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Analysis of elastic, quasielastic, and inelastic scattering of lithium isotopes on a 28Si target
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The elastic and inelastic cross sections of 6Li on 28Si at 240 MeV, and quasielastic cross section of 7Li and
11Li on 28Si at 177.8 and 319 MeV, respectively, are analyzed with the coupled-channels method. The collective
nuclear level density is used to determine the deformation parameter regarding to the first-excited state of 28Si.
The results are in agreement with the experimental data and indicate the need of using a nuclear structure model
such as nuclear level density to reduce the ambiguity between the optical model parameters and the deformation
parameter. Additionally, the spin-orbit potential is found to have an important role in reproducing the data of the
quasielastic scattering of 7Li and 11Li on a 28Si target.
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I. INTRODUCTION

The lightest metal, lithium, has always been of interest for
both experimental and theoretical nuclear physicists with its
weakly bound isotopes. Since 6Li and 7Li have 1.47 MeV
and 2.46 MeV deuteron and triton separation energies,
respectively, they have been considered as binary clusters.
Thus, the breakup and transfer mechanisms for these isotopes
are of crucial importance [1,2]. 6Li is also subject of many
studies aiming to build a bridge between the elastic scattering
of light and heavy ions because it is the lightest heavy-
ion projectile [3]. The measurements of elastic scattering
angular distributions of 6Li and 7Li have been performed
for more than fifty years [3–13]. Especially for 6Li, there are
enough data even for investigation of the mass number and
energy dependence of the optical model parameters [14–16].
However, for 7Li, the corresponding experimental data are
very scarce [2,4,13,17–19]. Additionally, unexpected energy
dependence of the optical model parameters around the
Coulomb barrier; namely, threshold anomaly, have been also
widely studied for 6Li and 7Li [2,11,19–21].

On the other hand, light exotic nuclei such as 11Li around
the neutron and proton driplines have some phenomenal
characteristic properties such as high root-mean-square (rms)
values, low nuclear matter densities, low binding energies, etc.
After the 1980s, for studying these nuclei, an opportunity has
arisen with the use of radioactive ion beams (RIBs) [22,23].
Then, it was shown that some of these nuclei consist of a hard
core and weakly bound neutron(s) or proton(s), which are
called a halo structure. 11Li is the one of the two well-known
neutron halo nuclei with its two-neutron separation energy
of 0.363 MeV. Moreover, since 10Li and 2n binary systems
are unbound, 11Li has a three-body structure known as
Borromean. With all these extraordinary properties, the halo
nucleus 11Li has become an interesting subject of nuclear
physics and the number of both theoretical and experimental
studies about it has been drastically increased [18,24–27]. With
these experimental studies, a huge experimental database has
been built, which includes many unexplained data still waiting
to reproduce theoretically.
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Weakly-bound-nuclei-induced reactions on light-mass
targets, such as 12C, 16O, 24Mg, 27Al, and 28Si, are well-
established tools to investigate the nuclear breakup ef-
fects [1,2,13,21,28,29]. Thus, as a first step, elastic scattering
of these nuclei should be described precisely. However, since
a weakly bound nucleus has too many low-|Q| reaction
channels, the energy resolution of the detectors is usually not
enough to separate inelastic contributions for obtaining pure
elastic cross sections. Therefore, describing the elastic scatter-
ing of a weakly bound nucleus is more challenging compared
to that of a stable nucleus. This type of cross sections (including
some inelastic contributions) are known as quasielastic and can
be calculated by using the coupled-channels (CC) method.
With this method the inelastic scattering to the low-lying
collective states of the projectile or target can be described by
means of the corresponding deformation parameters. When
pure elastic- and inelastic-cross-section data exist separately,
the optical-potential parameters are adjusted to the pure
elastic data and then the deformation parameter is adjusted to
accurately reproduce the inelastic data. But, for the quasielastic
data, there is an ambiguity in determining the optical potential
and the deformation parameters simultaneously. Thus, the
value of the deformation parameter should be determined
from a nuclear structure model. Recently, we proposed a new
method, which gives the deformation parameter values from
the energy of the excited states by using the collective nuclear
level density [30].

