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We have measured the fission probabilities of 242Am, 243Cm, and 244Cm induced by the transfer reactions
243Am(3He,4He), 243Am(3He,t), and 243Am(3He,d), respectively. The details of the experimental procedure and
a rigorous uncertainty analysis, including a correlation matrix, are presented. For 243Cm our data show clear
structures well below the fission threshold. To our knowledge, it is the first time that these structures have been
observed for this nucleus. We have compared the measured fission probabilities to calculations based on the
statistical model to obtain information on the fission barriers of the produced fissioning nuclei.
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I. INTRODUCTION

Fission probabilities are highly sensitive to fission-barrier
properties and level densities at different deformations and
provide valuable information on these fundamental nuclear
quantities. Transfer reactions with light projectiles have often
been used in the past to induce fission, see, e.g., Refs. [1–6].
The fission probabilities obtained in these measurements were
frequently used to investigate the fission thresholds below
the neutron separation energy (Sn) of even-even fissioning
nuclei, which are not accessible in neutron-induced reactions,
e.g., Ref. [7]. These studies were crucial for understanding
the origin of the sub-barrier resonances observed in the
fission probabilities [8]. These resonances arise from the
coupling of the compound nuclear states in the first well to
collective vibrations in the fission degree of freedom in the
second potential well. The comparison of experimental fission
probabilities with statistical model calculations [9] provided
also indirect but compelling evidence that the first fission
barrier is axially asymmetric for most of the actinide region,
as predicted by theoretical calculations of the potential energy
surface [10]. In addition, measurements of fission probabilities
combined with fission-fragment angular distributions yield
information on the properties of the transition states at the
two saddle points through which the nucleus may pass on its
way to fission [11–14].

Another important advantage of transfer-induced fission is
that it may enable the formation of very short-lived fissionable
nuclei that cannot be produced in neutron-induced reactions
because of the high radioactivity of the required targets. Britt
and Cramer observed that fission probabilities obtained in
transfer reactions were similar to fission probabilities deduced
from neutron-induced measurements [15]. This led to the
development of the surrogate-reaction method [16], an indirect
technique to infer neutron-induced cross sections for unstable
nuclei. In most applications of the surrogate method, the
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neutron-induced cross section is obtained by multiplying
the measured decay probability with the calculated cross
section for the formation of a compound nucleus via neutron
absorption. This technique has recently received renewed
attention and considerable effort has been made from both the
experimental and theoretical sides to establish to which extent
the surrogate method can be used to infer neutron-induced
cross sections [17]. The spin J and parity π distributions
populated in the neutron-induced and surrogate reactions can
differ substantially. The impact of this spin-parity mismatch
on the different types of cross sections that can be obtained
with the surrogate-reaction method is an important subject that
requires further experimental and theoretical investigations.

In Ref. [18] we used the 243Am(3He,4Hef )242Am,
243Am(3He,tf )243Cm and 243Am(3He,df )244Cm transfer re-
actions as surrogate reactions for the 241Am(n,f ), 242Cm(n,f ),
and 243Cm(n,f ) reactions, respectively. Our results are in
very good agreement with the neutron-induced data, even at
relatively low excitation energy. In the present work we give
the details of the experimental setup and the data analysis
procedure employed to derive the fission probabilities used
in Ref. [18]. The transfer reactions considered here have
already been studied by Gavron et al. [9]. However, our
measurements cover a broader range of excitation energies
and we have carried out a thorough uncertainty analysis of
the fission probabilities, paying special attention to parameter
correlations and their effect on the final data uncertainties.
In the last part of this work we compare our results to
simplified statistical-model calculations to extract fission
barrier parameters.

II. EXPERIMENT AND DATA ANALYSIS

When fission of a nucleus A is induced by a transfer reaction
X(y,b)A, the fission probability Pf as a function of excitation
energy E∗ can be obtained as:

P A
f (E∗) = Nb

coinc(E∗)

Nb
sing(E∗)εf (E∗)

, (1)

where Nb
sing is the total number of detected ejectiles b, Nb

coinc
is the number of ejectiles b detected in coincidence with a
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fission fragment, and εf is the fission-detection efficiency. In
the absence of parasitic transfer reactions with the same ejectile
b, the quantity Nb

coinc/εf gives the number of compound nuclei
A that have undergone fission amongst the number of formed
compound nuclei Nb

sing.
In a recent work [19], where fission was induced via

multinucleon transfer between 12C and 238U, a non-negligible
probability of exciting the carbon-like ejectiles was observed
that questioned the commonly used assumption that the excita-
tion energy available in the transfer reaction is found only in the
heavy reaction partner. In this work, we deal with 3He-induced

transfer reactions where the ejectile can be a deuteron, a triton,
or an α particle, and the maximum total available excitation
energy is essentially below 20 MeV. Deuterons and tritons
have no bound excited states and will break up if excited,
while the first excited state of 4He is located at 20.2 MeV.
Therefore, all the detected ejectiles are in their ground state
and all the excitation energy available in the reaction can safely
be attributed to the fissioning nucleus A. The excitation energy
can then be unambiguously determined from the measured
kinetic energy Eb and emission angle θ of the ejectile, by
applying energy and momentum conservation laws:

E∗ = MAQ − Ey(My − MA) − Eb(MA + Mb) + 2
√

MyMbEyEb cos θ

MA

, (2)

where the different Mi represent the masses of the nuclei
involved in the reaction, Q is the Q value of the transfer
reaction, and Ey is the beam energy. Tritons and 3He break
up at excitation energies of 6.2 and 5.5 MeV, respectively.
In principle, the deuterons that result from the breakup may
pollute the (3He,d) reaction. However, in the work by Gavron
et al. [9] the fission probabilities of various nuclei formed both
via (3He,d) and (3He,t) reactions were compared and found to
be in good agreement, thus demonstrating that contamination
due to 3He or triton breakup can be disregarded. For these
measurements, Gavron et al. used a beam energy of 25 MeV
and a particle telescope placed at 120°. Therefore, to avoid the
possible background generated by 3He or triton breakup, we
have used in our measurement experimental conditions similar
to Gavron et al.

The measurement was conducted at the Tandem accelerator
of the IPN Orsay that delivered a 3He beam of 24 MeV with an
intensity of about 50 nAe. The 243Am (T1/2 = 7370 y) target,
of approximately 150 μg/cm2 thickness, 99.85% (± 0.01%)
isotopic purity, and 6 mm diameter, was prepared by elec-
trodeposition by the Argonne National Laboratory. The 243Am

FIG. 1. (Color online) Schematic three-dimensional representa-
tion of the setup for fission probability measurements.

layer was deposited on a 75 μg/cm2 natural carbon backing.
The setup used to determine the fission probabilities is shown
in Fig. 1. Ejectiles were detected by two telescopes placed at
5 cm from the target and centered at 130° with respect to the
beam axis. The telescopes had an aperture of 7 mm diameter
leading to an angular uncertainty �θ of ± 4°. The energy-loss
�E was measured with a 150-µm-thick Si detector and the
residual energy E with a Si-Li detector of 5 mm thickness.
An Al foil of 29 µm was placed in front of the telescopes
to stop fission fragments and α particles coming from the
activity of the 243Am target. Fission fragments were detected
in coincidence with the ejectiles with a fission-fragment
multidetector, consisting of 15 photovoltaic cells arranged in
5 units in a cylindrical geometry. Each unit was composed of
3 cells placed in a vertical row. For each unit, the center of
the middle cell was in the horizontal reaction plane defined
by the beam. Four units were located in forward direction
covering an angular range from 14° to 125°. The fifth unit
was positioned at 180° from the foremost unit. Each cell
had an active area of 19.8 × 40.2 mm2. The radius of the
cylinder supporting the cells was 5 cm. The beam was stopped
in a Faraday cup connected to an integrator to measure the
deposited charge. The amplified signals of the telescopes and
the fission detectors were digitized with an analog-to-digital
converter. All the detector signals were pulse-shaped into
fast timing signals and sent to a time-to-digital converter to
measure the time differences between the telescopes and the
fission detectors. The acquisition system was triggered by the
�E-E coincidences of either one or the other telescope.

