renormalization due to
the couplings. The penetrability Tl and its first derivative dTl/dE are
shown in the middle and the bottom panels, respectively, for l = 8,
10, and 12.

the phase of the oscillations, is not affected much by the
channel-coupling effects, and thus our discussion based on
the simple potential-model calculations remains valid.

This conclusion is due to the fact that the barrier distribu-
tions for nonzero l [4,17,21] still show almost a single-peaked
structure, as shown in Figs. 11(b) and 11(c). This originates
for the following two reasons. First, the excitation energy
of the 2+

1 state in 12C is relatively high (E2 = 4.44 MeV)
and thus the adiabatic approximation is good, leading to
the adiabatic-barrier renormalization [21,40,41]. Second, with
rotational coupling to an oblate nucleus, the lowest barrier,
which is relevant to the adiabatic-barrier renormalization,
carries most of the weight, as in the vibrational case. If 12C
had a prolate deformation, the lowest barrier would have the
smallest weight in the barrier distribution, and the fusion
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FIG. 12. (Color online) (a) Comparison between the experimen-
tal fusion excitation function and theoretical curves for the 12C + 13C
system. The dashed line was obtained with the Wong formula, while
the solid line shows a fit to the data using Eq. (19). Experimental data
were taken from Ref. [35]. (b) Same as (a), but using Eq. (23) and
α = −0.5.

oscillations would be much more affected by the couplings.
In that case, the oscillations are significantly damped, and
thus the data essentially determine the sign of the deformation
of 12C.

B. 12C + 13C fusion reaction

Let us next discuss the 12C + 13C systems, for which
the effect of elastic neutron transfer is expected to play
an important role. Based on the discussion in the previous
subsection, we use the potential model for our discussions.
Figure 12(a) shows the fusion cross section for this system
and its fit with the Wong formula (dashed line). Although the
oscillation is less prominent than for 12C + 12C, the fusion
cross section still shows significant oscillations and the Wong
formula does not account well for them. The solid line in
Fig. 12(a) shows a fit with Eq. (19). Although the magnitude
of the oscillatory structure is well reproduced, the oscillation
is out of phase with the experimental data. Figure 12(b) shows
a fit with Eq. (23) with α = −0.5. It is apparent that this
fit is better than the other two, and thus the experimental data
appear to determine the relative phase of the transfer and elastic
S-matrix elements.

Naturally, the sign of α is related to the sign of a parity-
dependent part of the optical potential. In fact, if one introduces
a parity-dependent barrier height, VE ± (−1)lV , it is easy to
show that the grazing angular momentum lg is given to first
order in V by

lg = l(0)
g ∓ (−1)l

VE

2

√
2mR2

E

(E − VE)�2
, (30)
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FIG. 13. (Color online) Fusion excitation function for 12C + 13C
obtained with a parity-dependent potential. The parity dependence is
introduced by replacing V0 with V0(1 + (−1)lε) in the exponential
potential VN (r) = V0e

−r/a , where V0 takes a negative value. The
solid and the dashed lines were obtained with ε = −0.15 and 0,
respectively. The angular momentum sum is truncated at l = 14 as
in Fig. 9(b).

where l(0)
g is the grazing angular momentum for V = 0. This

implies that α is given by

α = ∓(−1)l
VE

2

√
2mR2

E

(E − VE)�2
, (31)

indicating that α is positive (negative) if the barrier height for
even-partial waves is lower (higher) than that for odd-partial
waves. The negative sign of α for the 12C + 13C system
suggests that the barrier for this system is lower for odd-partial
waves. This is consistent with earlier findings in Refs. [25]
and [28]. In Fig. 13, we show fusion cross sections obtained
with a parity-dependent potential. The parity dependence is
introduced by using an energy-dependent depth parameter,
V0(1 + (−1)lε), in the exponential potential (here, V0 is
defined as taking a negative value). The solid line in the figure
indicates that the experimental data are well accounted for
with ε = −0.5, which indeed implies higher barriers for even
partial waves.

In contrast to 12C + 13C, the quantity α has been found
to be positive for the 12C + 16O system [24], and we note
that Baye [42] has proposed a simple rule for the sign of the
parity-dependent potential in terms of the mass number Acore

of the identical “cores” of the colliding nuclei and the parities
πi of the valence orbitals of the transferred nucleons. His rule
is based upon a microscopic resonating group method within
a two-center harmonic-oscillator shell model. Essentially the
barrier for even partial waves is deemed to be higher (or lower)
than that for odd partial waves if the quantity

− (−1)Acore
∏

i:valence

πi (32)

is positive (or negative). In both of our cases Acore is even. For
12C + 16O the number of valence particles is also even and this
expression is negative. For the 12C + 13C reaction we have a
single, odd-parity valence neutron (p1/2), and the expression is

positive. The sign of α determined from the fusion oscillations
is consistent with these results for both of our systems.