In the light of the above considerations, in this paper, we
aim to analyze the elastic, quasielastic, and inelastic scattering
cross sections of the lithium isotopes 6Li, 7Li, and 11Li
on a 28Si target. 28Si is selected because the cross-section
data are available for most of the lithium isotopes. For this
purpose, we perform CC calculations to take into account the
inelastic contributions by using the deformation parameter of
the first-excited state of 28Si, which is predicted by using the
collective nuclear level density [30]. We worked out these
calculations in two steps. First, we test our prediction for the
deformation parameter of 28Si in the inelastic scattering of
6Li on a 28Si target at 240 MeV, whose elastic and inelastic
cross sections were measured by Chen et al. [12]. Next, we use
the same value of the deformation parameter in analyzing the
quasielastic scattering of 7Li and 11Li on a 28Si target at 177.8
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and 319 MeV, respectively, both measured by Lewitowicz
et al. [18].

The elastic and inelastic data presented by Chen et al. [12]
are relatively new and have not yet been extensively inves-
tigated. The first analysis was performed by Chen et al.
themselves [12] by using the optical model with a phenomeno-
logical Woods–Saxon potential and the folding model with
M3Y and JLM effective nucleon-nucleon interactions. The
same group also tested a systematic optical potential in another
paper [31] to describe the elastic scattering of 6Li on targets
24 � A � 90 at 240 MeV. Finally, Kim et al. [32] used the
eikonal model to analyze these data. However, these studies
aimed to reproduce the elastic-scattering cross section without
any additional effort to describe the inelastic scattering. This
study, however, focuses on analyzing the inelastic scattering
of 6Li on 28Si at 240 MeV.

Lewitowicz et al. [18] measured the quasielastic scattering
of 7Li and 11Li on a 28Si target at 178 and 319 MeV,
respectively. They analyzed their data by CC calculations by
using the phenomenological Woods–Saxon potential and also
the folding potential with the M3Y effective nucleon-nucleon
interaction. It is mentioned in Ref. [18] that only the 2+
state of 28Si is included in the analyses because it was found
that the contribution of higher states is at least one order of
magnitude smaller than that of the 2+ state and therefore can be
neglected [9]. However, a strong modification of the optical-
potential parameters or a large renormalization of the folding
potential is needed to reproduce the data. In the following
years, many different approaches were proposed to explain
these data. One of them was performed by Al-Khalili [29].
He studied the breakup effects on the elastic scattering of
11Li from 28Si by using a four-body Glauber model but
was not able to reproduce the cross-section data. A better,
but still unsatisfactory, agreement is obtained by Cooper and
Mackintosh [33] with a two-step phenomenology, in which
S(l) is adjusted to data and V (r) is produced by inversion
of S(l). In an another attempt to describe this quasielastic
scattering, Fayans et al. [34] used a folding potential based on
the M3Y effective nucleon-nucleon interaction. However, they
could not reproduce the oscillation of the experimental values.
Carstoiu and Lassaut [35] tried to find a consistent description
for the scattering of both 6Li and 11Li on 12C and 28Si
targets. They used the M3Y and JLM interactions in the folding
model and succeeded to reproduce the 12C data but sufficient
agreement was not achieved for 28Si. A similar agreement was
also obtained by Rashdan [36] within relativistic mean-field
theory. Furthermore, a fitted polarization potential together
with the folding model was tried by Pacheco and Vinh
Mau [37], but it was not able to reproduce the data. Finally,
Un et al. [38] showed that modifying the shape of the both
the real and imaginary potentials in the surface region leads
to an improvement in the agreement between the predictions
and the data. However, it still remains a great challenge to
describe the quasielastic scattering of 11Li on 28Si and it
seems that the only possible way to solve this problem is
to strengthen the connection between the reaction and the
structure.

This paper is organized as follows: In Sec. II, we briefly
outline the methods used in our calculations. In Sec. III, we

present our results and their implications. Finally in Sec. IV,
we give some concluding remarks.

II. THEORY

A. Optical model and coupled-channels method

Describing the interaction between the projectile and target
is a complicated problem that has not yet been solved. One
way to overcome this many-body problem is to use the optical
model. The optical model defines the interaction by an effective
potential that consists of some potentials terms such as the
volume term
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(
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a spin-orbit term
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where (�/mπc)2 = 2 fm2, and a Coulomb term
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under the uniformly-charged-sphere assumption. The radius
parameters are defined as

Ri = ri

(
A

1/3
P + A

1/3
T

)
, (5)

where P , T , and i indicate the projectile, target, and the type
of the potential, respectively. Elastic-scattering data are used
to determine the optical model parameters Vi , Wi , ri , and ai

by minimizing a χ2 function, which is defined as

χ2 =
N∑

i=1

[
σtheor (θi) − σexpt (θi)

�σexpt (θi)

]2

, (6)

for N data points at angles θi . σ (θi) corresponds to predicted
and experimental cross sections and its error.