A. Energy calibration

Because of the rapid increase of the fission probability with
excitation energy at the fission threshold, it is extremely im-
portant to accurately calibrate in energy the particle telescopes.
In this work we consider kinetic energies ranging from 5 to
25 MeV for deuterons and tritons and from 17 to 37 MeV for
alphas. Thus, the kinetic energies can be much higher than the
kinetic energies of the α particles originating from a standard
calibration source. Moreover, it is well known that the response
of Si detectors to hydrogen isotopes differs from the response
to αs of the same kinetic energy [20]. For these reasons, in this
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TABLE I. Kinetic energies of the ejectiles corresponding to the
excited states of 209Bi and 207Pb used for the energy calibration of the
telescopes.

Reaction Q value E∗ of excited Energy of ejectiles
(MeV) states emitted at

(MeV) 130° (MeV)

208Pb(3He,d)209Bi∗ −1.696 0 21.41
0.896 20.53
1.608 19.83
2.826 18.63
3.119 18.34
3.633 17.83

208Pb(3He,4He)207Pb∗ +13.21 0 35.54
0.570 34.98
0.898 34.66
1.633 33.95
2.340 33.26
3.476 32.16

work the telescopes were calibrated with known energy lines
from chosen reactions on a lead target. We used a 208Pb target
of 200 μg/cm2 and a 3He beam of 24 MeV to populate the
first excited states of 209Bi and 207Pb via the transfer reactions
208Pb(3He,d) and 208Pb(3He,4He), respectively. For the energy
calibration, the aperture of the Si telescopes was reduced to
2 mm to limit the kinematic spread. The telescopes provided
the identification of the ejectiles as well as their scattering
angles. This information, the Q values of the transfer reactions
used and the E∗ of the first excited states of 209Bi and 207Pb
(which are known with high accuracy) were used to calculate
the kinetic energy of the corresponding ejectiles. In this way we
had a source of deuterons and αs with very well defined kinetic
energies in the range of interest for the present work. The
excitation energy of the states considered for the calibration
and the associated kinetic energies of the ejectiles detected
at 130° are reported in Table I. A conventional identification
plot representing the energy loss versus the residual energy
in the telescope obtained after the interaction of a 3He beam
on 208Pb is shown in Fig. 2. The lines correspond to different
ejectiles and indicate the formation of a specific nucleus. The
ground state and the first excited states of 209Bi and 207Pb can
be clearly distinguished. The calibration coefficients obtained
with the 208Pb(3He,d) reaction were used in the analysis of the
243Am(3He,d) and the 243Am(3He,t) reactions.

B. Singles and coincidence spectra

Figure 3 shows the identification plot for the 3He + 243Am
reaction at 24 MeV. By selecting one type (Z,A) of ejectile, for
example, 4He, the so-called “singles” spectrum Nsing(E∗), can
be obtained. In this particular case, it represents the number of
detected 242Am nuclei as a function of their excitation energy.

The singles spectrum is derived from the spectrum of 4He
as a function of the excitation energy of 242Am represented
by the triangles on Fig. 4. The broad peaks at the highest
excitation energies in the 4He spectrum stem from transfer
reactions on the 13C present in the carbon backing and on

FIG. 2. Energy loss versus residual energy as measured in one
of the Si telescopes for the 3He + 208Pb reaction at 24 MeV beam
energy. The ground state and first excited states of 209Bi and 207Pb are
indicated by arrows.

16O, 19F, and 35,37Cl impurities in the target. The background
from reactions on the carbon support was measured separately
with a carbon target with the same characteristics as the target
backing. It was subtracted from the singles spectrum after
being properly normalized. The normalization factor was given
by the ratio between the integrated beam intensities measured
for the 243Am target and the separated C backing. In the
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FIG. 3. (Color online) Energy loss versus residual energy in one
of the Si telescopes for the 3He + 243Am reaction at 24 MeV. The
ejectiles associated to the different Z lines are indicated.
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FIG. 4. (Color online) Number of detected 4He (green triangles)
ejectiles as a function of the excitation energy of 242Am after
subtraction of events coming from reactions on the target backing.
The 4He ejectiles stemming from reactions on target contaminants
are present above 12 MeV. The blue circles represent the singles
spectrum Nsing(E∗) after interpolation and the red squares the fission
coincidence spectrum Ncoinc(E∗) for 242Am (see text).

excitation-energy range considered here, the only contribution
to the 4He spectrum due to the carbon backing comes from the
interaction of the beam with 13C, which is present in a very
small amount in the natural carbon backing. The spectrum
resulting from the subtraction of these events is labeled as
Ne−b in Fig. 4 and in this case is basically equivalent to
the 4He spectrum before subtraction. The singles spectrum
Nsing was obtained by interpolating the Ne−b spectrum under
the remaining contaminant peaks (see circles in Fig. 4). This
introduces an additional source of uncertainty that will be
discussed in Sec. III.

Figure 5 shows the energy spectrum of fission fragments
detected in coincidence with deuterons. The double-humped
structure due to the different kinetic energies of the light and
heavy fission fragments can be clearly distinguished. This
spectrum was generated without applying any condition on
the time difference between the telescope and the relevant
solar cell. Still, the spectrum is not polluted by random
coincidences with the α particles originating from the activity
of the 243Am target.

Ejectile-fission coincidences, Ncoinc(E∗), were determined
by selecting those events for which the time difference between
the telescope and the solar-cells signals was within a chosen
coincidence window. The time spectra for the deuteron-,
triton-, and α-transfer channels and the applied time selections
are shown in Fig. 6. The width and the double-humped
structure of the coincidence peak reflect the time needed by the
fragments to reach the fission detector plus the time to collect
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FIG. 5. Energy spectrum of fission fragments detected in one
solar cell in coincidence with deuterons detected in one telescope.

the charges produced at different positions in the photovoltaic
cell. The number of random coincidences present in the time
coincidence window is given by the integral of the dashed area
shown in the upper panel of Fig. 6. This number was evaluated
by determining the number of the random events per channel
in the regions of the time spectrum outside the time selection.
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FIG. 6. (Color online) Time difference between one telescope
and all the solar cells of the fission detector for the deuteron (a),
triton (b), and α (c) transfer channels. The vertical lines indicate
the selection of coincidence events. The shaded area represents the
random coincidences included in this selection.
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FIG. 7. (Color online) (a) Angular distribution of fission fragments for 243Cm at E∗ = 7.5 MeV. The number of detected fission events
divided by the solid angle subtended by the corresponding cell is shown as a function of the average emission angle of the fragments in the
center of mass of the fissioning nucleus. The full line represents the fit function according to Eq. (3) with W (0◦)

W (90◦) = 1 + a
b

= 1.47 ± 0.17 and

reduced chi-squared χ 2 = 0.96. (b) Fission-detector efficiency as a function of E∗ of 243Cm. The shaded area corresponds to the geometrical
efficiency of our fission detector including the corresponding uncertainty. The symbols represent the effective fission efficiency including the
fission-fragment angular anisotropy and kinematic effects caused by the recoil energy of 243Cm.

As seen from Fig. 6, the effect of random coincidences
becomes noticeable only for the deuteron channel, however,
still remaining below 1% of the total number of coincidences.
The coincidence spectrum Ncoinc(E∗) representing the number
of detected 242Am nuclei which undergo fission is presented
in Fig. 4 as empty squares. This spectrum has been corrected
for random coincidences.