Note that the sign of the parity-dependent term, obtained
from a fit to the angular distribution of elastic scattering, shows
some ambiguity for several systems [43]. Fusion oscillations
may offer a direct and perhaps better way to determine the
sign. We note, however, that even though the negative value of
α fits the fusion oscillations well and is consistent with Baye’s
rule, a positive value appears more consistent with the data for
energies around 13 MeV (see Fig. 13). It would be interesting
to remeasure fusion cross sections in this energy region with
a higher precision in order to confirm whether there exists a
shift in phase of the oscillations as a function of the energy.

V. SUMMARY

The Wong formula has been widely used to estimate fusion
cross sections for a given single-channel potential as well as
to discuss the parameters which govern fusion. The formula is
useful in discussing, for example, the sub-barrier enhancement
of cross sections, providing reference cross sections in the
absence of channel couplings. For relatively heavy systems,
such as 16O + 144Sm, the formula indeed reproduces well
the exact result except for the deep sub-barrier region, where
the parabolic approximation itself breaks down. On the other
hand, for light systems, such as 12C + 12C, the Wong formula
tends to overestimate the cross section. In this paper, we
have extended the Wong formula by including the energy
dependence of the parameters entering the formula, that is,
the barrier height, barrier position, and barrier curvature.
Evaluating these parameters at the grazing angular momentum
for each energy, rather than at l = 0, we have shown that the
energy-dependent version of Wong’s formula reproduces the
exact result well, even for light systems.

The symmetrization of the system leads to a Wong cross
section possessing an oscillatory contribution, for which a
compact formula can be derived based on the parabolic
approximation. We have shown that the formula for the
oscillatory contribution can also be extended to the energy-
dependent version.

Fusion oscillations are most significant in light symmetric
systems with spin-0 nuclei. We have analyzed the experimental
data for the 12C + 12C system and have argued that the
fusion oscillations provide a strong constraint on the nuclear
potential employed in a calculation. We have also analyzed
the 12C + 13C system, in which elastic neutron transfer
again gives rise to oscillations. We have shown that these
oscillations are useful in determining the sign of the effective
parity-dependent potential arising from elastic transfer.

We have argued that fusion oscillations provide an im-
portant tool for studying properties of the nuclear potential,
strongly coupled channels at a high excitation energy, and
fission. This is especially true for the 12C + 12C system, which
plays an important role in several astrophysical phenomena and
thus has been recognized as one of the key reactions [44–46]
in that domain. Understanding both the smooth and the
oscillatory parts of the cross section above the barrier will
almost certainly be necessary to understand it in the important
astrophysical region well below the barrier.
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APPENDIX A: APPROXIMATE FORMULA FOR THE
ENERGY-DEPENDENT BARRIER POSITION

For the exponential potential of Eq. (3), the grazing angular
momentum lg is given by

E = −a Z1Z2e
2

R2
B

eδR/a + Z1Z2e
2

RE

+ lg(lg + 1)�2

2mR2
E

, (A1)

with δR = RB − RE , where RE is the position of the barrier
for l = lg [see Eq. (12)]. Because the first derivative of the
total potential is 0 at the barrier position, we also have

0 = Z1Z2e
2

R2
B

eδR/a − Z1Z2e
2

R2
E

− lg(lg + 1)�2

mR3
E

. (A2)

By combining these two equations, it can be shown that δR
satisfies

eδR/a = 1 + E−B + 1
2VCB[1 + δR/RB − (1−δR/RB )−1]

B − 1
2VCB(1 + δR/RB)

,

(A3)

where VCB is again the Coulomb potential at RB , the position
of the l = 0 barrier.

Inserting δR = 0 on the right-hand side of this equation,
one obtains

eδR/a = 1 + E − B

B − 1
2VCB

, (A4)

and from this first-order approximation to δR we obtain (cf.
Ref. [19])

RE = RB − a ln

(
1 + E − B

B − 1
2VCB

)
. (A5)

Equation (A3) can be easily iterated and rapidly converges to
the exact result for RE .