To calculate the quasielastic or inelastic cross section, the
coupled-channels method is the most widely used and a very
well tested extension of the optical model. With this method,
one can describe the collective inelastic excitations of the target
or projectile by deforming the optical potential. To define
the deformed surface of a nucleus, which causes a rotational
excitation, spherical harmonics YM

L (θ,φ) can be used as

R (θ,φ) = R0 +
∑
L,M

δL,MYM
L (θ,φ) , (7)
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where θ and φ are the polar angles, R0 is the average surface
radius, and δL,M are the deformation lengths. The L = 0
and L = 1 cases do not have any contribution, therefore,
the sum starts from L = 2, which corresponds to quadrupole
deformations. Additionally, for an axially deformed nucleus,
only M = 0 is taken into account. Therefore, the deformed
optical potential is given by

U (r,θ,φ) = U (r) −
∑
L=2

δLY 0
L (θ,φ)

dU (r)

dr
, (8)

where U (r) is the effective potential, which is defined as

U (r) = VVol (r) + VSur (r) + Vso (r) + Vc (r) . (9)

Deformation lengths can be expressed as

δL = βLR0 (10)

in terms of the deformation parameters βL. The values of the
deformation parameter can be determined from the inelastic-
scattering data when they exist separately. However, for
describing the quasielastic data, there would be an ambiguity
between the optical model parameters and the deformation
parameter. Therefore, the most reliable way to determine the
deformation parameter would be to obtain its value from a
nuclear structure model. Such a model is presented in the
following section.

B. Nuclear level density

The need of a nuclear structure model to obtain the value of
the deformation parameter to use in coupled-channels method
is especially revealed in the lack of inelastic-scattering data.
Therefore, the structure model to be used in calculations should
be able to fix the value of the deformation parameter from a
structural feature of the nucleus, which could exist for any
nuclei. The energy of excited levels Ei can be considered as
the most fundamental among them and can be related with the
number of excited levels as

1,2,3, . . . =
∫ E1,2,3,...

0
ρ tot (U,a) dU, (11)

where ρ tot is the total nuclear level density as a function of
excitation energy U and the level density parameter a. Nuclear
level density (NLD) is defined as the number of excited levels
around an excitation energy and is given as

ρ tot (U,a) = 1

12
√

2σ

exp[2
√

aU ]

a1/4U 5/4
, (12)

according to the well-known Fermi gas model [40]. σ 2 =
T I/�

2 is known as the spin cutoff parameter and is defined in
terms of the nuclear temperature T = √

U/a and the moment
of inertia I . The dependence of NLD on the deformation
parameter is provided by the Laplace-like formula of the level
density parameter [30]

a (U,β) = ã

(
1 + Ac (β)

Sn

U

exp
(−|U − E0|/σ ′3

c

)
σ ′3c

)
,

(13)

where Sn is the neutron separation energy and E0 = 0.2�ω
is the first-phonon-state energy [41]. The scale parameter
σ ′3c = σ 3

c /ã is related with the spin cutoff parameter at a
critical temperature Tc = √

Sn/ã. The collective amplitude Ac

introduces the shape (and thus the deformation) dependency
to the level density parameter and is given as follows:

Ac = [Mexpt (N,Z) − MLDM (N,Z,β)]
τc

sinh τc

, (14)

where τc = 2π2Tc/�ω. Mexpt is the experimental mass of the
nucleus and MLDM is the calculated mass of the deformed
nucleus with the finite-range liquid-drop model [42],

MLDM (N,Z,β) = M0 + E

(
α

α0

)2

, (15)

where M0 is the calculated mass of the spherical nucleus
having the same N and Z with the deformed nucleus. The
ratio α/α0 is the deformation magnitude and is given in terms
of the deformation parameter as α2 = (5/4π )β2 (see details of
LDM in Ref. [42]). Furthermore, the asymptotic level density
parameter ã can also be calculated by taking into account
the deformation of the nucleus [43]. However, in this study
we employ the following definition using the shell correction
S(N,Z) = Mexpt(N,Z) − MLDM(N,Z,β = 0) and the pairing
correction � = ±12/

√
A:

ã = π2

6

∑
i=p,n

gi

[
Ei

F + S (N,Z) − �
]
, (16)

where g is the single-particle level density and EF is the Fermi
energy [30].