C. Fission-detection efficiency

As indicated in Eq. (1), to calculate the fission probability
the ratio between the Ncoinc and Nsing spectra needs to
be corrected for the fission-detector efficiency εf (E∗). The
fission efficiency is given by the solid angle covered by
the fission detector (the so-called geometrical efficiency) and
the fission-fragment angular anisotropy. The fission-fragment
angular anisotropy depends both on the angular momentum
of the fissioning nucleus and on the kinematic focussing due
to the recoil energy of the fissioning nucleus. We developed
a Monte Carlo simulation to determine the fission-detection
efficiency. The geometrical part of the simulation was validated
by measuring the solid angle of our detector with a 252Cf
source of known activity. The simulation gives a geometrical
efficiency of (45.2 ± 1.5)%. The uncertainty is dominated by
the uncertainties in the detector geometry. The segmentation
of our fission detector in 15 cells, located at different positions,
allowed us to measure the angular distribution of the fission
fragments as a function of E∗. To cumulate enough statistics
the excitation-energy bin was chosen 210 keV wide. The left
part of Fig. 7 shows an example of fission-fragment angular

distribution for 243Cm at E∗ = 7.5 MeV. The data were fitted
with the function:

W (θc.m.) = dN

d�
(θc.m.) = acos2(θc.m.) + b, (3)

where θc.m. is the emission angle of the fission fragment in the
center of mass of the fissioning nucleus.

The effective efficiency for each E∗ bin was calculated
with the Monte Carlo simulation including the experimental
angular anisotropies in the center of mass and kinematical
effects. The right panel of Fig. 7 shows the effective efficiency
as a function of excitation energy compared to the geometrical
efficiency. Because of the high geometrical efficiency of our
detector, the corrections on the final detector efficiency due
to the fission-fragment angular anisotropy amount to 2–3%
at most and do not exceed the error due to the uncertainty
in the geometry of the detector. Therefore, the uncertainty
of the effective efficiency is dominated by the uncertainty in
the detector geometry. We observed this low sensitivity to the
angular anisotropy in all the reactions studied. For this reason,
hereafter we consider that the effective efficiency is equal
to the efficiency including kinematical effects and that the
uncertainty in the effective efficiency is equal to the uncertainty
in the detector geometry for all the reactions.

III. UNCERTAINTY ANALYSIS

In this section we discuss how the uncertainties and
the correlation matrix for the uncertainties of the mea-
sured data were obtained. The accurate determination of the
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uncertainties requires very detailed information on the exper-
imental procedure that is best known by the experimentalists
who performed the measurements. In the first part of this
section we will show that the variance of the measured
probabilities can be strongly affected by the correlation
between some of the quantities involved in the determination
of the fission probability. Moreover, in this experiment the
probabilities were measured at different energies with the same
setup. Thus, they are not completely independent, and the co-
variance between the fission probabilities at different energies
should be determined. This will be discussed in the second part
of this section. When data at different energies are partially
correlated, there is a degree of “stiffness,” implying that the
data at a given energy cannot be modified independently
from the data at the other energies. The covariance matrix
of experimental data represents a key piece of information
for providing the evaluated covariance matrix [21], which can
have a strong impact in applications like, e.g., the simulation
of critical assemblies.

A. Variance of the fission probability measurements

Because in this experiment we have used two telescopes, we
have adopted an explicit notation for the lth fission probability
Pf of nucleus A measured with the lth silicon telescope at
energy E∗

i :

P
l,A
f (E∗

i ) = P l
i = Nl

coinc,i

Nl
sing,iεf,i

. (4)

The relative uncertainty on the fission probability is given
by:

Var
(
P l

i

)
(
P l

i

)2 = Var
(
Nl

coinc,i

)
(
Ni

coinc,i

)2 + Var
(
Nl

sing,i

)
(
Nl

sing,i

)2

+ Var(εf,i)

(εf i)2 − 2
Cov

(
Nl

coinc,i ; N
l
sing,i

)
Nl

coinc,iN
l
sing,i

− 2
Cov

(
Nl

coinc,i ; εf,i

)
Nl

coinc,iεf,i

+ 2
Cov

(
Nl

sing,i ; εf,i

)
Nl

sing,iεf,i

, (5)

where Var is the variance and Cov the covariance. As men-
tioned in Sec. IIC, the geometrical fission-fragment efficiency
εf,i was determined with a 252Cf source. Different supports
were used for the source and the 243Am target. Therefore, in
this experiment the efficiency measurement was completely

independent of the measurement of Nl
coinc,i and Nl

sing,i and the
two last covariance terms in Eq. (5) can be disregarded.

To assess the first covariance term Cov(Nl
coinc,i ; N

l
sing,i), we

consider the number of singles events as the union of two
elementary sets: the fission-fragment−ejectile coincidence set,
associated to the random variable Nl

coinc,i , and the set of
ejectiles in anticoincidence with a fission fragment associated
to the random variable Nl

acoinc,i . It follows that:

Nl
sing,i = Nl

coinc,i + Nl
acoinc,i (6)

Because in this experiment the solid angle of the particle
telescopes was rather small, less than 1%, using Eq. (6),
fluctuations in Ncoinc will generally have no impact on Nacoinc

(and vice versa), and Cov(Ncoinc; Nacoinc) can be disregarded.
Consequently, we have:

Cov
(
Nl

coinc,i ; N
l
sing,i

) = Cov
(
Nl

coinc,i ; N
l
acoinc,i

)
+Var

(
Nl

coinc,i

) ∀l,∀i
and

Cov
(
Nl

coinc,i ; N
l
acoinc,i

) ≈ 0 ∀l,∀i
and then

Cov
(
Nl

coinc,i ; N
l
sing,i

) ≈ Var
(
Nl

coinc,i

) ∀l,∀i. (7)

The linear interdependence between Nl
coinc,i and Nl

sing,i can
be quantified with the correlation coefficient Corr, defined as
the ratio of the covariance over the product of the standard
deviations. This dimensionless quantity takes values within
the interval [−1; 1].

Table II shows three examples that illustrate the influence
of the term Cov(Nl

coinc,i ; N
l
sing,i) on the relative statistical

uncertainty on the fission probability. In the third and fourth
lines the statistical relative uncertainty of the fission proba-
bility without inclusion of the covariance between Nl

coinc,i and
Nl

sing,i is overestimated by more than 30%. One can also notice
that the correlation between Nl

coinc,i and Nl
sing,i increases with

the square root of the fission probability.
In the following, our goal is to assess the systematic uncer-

tainties on Nl
sing,i associated to the contaminant corrections. As

mentioned in Sec. IIB, Nl
sing,i is obtained by subtracting from

the detected ejectiles Nl
eje,i the background generated by the

ejectiles originating from transfer reactions on the C-backing
Nl

back,i and on target contaminants Nl
cont,i :

Nl
sing,i = Nl

eje,i − Nl
back,i − Nl

cont,i . (8)

TABLE II. Relative statistical uncertainty of the fission probability with and without inclusion of the correlation between Nl
coinc,i and Nl

sing,i .
The uncertainty in the eighth column includes only the two first terms of Eq. (5) and the one in the ninth column includes the first two terms
and the fourth term of Eq. (5). The data correspond to the 243Am(3He,4He) reaction and telescope 1.

E∗ N 1
sing,i

√
Var(N1

sing,i )

N1
sing,i

N 1
coinc,i

√
Var(N1

coinc,i )

N1
coinc,i

Corr(N 1
coinc,i ; N

1
sing,i) P 1

i

√
Var(P 1

i )

P 1
i

∣∣
stat

√
Var(P 1

i )

P 1
i

∣∣
stat

(MeV) (%) (%) without with
Corr(N 1

coinc,i ; N
1
sing,i) (%) Corr(N 1

coinc,i ; N
1
sing,i) (%)

9.66 2464 2.01 645 3.94 0.51 0.58 4.42 3.38
12.45 3459 1.70 1083 3.10 0.56 0.69 3.48 2.52
14.60 2480 2.00 922 3.12 0.61 0.82 3.85 2.61
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To simplify the notation we introduce the quantity Nl
e-b,i ,

representing the number of ejectiles after subtraction of the
contribution of the target-backing:

Nl
e-b,i = Nl

eje,i − Nl
back,i . (9)

Nl
eje,i and Nl

back,i are uncorrelated because these two quantities
were obtained in two separated measurements, and thus
Cov(Nl

eje,i ; N
l
back,i) = 0 for all energies E∗

i . Therefore, the
uncertainty of Nl

e-b,i is

Var
(
Nl

e-b,i

) = Var
(
Nl

eje,i

) + Var
(
Nl

back,i

)
. (10)

The contaminant peaks are located at relatively high
excitation energies, where the level density of the actinides
investigated is very high and the corresponding singles
spectrum should vary smoothly with E∗. For this reason,
we have assumed that the singles spectrum at the positions
of the contaminant peaks is given by a smooth function
exp(aE∗ + b), where the constants a and b are such that the
singles spectrum is equal to Nl

e-b,i right before and after the
contaminant peak. The Nl

sing,i spectrum results from the union
of the Nl

e-b,i spectrum before the contaminant peak and the
smooth exponential function below the contaminant peak, see
Fig. 4.