Figure 14(a) shows a comparison between the exact value
of RE (solid line) with those obtained at first order [Eq. (A5)]
and second order (dotted and dashed lines, respectively) for the
12C + 12C system. Figures 14(b) and 14(c) show VE and �ωE

used in the energy-dependent Wong formula, (14), evaluated
at the corresponding exact and approximate RE values. One
can see that the first-order formula given by Eq. (A5) works
well only at energies in the vicinity of the s-wave Coulomb
barrier, where δR is small. The second-order result already
leads to excellent results over the entire energy range shown,
and higher orders converge rapidly to the exact result.

APPENDIX B: DERIVATION OF
THE OSCILLATORY TERM

In this Appendix, we give a detailed derivation of Eqs. (16)
and (19). First, we note that the Hill-Wheeler formula for the
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FIG. 14. (Color online) (a) Exact and approximate barrier posi-
tions RE for the 12C + 12C system as a function of the incident energy
E. An exponential nuclear potential with the diffuseness parameter
a = 0.8 fm was used. The solid line shows the exact value obtained
with Eq. (A3), while the dotted and dashed lines were obtained from
Eq. (A5) at first and second order, respectively. (b) Same as (a), but
for the value of the s-wave potential at RE . (c) Same as (b), but for
the curvature of the barrier for the grazing angular momentum lg .

transmission,

T (E,λ) = 1

1 + exp
[

2π
�ω

(
B − E + λ2�2

2mR2

)] , (B1)

has poles at the complex angular momenta λ which satisfy

exp

[
2π

�ω

(
B − E + λ2

�
2

2mR2

)]
= −1 = ei(π+2nπ), (B2)

with n = 0, ± 1, ± 2, . . . To find the poles nearest to the
real axis with n = 0 and −1, we put λpole = λg + iλI , and
neglecting the second-order term in λI , we find from Eq. (B2)
that λg and λI satisfy

B − E + λ2
g�

2

2mR2
= 0 (B3)

and

λI ∼ ± �ω

2λg

· mR2

�2
. (B4)
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In the vicinity of the poles, the denominator of the right-hand
side of Eq. (B1) is given by

1 + exp

[
2π

�ω

(
B − E + λ2

�
2

2mR2

)]

∼ −2π

�ω
· λpole�

2

mR2
(λ − λpole), (B5)

where we have used Eq. (B2) to derive this equation.
We are now ready to evaluate the m = ±1 terms in the

Poisson summation formula, (15), by contour integration.
From the contour enclosing the upper right quadrant of the
complex plane, we may write the m = 1 term as

σ1 = −2π

k2

∫ ∞

0
λT (E,λ)e2πiλdλ, (B6)

= −2π

k2

[
−2πiλ

(+)
pole

�ω

2π

mR2

λ
(+)
pole�

2
e2πiλ

(+)
pole

−
∫ 0

∞
(iλ̃)T (E,iλ̃)e−2πλ̃(idλ̃)

]
, (B7)

where λ
(+)
pole takes the positive sign in Eq. (B4). Here, we neglect

the second term of this equation; as T is real and <1 on the
imaginary axis, the integral is real and <(2π )−2 and merely
gives a very small correction to the smooth part of the cross
section. So one finds

σ1 = i
2π�ω

k2

mR2

�2
e2πiλg e

−π �ω
λg

mR2

�2 . (B8)

Similarly for the m = −1 term we have

σ−1 = i
2π�ω

k2

mR2

�2
e−2πiλg e

−π �ω
λg

mR2

�2 . (B9)

Combining Eqs. (B8) and (B9) and using sin(2πλg) =
sin(2πlg + π ) = − sin(2πlg), one finally obtains Eq. (16).

With identical particles the fusion cross sections must be
symmetrized and are given by

σ = π

k2

∑
l

(2l + 1)Tl(E)(1 ± (−1)l) (B10)

= 2π

k2

m=∞∑
m=−∞

(−1)m
∫ ∞

0
λdλT (E,λ)e2πmiλ(1 ∓ ieiπλ),

(B11)

where the positive sign in Eq. (B10) relates to the spatially
symmetric case, and the negative sign to the spatially antisym-
metric case. The symmetrization is seen to lead to two terms,
m = 0 and m = −1, where the exponent is reduced by a factor
of 2. These terms now clearly dominate, and the fusion cross
sections are approximately given by

σ = 2π

k2

∫ ∞

0
λdλT (E,λ)(1 ∓ ieiπλ)

±2π

k2

∫ ∞

0
λdλT (E,λ)e−iπλ. (B12)

One can evaluate these integrals as above, and using
cos(πλg) = − sin(πlg), we obtain

σ = σWong ± σosc, (B13)

where the considerably enhanced oscillatory term is now given
by Eq. (19).