III. RESULTS AND DISCUSSION

In the calculation of the elastic, quasielastic and inelastic
cross sections of lithium isotopes on a 28Si target, we use the
optical model parameters and the deformation parameter of the
first-excited state of 28Si. It is predicted as −0.362 by inverting
the relation (11) between the excitation energy and the cumula-
tive number of excited levels up to this energy. Following such
a method also gives us the energy of the first-excited state as
a function of deformation parameter, which is given in Fig. 1.
The energy of the first-excited state of 28Si is increasing with
the deformation parameter. The value of −0.362 is fixed by
using 1.78 MeV for the experimental value of the first-excited
state. It is already shown that 28Si is a well-deformed nucleus
with electron-scattering experiments [44], and our prediction
is in agreement with the previous estimations performed with
the coupled-channels method [8,45,46]. This value is also
consistent with the ground-state deformation of 28Si given in
RIPL-3 mass tables [47]. Our prediction for the deformation
parameter is about 10% smaller than the values obtained from
the measured quadrupole moment [48] and reduced electric
quadrupole transition probability [49]. This difference could
be due to the larger values of the deformation parameter is for
the electromagnetic transition, while our prediction applies to
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FIG. 1. (Color online) The energy of the first-excited state of 28Si
as a function of deformation parameter.

the isoscalar excitation. However, there are some other studies
suggesting a larger deformation parameter [50].

The most straightforward way to test our prediction on
the deformation parameter is to use it in a coupled-channels
analysis. First, we choose the scattering of 6Li on 28Si at
240 MeV because there exist both elastic- and inelastic-cross-
section data for this system [12]. Therefore, there would
be no ambiguity between the optical model parameters and
the deformation parameter. We use the same optical model
parameters as those given in Ref. [12] without any further
adjustments, which provides a sensitive test for our prediction.
This optical model potential could also simulate the continuum
breakup effects in the elastic scattering of 6Li, which are shown
to be very important with a recent continuum-discretized
coupled-channels (CDCC) analysis [51]. The calculation of
elastic and inelastic cross sections for 6Li + 28Si at 240 MeV
are performed with FRESCO [52] using the optical model
parameters given in Table I. The results are shown in Fig. 2. It
is seen from the lower panel of the figure that the deformation
parameter obtained by using our collective nuclear level
density formulation [30] describes the inelastic-cross-section
data very well. Therefore, this promising result leads us to
use our prediction in a more challenging problem, which has
remained unexplained so far [18].

Next, a coupled-channels analysis of the quasielastic
scattering of 7Li on 28Si is performed. In order to present a
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FIG. 2. (Color online) Angular distribution of the elastic (upper
panel) and inelastic (lower panel) cross section for 6Li + 28Si
scattering at 240 MeV. The experimental data are taken from Chen
et al. [12].

consistent analysis and minimize the uncertainties arising from
the optical model parameters, we define 7Li as a two-body
system consisting of a valence neutron coupled to 6Li core.
Since the experimental data were measured at 177.8 MeV,
we need the optical model parameters for n + 28Si elastic
scattering at 25.4 MeV. Moreover, we still need to slightly
modify the optical model parameters of 6Li + 28Si system.
There is not any measurement of the elastic scattering of
n on a 28Si target at 25.4 MeV, which can be used to
determine the optical model parameters. Therefore, we rely
on a global optical potential [39]. We test the validation of this
global potential by performing calculations at 15.4, 18.9 and
21.7 MeV for which the experimental data exist [53,54]. The
results are shown in Fig. 3. It seems that the global optical
potential of Koning and Delaroche [39] is very reliable to
describe the elastic scattering of n on a 28Si target at the
considered energy range. Therefore, we employ the optical
model parameters obtained from this global parametrization
and only modify the real and imaginary depths of 6Li + 28Si
potential to 143.4 and 35.60 MeV, respectively. The results
are shown in Fig. 4 with the blue solid line. The gray dotted
line represents the coupled-channels calculation with the

TABLE I. Optical model parameters for given interactions. The Coulomb radius parameter rc is taken as 1.20 fm for all interactions.