From Eqs. (8) and (9) we get the number of contaminant
reactions Nl

cont,i as a function of the assumed singles spectrum
Nl

sing,i :

Nl
cont,i = Nl

e-b,i − Nl
sing,i

Var
(
Nl

cont,i

) = Var
(
Nl

e-b,i

) + Var
(
Nl

sing,i

)∣∣
stat − 2Cov

(
Nl

e-b,i ; N
l
sing,i

)
, (11)

where Var(Nl
sing,i)|stat = Nl

sing,i is the statistical variance of the number of assumed single events.
In order to account for the strong interdependence between the singles and the contaminant spectra in this analysis, we assume

a full correlation between Nl
e-b,i and Nl

sing,i :

Cov
(
Nl

e-b,i ; N
l
sing,i

) =
√

Var
(
Nl

e-b,i

)
Var

(
Nl

sing,i

)∣∣
stat

. (12)

Using Eqs. (8), (11), and (12) it follows that:

Var
(
Nl

sing,i

)∣∣
total = Var

(
Nl

e-b,i

) + Var
(
Nl

cont,i

)
(13)

Var
(
Nl

sing,i

)∣∣
total = Var

(
Nl

sing,i

)∣∣
stat + 2

√
Var

(
Nl

e-b,i

)(√
Var

(
Nl

e-b,i

) −
√

Var
(
Nl

sing,i

)∣∣
stat

)
.

The covariance term between Nl
e-b,i and Nl

cont,i is included in the variance of Nl
cont,i . The first term of the second Eq. (13)

corresponds to the statistical uncertainty and the second one to the systematic uncertainty. We observe that the systematic
uncertainty is zero if there is no contribution to the spectrum from the contaminants and it is positive if there are contaminants.

The quantification of the systematic uncertainty in Nl
sing,i is needed to define the covariance matrix of the fission-probability

measurements at different excitation energies (see Sec. IIIB).
The corrections due to the target backing and the contaminants were determined independently for each telescope. Therefore,

the statistical and systematic variances for the lth fission-probability measurement are defined by the following equations:

Var
(
P l

i

)
stat(

P l
i

)2 = Var
(
Nl

coinc,i

)
(
Nl

coinc,i

)2 +
Var

(
Nl

sing,i

)∣∣
stat(

Nl
sing,i

)2 − 2
Var

(
Nl

coinc,i

)
Nl

coinc,iN
l
sing,i

(14)

Var
(
P l

i

)
syst(

P l
i

)2 =
2
√

Var
(
Nl

e-b,i

)(√
Var

(
Nl

e-b,i

) −
√

Var
(
Nl

sing,i

)∣∣
stat

)
(
Nl

sing,i

)2 + Var(εf,i)

(εf,i)2 .

The final value for the fission probability at excitation energy E∗
i is obtained from the weighted mean of the fission probabilities

P l
i . In this experiment, the two measurements of the fission probability were simultaneously performed with the same target and

the same fission detector. As a consequence, only the fission efficiency εf,i is common to both measurements and its uncertainty
represents the covariance term between the two measurements P l

i and P l′
i of the fission probability:

Var
(
P l

i

)∀l

com.syst(
P l

i

)2 = Var(εf )

(εf,i)2 . (15)

Var(εf ) is the geometrical uncertainty on the fission efficiency where the index i has been omitted because the variance on the
efficiency is independent of the excitation energy. Nevertheless, the fission efficiency depends on the excitation energy due to
the kinematical corrections, as discussed in Sec. IIC. Equation (15) corresponds to the common systematic uncertainty for the
probability measurements performed at the same excitation energy with the two different telescopes.
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TABLE III. Representation of the variances and covariances of the parameters related to the lth and l′th measurements of the fission
probability at two energies E∗

i and E∗
j . The table serves to visualize the correlated and independent measured quantities. The dashed areas

indicate the correlated quantities at two energies E∗
i and E∗

j for each lth measurement and the white zone the correlated quantities for the two
telescopes. Only the part above the diagonal is displayed. The two last lines give the sensitivity coefficients S defined in Eq. (19).

ak lth measurement at energies E∗
i and E∗

j l′th measurement at energies E∗
i and E∗

j

k ∈ [1; p] Nl
coinc,i N l

sing,i εl
f i Nl

coinc,j Nl
sing,j εl

fj Nl′
coinc,i N l′

sing,i εl′
f i Nl′

coinc,j Nl′
sing,j εl′

fj

Nl
coinc,i Var Cov 0 0 0 0 0 0 0 0 0 0

Nl
sing,i Var 0 0 Cov 0 0 0 0 0 0 0

εl
f i Var 0 0 Cov 0 0 Cov 0 0 Cov

Nl
coinc,j Var Cov 0 0 0 0 0 0 0

Nl
sing,j Var 0 0 0 0 0 0 0

εl
fj Var 0 0 Cov 0 0 Cov

Nl′
coinc,i Var Cov 0 0 0 0

Nl′
sing,i Var 0 0 Cov 0

εl′
f i Var 0 0 Cov

Nl′
coinc,j Var Cov 0

Nl′
sing,j Var 0

εl′
fj Var

Sik 1/m −1/m −1/m 0 0 0 1/m −1/m −1/m 0 0 0
Sjk 0 0 0 1/m −1/m −1/m 0 0 0 1/m −1/m −1/m

To obtain the mean value 〈Pi〉, the values of P l
i are weighted by the uncertainty:

wl
i = Var

(
Nl

coinc,i

)
(
Nl

coinc,i

)2 +
Var

(
Nl

sing,i

)∣∣
stat(

Nl
sing,i

)2 − 2
Var

(
Nl

coinc,i

)
Nl

coinc,iN
l
sing,i

+
2
√

Var
(
Nl

e-b,i

)(√
Var

(
Nl

e-b,i

) −
√

Var
(
Nl

sing,i

)∣∣
stat

)
(
Nl

sing,i

)2 , (16)

where we have adopted the notation wl
i for the weight associated to the P l

i fission probability measurement. The final uncertainty
on mean fission probability,〈Pi〉, is given by the sum of the uncertainty of the weighted mean and the uncertainty in the fission
efficiency. The latter is added only once because it is the common systematic uncertainty [Eq. (15)] to the m telescopes (in our
case m = 2):

〈Pi〉 =
m=2∑

l

P l
i

wl
i

/
m=2∑

l

1

wl
i

;
Var (〈Pi〉)

〈Pi〉2 = 1∑m=2
l

1
wl

i

+ Var(εf )

(εf i)2 . (17)

B. Covariance of the fission-probability measurements
at different excitation energies

The second part of this section is devoted to the evaluation
of the covariance term between two mean fission-probability
measurements at excitation energies E∗

i and E∗
j . The gen-

eralized perturbation theory [23] allows one to define the
covariance term as the sum of the variances and covariances of
all the measured quantities ak (in our case ak represents Nsing,
Ncoinc, etc.) weighted by the sensitivity Sik of the observable
〈Pi〉 to the quantity ak:

Cov(〈Pi〉; 〈Pj 〉)
〈Pi〉 · 〈Pj 〉 =

p∑
k=1

(Sik)2 Var (ak)

(ak)2

+2
p∑

k>k′
(Sik) (Sjk′)

Cov(aik; ajk′ )

aikajk′

∀i Sik = ∂ 〈Pi〉
∂ak

ak

〈Pi〉 . (18)

The sum runs over the p quantities needed to determine
the mean fission probabilities 〈Pi〉 and 〈Pj 〉. In Ref. [22] we
have performed a rigorous analysis to apply Eq. (18) to our
measurement. In this work, we present only the main results
and we refer to [22] for the details on the derivation of the
following equations.