In the above proof, we have used energy-independent values
for B, R, and �ω for simplicity of notation. However, the
results are easily generalized to the energy-dependent case
when the above total cross section is given by Eqs. (14) and (19)
using VE , RE , and �ωE . (More generally these quantities
depend on the angular momentum rather than the energy; see
discussion in Sec. III).
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[37] I. Wiedenhöver et al., Phys. Rev. Lett. 87, 142502 (2001).
[38] S. M. Harris, Phys. Rev. 138, B509 (1965); ,Phys. Rev. Lett. 13,

663 (1964).
[39] M. Yasue et al., Nucl. Phys. A 394, 29 (1983).
[40] N. Takigawa, K. Hagino, M. Abe, and A. B. Balantekin,

Phys. Rev. C 49, 2630 (1994).
[41] K. Hagino, N. Takigawa, M. Dasgupta, D. J. Hinde, and J. R.

Leigh, Phys. Rev. Lett. 79, 2014 (1997).
[42] D. Baye, Nucl. Phys. A 460, 581 (1986).
[43] Y. Kondo, B. A. Robson, and R. Smith, Nucl. Phys. A 410, 289

(1983).
[44] T. Spillane et al., Phys. Rev. Lett. 98, 122501 (2007).
[45] M. Notani et al., Phys. Rev. C 85, 014607 (2012).
[46] C. L. Jiang et al., Phys. Rev. Lett. 110, 072701 (2013).