Potential Type Vi MeV ri fm ai fm Wi MeV ri fm ai fm

6Li + 28Si [12] Volume 143.34 0.720 0.937 32.13 1.004 0.921
n + 28Si [39] Volume 44.67 1.170 0.668 2.58 1.170 0.668

Surface 5.57 1.294 0.540
Spin-orbit 5.15 1.000 0.580 0.17 1.000 0.580

7Li + 28Si Volume 138.50 0.587 0.790 32.04 1.106 0.884
Spin-orbit 5.036 0.587 0.790 0.783 1.106 0.884

11Li + 28Si Volume 143.34 0.838 0.937 32.13 1.004 0.876
Spin-orbit 2.002 0.838 0.937 0.581 1.004 0.876
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FIG. 3. (Color online) Angular distribution of the elastic cross
section for n + 28Si scattering at 15.4, 18.9, 21.7, and 25.4 MeV
compared with the experimental data [53,54].

double-folding model using the DDM3Y interaction, which is
performed by Lewitowicz et al. themselves [18]. As seen from
figure, both our two-body model of 7Li and the double-folding
model are far from reproducing the quasielastic-scattering
data. Therefore, we expand our investigation to include the
search of optical model parameters. We use the potential of
6Li + 28Si as the initial set of parameters and continue to
modify until the minimum χ2 is reached. However, modifying
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σ R

θc.m. (deg)

FIG. 4. (Color online) Angular distribution of the quasielastic
cross section for 7Li + 28Si scattering at 177.8 MeV. The experi-
mental data are taken from Lewitowicz et al. [18].

only the volume potential is not sufficient to describe the
quasielastic data, but a small spin-orbit potential with the
same geometry improves the fit very significantly. The fitted
optical potential parameters are given in Table I and the cross
section results using these parameters are shown with the red
solid line in Fig. 4. Our coupled-channels calculation with
an optical model potential including volume and spin-orbit
terms combined with our deformation-parameter prediction
for inelastic contributions seems to be much better compared
with other approaches.

Finally, the quasielastic scattering of 11Li on a 28Si target
at 319 MeV is investigated. Although it is highly desired
to define 11Li with a three-body model consisting of two
valence neutrons and a 9Li core, there are no experimental
data for 9Li + 28Si elastic scattering. Therefore, the interaction
potential between 9Li and 28Si could not be deduced. Con-
sidering that almost all possible methods have already been
applied [18,29,33–38] to this problem, we try to reproduce
these data by using the coupled-channels method with the
predicted deformation parameter of 28Si and an optical model
potential including volume and spin-orbit terms, similar to
7Li. The corresponding optical model parameters are given in
Table I and the results are displayed in Fig. 5. The red solid line
and the gray dotted line represent our results and the results
taken from Ref. [38], respectively. The results of Ref. [38] are
selected for comparison because of their good agreement with
the experimental data. It seems that our calculation also agrees
quite well with the experimental data, especially for a simple
optical model potential.
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FIG. 5. (Color online) Angular distribution of the quasielastic
cross section for 11Li + 28Si scattering at 319 MeV. The experimental
data are taken from Lewitowicz et al. [18].
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IV. CONCLUSIONS

In summary, we analyzed the elastic-, inelastic-, and
quasielastic-scattering cross-section data of the projectiles
6Li, 7Li, and 11Li on a 28Si target at 240 MeV [12],
177.8 MeV [18], and 319 MeV [18], respectively, by using
the coupled-channels method. For the inelastic contributions,
the deformation parameter of the first-excited state of 28Si is
obtained by using the recently proposed collective nuclear
level density formulation [30]. The following concluding
remarks can be drawn from this study:

(i) The nuclear level density is used to determine the
deformation parameter of an excited state to be used
in coupled-channels method.

(ii) The predicted deformation parameter for the first-
excited state of 28Si is in agreement with the previous
studies [8,45–47]. It is also tested in the inelastic-
scattering cross section calculation of 6Li on 28Si at
240 MeV for comparison with experimental data [12]
and is proven to be accurate.

(iii) The same value of the deformation parameter obtained
from our NLD formulation is used in the analysis of
the quasielastic-cross-section data [18] of 7Li and
11Li on 28Si to obtain the optical model parameter
sets. These results suggest that the spin-orbit potential
has a very crucial role to reproduce the data.
Therefore, to strengthen the connection between the
nuclear structure and reaction calculations reduces the
ambiguity between the optical model parameters and
the deformation parameter and thus may help signif-
icantly to solve some challenging reaction problems.

(iv) Finally, our collective nuclear level density formula-
tion [30] could be considered as a reliable and useful
tool to determine the deformation parameter to be used
in a coupled-channels analysis.
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