In our experiment, the two telescopes were located at the
same angle and at the same distance from the target. Therefore,
the fission probabilities and statistical uncertainties obtained
with the different telescopes have similar values. As shown
in Ref. [22], in that case, from Eqs. (16)–(18) it follows that
the absolute value of the sensitivity of 〈Pi〉 to a quantity ak is
constant for all the quantities and for all the lth measurements.
That is:

|Sik| = Var 〈Pi〉
〈Pi〉

P l
i

Var
(
P l

i

)
weight

≈ 1/m, ∀l. (19)

The covariance term associated to the efficiency is

Cov(εf,i ; εf,j ) = Var(εf ) ∀i,j. (20)
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Using the results of Eq. (14), it can be shown that the
covariance of the lth probability measurements at different
energies is given by [22]:

Cov
(
P l

i ; P l
j

) =
√

Var
(
P l

i

)
systVar

(
P l

j

)
syst

. (21)

In Table III, we present a synthetic comparison of the
correlations of the ak quantities involved in the mean fission-
probability measurements. The data obtained with each tele-
scope (i.e., the data associated to each lth measurement) are
treated independently. Consequently, for the lth measurement,
the covariance of two fission probabilities at the energies
E∗

i and E∗
j is caused by the systematic corrections of the

number of singles Nl
sing,i due to target contaminants and the

common uncertainty in the fission efficiency. For two different
fission-probability measurements P l

i and P l′
j at the energies

E∗
i and E∗

j , only the covariance term on the fission efficiency
is present.

Using Eqs. (20) and (21), it can be shown [22] that the
correlation between the mean values of the fission probabilities
at two different energies is given by the mean correlation of the
m measurements at the energies E∗

i and E∗
j with an additional

contribution accounting for the uncertainty of the geometrical
fission-fragment efficiency. This last uncertainty represents the
common systematic uncertainty [Eq. (15)] between the lth and
l′th measurements:

Corr(〈Pi〉〈Pj 〉) ∼= 1

m

m∑
l=1

Corr
(
P l

i ; P l
j

)

+m − 1

m

Var(εf )

εf iεfj

〈Pi〉 〈Pj 〉√
Var (〈Pi〉) Var(〈Pj 〉)

.

(22)

IV. RESULTS

Figure 8 shows the fission probabilities of 242Am, 243Cm,
and 244Cm as a function of the compound-nucleus excitation
energy and the associated correlation matrices. As described in
the previous section, the fission probabilities were obtained as
the weighted mean of the fission probabilities measured with
the two telescopes. The displayed uncertainties were calcu-
lated according to Eq. (17). The E∗ range considered is limited
by the density of target-contaminant peaks in the singles
spectrum. As discussed in Secs. II and III, we assume that the
singles spectrum can be interpolated with a smooth exponential
function below the contaminant peaks. This assumption is
quite reasonable for isolated peaks but becomes less correct as
the contaminant peaks get close together. For 244Cm we present
also results for excitation energies above 7.5 MeV where the
density of target-contaminant peaks becomes significant. The
right panels of Fig. 8 show that the correlation between the
fission probabilities at different excitation energies increases
with excitation energy and reaches up to 90% at 12 MeV for
244Cm. This increase in the correlation is due to the increase
of the intensity of the contaminant peaks with excitation

energy, which leads to an enhancement of the systematic error
accounting for the uncertainty in the subtraction procedure,
see Eq. (13).

Our results for the three fission probabilities are compared
to the ones by Gavron et al. [9], obtained using the same
transfer reactions. Note that the data by Gavron et al. were
published in the figures of Ref. [9] without specific error bars.
Reference [9] only mentions an estimated uncertainty of about
10% for all the data. For 244Cm our data cover the onset
of fission in the excitation-energy region below the neutron
separation energy, which is not accessible in neutron-induced
measurements. Our results show that the fission probability
first increases rather steeply with E∗ and, as expected, starts
to decrease exactly at Sn, due to the opening of the neutron
emission channel. However, in the data by Gavron et al., this
drop appears at an excitation energy lower than Sn. Moreover,
our results are below those of Gavron et al. between 9 and
12 MeV. These differences could be due to the presence
of tungsten in the target used by Gavron et al. [9], which
pollutes the singles spectrum down to very low excitation
energies and might have not been properly corrected. Our
results for 244Cm are also compared to the data by Back
et al. [7]. There is a fair agreement between the two data
sets at the lowest excitation energies. However, above 5.8
MeV the results by Back et al. are well below our data,
even though the trends are similar. Back et al. used the same
transfer reaction and the same beam energy as in this work
but the ejectiles were detected at 90° with respect to the beam
axis. One possible explanation for the observed differences
might be that at 90° the contaminant peaks due to light target
impurities pollute the singles spectrum down to relative low
energies.

For 243Cm, we obtain a slope for the fission threshold
that is larger than the one obtained by Gavron et al. An
argument to support our results is that the neutron-induced
cross section 242Cm(n,f ), obtained by multiplying our fission
probability of 243Cm with the calculated compound-nucleus
formation cross section, follows well the general trend of
the data by Vorotnikov et al. [26], see Fig. 7 in Ref. [18].
Note that the neutron-induced compound-nucleus formation
cross section of 243Cm close to the fission threshold is nearly
constant and is equivalent to a simple scaling of the fission
probability.

Our results for 242Am agree within the error bars with
those by Gavron et al. Our data extend to the second chance
fission, where a fraction of the fission events arise from the
fission of 241Am. Above 7 MeV the data by Back et al. [24],
obtained with the 241Am(d,p) reaction, are about 2 times
lower than our results. According to Ref. [25], the (d,p)
reaction is problematic because the proton singles spectrum
can be polluted by protons originating from the breakup of
the projectile. This leads to an overestimation of the single
events and to fission probabilities that are systematically too
low. In Ref. [25], an empirical correction to account for
deuteron-breakup effects was applied to the data by Back et al.
[24]. However, the comparison of the corrected probability
with our data and the one by Gavron et al. shows that this
correction is still not sufficient.
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FIG. 8. (Color online) Fission probabilities of the 244 Cm∗ (a), 243 Cm∗ (b), and 242Am∗ (c) as a function of excitation energy compared
to the results by Gavron et al. [9] and by Back et al. [7,24,25]. The dashed line in the upmost left panel represents the E∗ above which the
singles spectrum is significantly polluted by reactions on target contaminants. The neutron separation energy Sn of each nucleus is indicated
by the arrows. [(d)–(f)] Associated correlation matrices (see Sec. III B).
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FIG. 9. (Color online) Number of fission-fragment-triton coincidences before (red dashed line) and after (black full line) subtraction of
random coincidences. The spectrum of ejectiles Neje is represented by the dashed-dotted lines and the random-coincidences spectrum by the
blue full lines.

A. Subthreshold structures in 243Cm

Contrary to the data of Gavron et al. and Back et al.,
our data cover energies well below the fission threshold, see
Fig. 8. Interestingly, our results for 243Cm present three clear
resonances below the fission threshold. Some subthreshold
structures are also present for 244Cm, but they are much less
intense than those observed for 243Cm. No significant structure
below the fission threshold is observed for 242Am. One could
argue that the lower intensity of the subthreshold structures
in 244Cm is due to the normalization to a larger number of
singles events. However, a closer look at the Ncoinc(E∗) spectra
(after subtraction of random coincidences, see Sec. II B) of
243Cm and 244Cm revealed that the number of fission events at
excitation energies below the fission threshold is much lower
for 244Cm than for 243Cm. More precisely, the number of
subthreshold fission events of 244Cm represents only 0.01% of
the total number of fission coincidences, whereas in the case
of 243Cm it represents 0.16%, which explains the difference in
intensity between the subthreshold peaks of both nuclei.