044617-13

http://dx.doi.org/10.1088/0954-3899/15/12/002
http://dx.doi.org/10.1088/0954-3899/15/12/002
http://dx.doi.org/10.1088/0954-3899/15/12/002
http://dx.doi.org/10.1088/0954-3899/15/12/002
http://dx.doi.org/10.1103/PhysRevC.67.054603
http://dx.doi.org/10.1103/PhysRevC.67.054603
http://dx.doi.org/10.1103/PhysRevC.67.054603
http://dx.doi.org/10.1103/PhysRevC.67.054603
http://dx.doi.org/10.1103/PhysRevC.76.044612
http://dx.doi.org/10.1103/PhysRevC.76.044612
http://dx.doi.org/10.1103/PhysRevC.76.044612
http://dx.doi.org/10.1103/PhysRevC.76.044612
http://dx.doi.org/10.1016/0375-9474(88)90475-7
http://dx.doi.org/10.1016/0375-9474(88)90475-7
http://dx.doi.org/10.1016/0375-9474(88)90475-7
http://dx.doi.org/10.1016/0375-9474(88)90475-7
http://dx.doi.org/10.1016/0375-9474(70)90646-9
http://dx.doi.org/10.1016/0375-9474(70)90646-9
http://dx.doi.org/10.1016/0375-9474(70)90646-9
http://dx.doi.org/10.1016/0375-9474(70)90646-9
http://dx.doi.org/10.1016/0370-1573(75)90054-X
http://dx.doi.org/10.1016/0370-1573(75)90054-X
http://dx.doi.org/10.1016/0370-1573(75)90054-X
http://dx.doi.org/10.1016/0370-1573(75)90054-X
http://dx.doi.org/10.1103/PhysRevC.35.367
http://dx.doi.org/10.1103/PhysRevC.35.367
http://dx.doi.org/10.1103/PhysRevC.35.367
http://dx.doi.org/10.1103/PhysRevC.35.367
http://dx.doi.org/10.1016/0375-9474(86)90288-5
http://dx.doi.org/10.1016/0375-9474(86)90288-5
http://dx.doi.org/10.1016/0375-9474(86)90288-5
http://dx.doi.org/10.1016/0375-9474(86)90288-5
http://dx.doi.org/10.1016/0375-9474(95)00186-5
http://dx.doi.org/10.1016/0375-9474(95)00186-5
http://dx.doi.org/10.1016/0375-9474(95)00186-5
http://dx.doi.org/10.1016/0375-9474(95)00186-5
http://dx.doi.org/10.1103/PhysRevC.41.1005
http://dx.doi.org/10.1103/PhysRevC.41.1005
http://dx.doi.org/10.1103/PhysRevC.41.1005
http://dx.doi.org/10.1103/PhysRevC.41.1005
http://dx.doi.org/10.1103/PhysRevC.25.1877
http://dx.doi.org/10.1103/PhysRevC.25.1877
http://dx.doi.org/10.1103/PhysRevC.25.1877
http://dx.doi.org/10.1103/PhysRevC.25.1877
http://dx.doi.org/10.1103/PhysRevC.33.176
http://dx.doi.org/10.1103/PhysRevC.33.176
http://dx.doi.org/10.1103/PhysRevC.33.176
http://dx.doi.org/10.1103/PhysRevC.33.176
http://dx.doi.org/10.1103/PhysRevC.33.1961
http://dx.doi.org/10.1103/PhysRevC.33.1961
http://dx.doi.org/10.1103/PhysRevC.33.1961
http://dx.doi.org/10.1103/PhysRevC.33.1961
http://dx.doi.org/10.1051/epjconf/20146603082
http://dx.doi.org/10.1051/epjconf/20146603082
http://dx.doi.org/10.1051/epjconf/20146603082
http://dx.doi.org/10.1051/epjconf/20146603082
http://dx.doi.org/10.1103/PhysRevC.20.1305
http://dx.doi.org/10.1103/PhysRevC.20.1305
http://dx.doi.org/10.1103/PhysRevC.20.1305
http://dx.doi.org/10.1103/PhysRevC.20.1305
http://dx.doi.org/10.1103/PhysRevLett.87.142502
http://dx.doi.org/10.1103/PhysRevLett.87.142502
http://dx.doi.org/10.1103/PhysRevLett.87.142502
http://dx.doi.org/10.1103/PhysRevLett.87.142502
http://dx.doi.org/10.1103/PhysRev.138.B509
http://dx.doi.org/10.1103/PhysRev.138.B509
http://dx.doi.org/10.1103/PhysRev.138.B509
http://dx.doi.org/10.1103/PhysRev.138.B509
http://dx.doi.org/10.1103/PhysRevLett.13.663
http://dx.doi.org/10.1103/PhysRevLett.13.663
http://dx.doi.org/10.1103/PhysRevLett.13.663
http://dx.doi.org/10.1103/PhysRevLett.13.663
http://dx.doi.org/10.1016/0375-9474(83)90159-8
http://dx.doi.org/10.1016/0375-9474(83)90159-8
http://dx.doi.org/10.1016/0375-9474(83)90159-8
http://dx.doi.org/10.1016/0375-9474(83)90159-8
http://dx.doi.org/10.1103/PhysRevC.49.2630
http://dx.doi.org/10.1103/PhysRevC.49.2630
http://dx.doi.org/10.1103/PhysRevC.49.2630
http://dx.doi.org/10.1103/PhysRevC.49.2630
http://dx.doi.org/10.1103/PhysRevLett.79.2014
http://dx.doi.org/10.1103/PhysRevLett.79.2014
http://dx.doi.org/10.1103/PhysRevLett.79.2014
http://dx.doi.org/10.1103/PhysRevLett.79.2014
http://dx.doi.org/10.1016/0375-9474(86)90429-X
http://dx.doi.org/10.1016/0375-9474(86)90429-X
http://dx.doi.org/10.1016/0375-9474(86)90429-X
http://dx.doi.org/10.1016/0375-9474(86)90429-X
http://dx.doi.org/10.1016/0375-9474(83)90203-8
http://dx.doi.org/10.1016/0375-9474(83)90203-8
http://dx.doi.org/10.1016/0375-9474(83)90203-8
http://dx.doi.org/10.1016/0375-9474(83)90203-8
http://dx.doi.org/10.1103/PhysRevLett.98.122501
http://dx.doi.org/10.1103/PhysRevLett.98.122501
http://dx.doi.org/10.1103/PhysRevLett.98.122501
http://dx.doi.org/10.1103/PhysRevLett.98.122501
http://dx.doi.org/10.1103/PhysRevC.85.014607
http://dx.doi.org/10.1103/PhysRevC.85.014607
http://dx.doi.org/10.1103/PhysRevC.85.014607
http://dx.doi.org/10.1103/PhysRevC.85.014607
http://dx.doi.org/10.1103/PhysRevLett.110.072701
http://dx.doi.org/10.1103/PhysRevLett.110.072701
http://dx.doi.org/10.1103/PhysRevLett.110.072701
http://dx.doi.org/10.1103/PhysRevLett.110.072701