The details of the subtraction of random-coincidences in the
subthreshold excitation-energy region of 243Cm are illustrated
in Fig. 9. The (red) dashed histograms represent the spectra
that result from selecting the events in the time-coincidence
window (Fig. 6) for each telescope. We subtracted from these
spectra the spectra of random coincidences, which are given
by the ejectile spectrum Neje [see Eq. (8)] normalized to the
total number of random coincidences. Because of the very
low number of random coincidences, the difference between
the coincidence spectra before and after the subtraction of
random coincidences is hardly appreciable. Figure 9 shows
that the random-coincidences spectra of both telescopes (blue
full lines) do not show any significant structure that could
explain the observed resonances.

As discussed in Sec. III, the final fission probability is
the weighted mean of the probabilities obtained with the
two telescopes. When determining the average probability
the structures below 2.7 MeV vanish because their positions
in the two telescopes differ. However, the positions of the
structures above 2.7 MeV are very similar in both telescopes
and lead to an average fission probability significantly above
zero, as seen on the left part of Fig. 10. Unfortunately, the
statistics at such low excitation energies is too low and the
fission fragment anisotropy cannot be measured. Therefore,
to calculate the fission probability we used the same fission-
detection efficiency as for the higher excitation energies.
However, we recall that, due to the large solid angle of our
fission detector, the influence of the angular anisotropy on the
effective efficiency is relatively weak. Moreover, one would
need effective efficiencies greatly above 100% to make the
structures disappear.

We performed a test experiment with the same setup
but the telescopes placed at 90°. The right part of Fig. 10
illustrates the average fission probability obtained with the
two telescopes located at 90°. It shows clear structures at
excitation energies that are very close to the positions of the
subthreshold structures observed with the telescopes placed
at 130°, although there are some differences in the shape.
In particular, the data at 90° do not show a double-peak
structure between 4 and 5 MeV. The presence of peaks below
the fission threshold at nearly the same positions for both
detection angles supports the hypothesis that these structures
come from fission events in 243Cm. Indeed, if the peaks
were due to noncorrected random coincidences with some
light or medium-mass contaminants, their positions would
considerably vary when changing the telescope angle from
130° to 90°.
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FIG. 10. (Color online) Fission probability of 243Cm obtained with the 243Am(3He,t) reaction as a function of excitation energy in the
proximity of the fission threshold. On the left we show the results obtained with the telescopes placed at 130° (a) and on the right with the
telescopes placed at 90° (b) with respect to the beam axis. The neutron separation energy Sn is indicated.

To our knowledge, it is the first time that subthreshold
structures have been observed for 243Cm. The presence of
these resonances was a rather unexpected result of this
experiment, whose main objective was the determination of
fission probabilities at the fission threshold and above.

V. STATISTICAL-MODEL CALCULATIONS

The aim of this section is to extract information on
fission barriers by comparing our data to statistical-model
calculations. In this theoretical analysis we will not consider
directly the resonances observed for 243Cm because our
experimental conditions (excitation-energy bin of 210 keV and
limited statistics) are not well adapted to provide the required
precision for a quantitative analysis.

A. Description of the model

We assume that the considered transfer reactions lead
to the formation of a compound nucleus. The decay can
then be described with the statistical model, which takes
into account the competition between the different decay
modes: γ emission, neutron emission, and fission. We also
assume a double-humped fission barrier. As we have not
observed any relevant structure for 244Cm and 241Am and we
do not treat the structures observed for 243Cm, the average
fission probability is computed in the complete damping limit
[7]. In this limit, the energy from the pure fission motion
is redistributed into internal excitations in the second well
and statistical equilibrium can be assumed. This means that
resonant barrier penetration is neglected and the transmission
through the two barriers can be treated independently, i.e.,

the fission process can be viewed as the crossing of the inner
barrier (A) followed by the crossing of the outer barrier (B). At
the corresponding saddle-point deformations (βA and βB), the
barrier shapes are approximated by inverted parabolas, which
define the barrier heights and curvatures of the inner (EA, �ωA)
and outer (EB, �ωB ) barrier.

Within the frame of the statistical model, the average fission
probability may be written as:

〈Pf (E∗)〉 =
∑
Jπ

α(E∗,J,π )
〈Nf 〉∑
i 〈Ni〉f (E∗,J,π ), (23)

where: α(E∗, J, π ) is the average probability for populating
a compound state of angular momentum J and parity π (his
distribution is normalized so

∑
Jπ α(E,J,π ) = 1), 〈Nf 〉∑

i 〈Ni 〉 is
the average fission probability of a compound state Jπ at E∗
[Ni is the effective number of open decay channels which are
populated by γ emission (i = g), neutron emission (i = n)
and fission (i = f ); this quantity is related to the average
decay width 〈i(E∗,J,π )〉 and level spacing 〈Dgs(E∗,J,π )〉 of
the compound nucleus at the ground-state deformation by the
relation: 〈Ni(E∗,J,π )〉 = 2π 〈i (E∗,J,π)〉

〈Dgs (E∗,J,π)〉 ], and f (E∗, J, π ) is
a level-width fluctuation factor which takes into account that
we have replaced in Eq. (23) the average expression by
the average of its terms: 〈 Nf∑

i Ni
〉 = f (E∗,J,π ) 〈Nf 〉∑

i 〈Ni 〉 . This
factor has been calculated using the approach proposed in
Ref. [24]. In the present work, the fluctuation factor reduces
the calculated fission probabilities by at most 10%.

For fission, the number of open channels is given by the
number of transition states on top of the barriers x (=A
or B) weighted with the corresponding barrier transmission
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coefficient:〈
N

J,π
fx

(E∗)
〉 =

∑
K

1

1 + exp
[

2π
�ωx

(
Ex + EKπ

x − E∗)]
+

∫ E∗−Ei

−∞

ρx (E∗ − (Ex + ε) ,J,π )

1 + exp
(− 2π

�ωx
ε
) dε. (24)

Here the summation accounts for discrete transition states
on top of the barrier at energy EKπ

x and the integral for
transition states in the continuum. The discrete transition states
are characterized by the quantum number K that results from
the projection of J on the symmetry axis. ε and ρx are the
kinetic energy in the fission degree of freedom and the level
density of compound states (Jπ ) at the top of the barrier of
height Ex , respectively.

After the penetration of barrier EA, the excited nucleus
can decay by neutron emission, γ emission, penetration of
the first barrier, or penetration of the second barrier which
leads to fission [7]. Our calculations show that, due to the
relatively modest excitation energies considered (maximum
E∗ ≈ 15 MeV), neutron and γ emission from compound states
in the superdeformed well between the two barriers can be
neglected. In this case, the effective number of fission channels
on top of the double-humped fission barrier is

〈
N

J,π
f (E∗)

〉 ≈ 〈
N

J,π
f,A (E∗)

〉 〈
N

J,π
f,B (E∗)

〉
〈
N

J,π
f,A (E∗)

〉 + 〈
N

J,π
f,B (E∗)

〉 . (25)

We consider that neutron emission does not modify the
deformation of the compound nucleus and that it occurs from
the first well of nucleus A to the first well of nucleus A−1.
Under these conditions, the number of open channels for
neutron emission is given by:

〈
NJ,π

n (E∗)
〉 =

∑
E′J ′π ′

J+J ′∑
j=|J−J ′ |

j+1/2∑
l=|j−1/2|

δ(π,π ′,(−1)l)T j
l (En)

+
∫ E∗−Sn

Ed

J+J ′∑
j=|J−J ′ |

j+1/2∑
l=|j−1/2|

δ(π,π ′,(−1)l)

× ρ(E′,J ′,π ′)T j
l (En)dE′. (26)

Both the discrete and the continuous levels (E′, J ′, π ′)
of the residual nucleus have been considered. Ed is the
excitation energy in the residual nucleus where the continuum
starts.δ(π,πf ,(−1)l) is the parity-conservation factor. T

j
l (En)

is the transmission coefficient for emission of a neutron with ki-
netic energy En = E∗ − Sn − E′, orbital angular momentum
l, and channel spin j = l + s (s being the intrinsic spin of the
neutron). The transmission coefficients have been calculated
with a Lane-consistent semimicroscopic [27] deformed [28]
optical model potential, built using deformed radial nuclear
densities calculated in the Hartree-Fock-Bogoliubov frame-
work with the Gogny D1S interaction [29]. In this work, the
structure of the discrete states of the relevant residual nuclei
has been taken from Refs. [30–32]. When the experimental
information was scarce (e.g., for 242Cm), levels were generated
by assuming the same structure as in neighboring nuclei.

We assume that γ emission takes place between two states
in the first well of the compound nucleus and that only
electric dipole transitions (E1) contribute to the γ -decay
channel. According to the Weisskopf strong coupling model,
the average number of open channels that proceed through γ
decay from initial compound states (Jπ ) at excitation energy
E∗ is

〈
NJπ

g (E∗)
〉 = C

J+1∑
J ′′=J−1

∫ E∗

0
ρ(E′′,−π,J ′′)(E∗ − E′′)3dE′′.

(27)

The summation runs over the continuous final states (E′′,
J ′′, π ′′ = −π ) of the residual nucleus after emission of a γ ray
of energy Eγ = E∗ − E′′ only because the contribution from
discrete final states is negligible. The constant C is adjusted to
reproduce the experimental neutron-induced average γ -decay
width at the neutron binding energy (Sn) of the relevant com-
pound nuclei [33]. This normalization implies the assumption
that the γ -decay widths are independent of spin and parity,
which appears to be reasonable for the heavy nuclei studied in
this work [7,24]. We have also considered a more sophisticated
description for the γ -strength function based on a Lorentzian
[34] but this has essentially no impact on our results.

1. Level densities

As discussed above, the fission probability depends strongly
on the nuclear level densities ρ(E∗, J, π ) at different elon-
gations of the fissioning nucleus (ground state and first and
second barriers), as well as on those of the residual nuclei
after neutron emission. The level densities used in this work
can be represented as the product of the intrinsic level density
and the density of collective excitations. The intrinsic level
density ρint has been calculated with the phenomenological
version of the generalised superfluid model of Ignatyuk. A
detailed description of this model can be found in Ref. [35].

In this model, the most important parameter is the level-
density parameter, whose dependence on shell effects and E∗
above the critical pairing energy is given by:

a(E∗,N,Z) = ã(N,Z)

(
1 + �S

E∗ f (E∗)

)
(28)

with

f (E∗) = 1 − exp(−γE∗) (29)

and

γ = 0.4A− 1
3 . (30)

Here, �S is the ground-state shell correction, defined as the
difference between the experimental nuclear mass and the
liquid drop mass calculated at the corresponding deformation.
ã is the asymptotic value of the level density parameter at
high excitation energy. For the ground-state deformation, this
asymptotic level density parameter takes the form [35]:

ã = 0.073A + 0.115A
2
3 . (31)

Contrary to ã at ground-state deformations, the magnitude
of ã at larger deformations has not been constrained with
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experimental data. In addition, there are large uncertainties
in the theoretical predictions for the surface and volume
coefficients needed to quantify the variation of the level density
parameter with deformation. For this reason, in this work
we have treated the asymptotic values of the level density
parameters at the barriers, ãA and ãB , as free parameters.

We consider that only rotational states contribute to the
density of collective states. Following the prescription of Bohr
and Mottelson [36], the rotational states for a prolate axially
symmetric deformation have been built on each intrinsic level
described above. Assuming that the rotational energies are
small compared to the total excitation energy, the level density
takes the form:

ρ (E,J,π )

≈ 1

2
Ccoll

ρint√
8πσ||(E∗)

×
J∑

K=−J

exp

[
− K2

2σ 2
|| (E∗)

− J (J + 1) − K2

2σ 2
⊥(E∗)

]
, (32)

where the factor 1/2 accounts for the assumption of equal
number of levels with positive and negative parity. σ|| and
σ⊥ represent the deformation-dependent spin cutoff factors,
which are closely related to the nucleus moment of inertia
parallel and perpendicular to the nuclear symmetry axis. The
relevant moment of inertia at the ground state and at the
inner- and outer-barrier deformations have been computed
from the set of prolate deformations calculated by Howard and
Möller [37]. The density of rotational states is known to vary
with deformation. It is now well established that the breakdown
of various symmetries leads to a significant enhancement of
the level densities at the barrier deformations [36]. The factor
Ccoll takes different values depending on the deformation.
For deformations with axial asymmetry Ccoll = √

8πσ||(E∗)
and for axial symmetric but reflection asymmetric shapes
Ccoll = 2 [38].

2. Discrete transition states

For the nuclei of interest in this work, the information
on the properties of the transition states at the barriers is
very scarce. Fission-probability measurements combined with

measurements of fission-fragment angular distributions can
provide the angular momentum J and its projection K of the
transition states. Unfortunately, such measurements were not
performed in the past for the relevant nuclei here. Note that the
angular distributions that we measure are not adapted to extract
precise information on the transition states due to the large
angular uncertainty of our data of approximately �θ ≈ 30◦
and to the limited statistics. Our measurements can only be
used to confirm the low sensitivity of the fission efficiency of
our detector to the fission-fragment angular anisotropy.

Gavron et al. [9] used the calculated spectrum of transition
states of 240Pu, which they took from Ref. [25], for all
the nuclei they investigated. For odd-odd nuclei no discrete
transition states were considered. The situation is somewhat
less complicated for even-even nuclei, because one can make a
reasonable guess of the properties of the transition states at the
barriers from the evolution with deformation of the low-lying
rotational and vibrational states from the ground state. The
spectra of transition states used in this work for 243,244Cm and
241,242Am are given in Table IV. The energies of the states
were slightly tuned to best reproduce the data. The inclusion
of additional states did not have any impact on the results
of the calculations. The energies of the transition states for
244Cm at the first barrier are very close to the ones used in
Ref. [7], which were considered the same for the inner and
outer barriers. Our spectra are in general good agreement with
the generic recommended values given by RIPL3 [33]. There
are only significant differences in the energies of the 1/2− state
at the inner barrier and of the 5/2+ state at the outer barrier of
the even-odd 243Cm, and in the spectrum at the inner barrier
of 241Am.

Each of these transition states is the band head of a rotational
band with the rotational parameter �

2

2�x
, I being the moment

of inertia at each barrier. We have taken �
2

2�A
= 7 keV and

�
2

2�B
= 5 keV [25]. Axial symmetry breaking induces (2J + 1)

rotational levels for each value of the total angular momentum
J. Levels of opposite parity (but equal energy) are added to the
intrinsic levels in order to account for reflection asymmetry.
In this way, a set of discrete transition states was built up to
the pairing gap: 2� for 244Cm and � for 243Cm and 241Am,
where we have assumed � = 12√

A
. Beyond the pairing gap, the

TABLE IV. Spectrum of discrete transition states used in this work. Given is the energy in MeV of the transition states above the
corresponding fission barrier.

244Cm 243Cm 242Am 241Am

Inner Outer Inner Outer Inner Outer Inner Outer
barrier barrier barrier barrier barrier barrier barrier barrier

Kπ E Kπ E Kπ E Kπ E Kπ E Kπ E Kπ E Kπ E

0+ 0 0+ 0 1/2+ 0 1/2+ 0 1− 0 1− 0 5/2− 0 5/2− 0
2+ 0.2 0− 0.25 5/2+ 0.08 3/2+ 0.08 0− 0.044 0− 0.044 3/2+ 0.02 3/2+ 0.02
0− 0.4 2+ 0.5 1/2− 0.05 5/2+ 0.02 5− 0.049 5 0.049 1/2+ 0.04 1/2+ 0.04

3/2− 0.1 6− 0.170 6− 0.170
1− 0.220 1− 0.220
3− 0.242 3− 0.242
2− 0.288 2− 0.288
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continuous level density described in the previous section was
assumed for both nuclei.

3. Determination of α(E∗, J, π )

While it is possible to calculate the angular-momentum
and parity distributions populated in neutron-induced reactions
using optical potentials, this is by far not the case when
the compound nucleus is formed in a transfer reaction (see
Ref. [17]). Transfer reactions populate single-particle states,
such as single neutron states in the (d,p) reactions, single
proton states in the (3He,d) reaction, and single neutron-hole
states in the (3He,4He) reactions. This quite simple picture
is valid at low excitation energies and has been extensively
used in the past in nuclear-structure studies. However, in
the excitation-energy region of interest in this work (E∗ >
Sn), these single-particle states are strongly mixed with the
highly dense and complex compound-nuclear states, whose
decay is described by the statistical model. In other words,
the strength of the particular single-particle states populated
by the direct reaction “spreads out” over a large number
of compound levels [39]. Therefore, one can imagine the
reactions studied in this work as two-step processes where
the single-particle states initially populated by the transfer
reactions readily mix with the continuum of compound levels
that have the same quantum numbers (Jπ ), leading eventually
to the formation of a compound nucleus. It is difficult to
theoretically estimate how the initial single-particle states
are fragmented into the complex many-body states in the
continuum and usually different approximations are used
[40,41]. Similarly to Ref. [7], in this work we assume that
the angular-momentum distribution α is independent of E∗
and that the spreading width is directly proportional to the
density ρ of compound-nuclear levels with Jπ :

α(J,π ) = Q(J,π )ρ(J,π ), (33)

where Q(J,π ) gives the probability of feeding the single-
particle level Jπ by the transfer reaction. The final spin J is
given by:

�J = �I + �l + �s = �I + �j, (34)

where I is the target spin, l is the orbital angular momentum
transferred in the reaction, and s is the intrinsic spin of the
transferred particles. l and s combine to give the channel spin
j . For a given J we have:

α(J,π ) = ρ(J,π )
J+I∑

j=|J−I |

j+s∑
l=|j−s|

σ (l)δ(πI ,πs,(−1)l)

Nl

, (35)

where σ (l) is the reaction cross section (dimensionless) as a
function of transferred orbital angular momentum l. In the
above equation, the double summation takes into account all
possible ways to generate J from j + I and all possible ways
to generate j from l + s. The number of these couplings is
given by:

Nl =
J+I∑

j=|J−I |

j+s∑
l=|j−s|

1. (36)
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FIG. 11. (Color online) Calculated neutron-induced orbital

angular-momentum distributions σn(En, l) populated in the reaction
n + 241Am at different incident neutron energies, En.

The quantity σ (l) is not known for the reactions of interest
in this work. Instead of using orbital angular-momentum
distributions of arbitrary shapes, we have used the neutron-
induced distributions σn(l) populated at different neutron
energies En. The latter distributions can be calculated with
the transmission coefficients T

j
l (En) used to determine the

number of open channels for neutron emission. Figure 11
shows the calculated distributions at different neutron energies
for 242Am. The distributions for 243Cm and 244Cm are very
similar. In this way, we investigated the influence of very
different angular-momentum distributions on the properties
of the fission barriers.

B. Comparison between theory and experiment

Calculated fission probabilities from the model described
above have been compared to the fission probabilities mea-
sured in this work to deduce the heights and curvatures of
the inner and outer barriers, which were treated as adjustable
parameters. We assume that the inner barrier (EA) is axially
asymmetric, while the outer one (EB) is axially symmetric but
reflection asymmetric [42]. Calculations were also performed
assuming an axial symmetric shape at the inner barrier, but
in this case it was not possible to fit the data for 243Cm and
242Am.

As mentioned before, for 244Cm the region above ap-
proximately 7.5 MeV suffers from the presence of target
contaminants and the shape of the fission probability depends
on the assumption made for the shape of the singles spectrum
below the contaminant peaks. Therefore, we have performed
two separated fits, one including only the data below 7.5 MeV
and the other considering all the available data.
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1. Sensitivity of the fission-barrier parameters to the transferred
angular-momentum distribution

For 244Cm, the calculated fission probabilities were rather
insensitive to the angular-momentum distribution except for
the region between the neutron separation energy and about
8 MeV. This region is very sensitive to the shape of the
neutron-emission probability. When the transferred angular
momentum is low, neutron emission to the low-lying states of
243Cm is favored and the neutron-emission probability sets in
rather steeply. This leads to a strong decrease of the fission
probability, which we do not observe in our data. This is
astonishing, given the good agreement between our results for
the 243Cm(n,f ) and the neutron-induced data in the vicinity
of Sn, see Ref. [18]. The reason for this discrepancy may be
some deficiency in the experimental data (including the most
recent neutron-induced data) or/and a poor knowledge of the
structure of 243Cm at the lowest energies. The best fit to the
data below 7.5 MeV and to the ensemble of data was obtained
with the distribution σn (En = 30 MeV, l) with 〈l〉 ≈ 7.6. The
different fits give fairly similar results for EA and the two
barrier curvatures, with differences below 200 keV. The second
barrier shows a stronger sensitivity to the transferred angular
momentum and we find a difference of about 300 keV between
the fits.

Similarly to the 244Cm case, we could not reproduce the
experimental data in the vicinity of the fission threshold of
243Cm using the transferred angular-momentum distributions
with the lowest spins corresponding to En � 1 MeV. This
may be due to the lack of knowledge on the properties of
the low-lying states in the even-even 242Cm. We recall that
for 242Cm the structure information is very scarce and we
have assumed the levels of neighboring nuclei. In addition,
one should also keep in mind that the complete damping
limit is not the appropriate frame to treat this nucleus,
which presents clear structures at low excitation energies. We
found better agreement with the data when considering the
distributions σn(En > 10 MeV, l). The best agreement was
found for σn(En = 15 MeV, l) with 〈l〉 ≈ 5.6, but there are
relatively small differences between the calculations using
the distributions corresponding to σn(En > 10 MeV, l). The
calculations with σn(En > 10 MeV, l) gave results for EA,
EB , and �ωA that agree within less than 100 keV. Yet, the
differences for �ωB reach 300 keV.

The calculations for 242Am are less sensitive to the trans-
ferred angular momentum than the calculations for 243Cm and
244Cm. Above approximately E∗ = 7.5 MeV we found essen-
tially no difference between the fission probabilities calculated
with the different σn(En, l) distributions for 242Am. The calcu-
lation with the orbital angular momentum distribution at En =
1 MeV (corresponding to E∗ = 6.5 MeV and to 〈l〉 ≈ 1.6)
gave a slightly better agreement with the experimental data. We
observed a very weak sensitivity of the fission barrier heights
to the shape of σn(En, l). A maximum difference of 50 keV was
found between the inner barrier height deduced with σn(En =
1 MeV, l) and σn(En = 30 MeV, l). The fluctuations associ-
ated to the outer barrier height and the curvatures were within
200 keV.
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FIG. 12. (Color online) Experimental fission probabilities (full
circles) compared to statistical-model calculations; see text for details.

2. Results

The best fits to the data are shown in Fig. 12. For 244Cm
we show the calculation assuming axial symmetry at the inner
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TABLE V. Fission-barrier parameters obtained in this work compared to the values from other fission-probability analysis and empirical
systematics. The values by Gavron et al. in parentheses are subject to important uncertainties, according to the authors.

Fissioning nucleus Reference EA (MeV) �ωA (MeV) EB (MeV) �ωB (MeV)

244Cm (Sn = 6.8 MeV) This work (Fit to data E∗ < 7.5 MeV) 6.25 ± 0.40 0.8 ± 0.3 5.6 ± 0.2 0.40 ± 0.15
This work (Fit to all the data) 5.70 ± 0.55 1.10 ± 0.45 5.85 ± 0.20 0.75 ± 0.20
This work (EA axial symmetric) 5.90 ± 0.14 0.80 ± 0.15 4.0 ± 0.7 1.0 ± 0.4
Gavron et al. [9] 6.2 ± 0.2 (0.9) (4.6) –
Back et al. [7] 6.12 ± 0.2 0.90 ± 0.10 <4.9 –
Bjornholm and Lynn [39] 5.8 ± 0.2 1.04 4.3 ± 0.3 0.60
RIPL3 [30] 6.18 0.9 5.10 0.6

243Cm (Sn = 5.7 MeV) This work 6.6 ± 0.1 0.71 ± 0.13 5.42 ± 0.85 1 ± 0.5
Gavron et al. [9] 5.95 ± 0.50 (0.6) (5.5) –
Bjornholm and Lynn [39] 6.4 ± 0.3 0.80 – 0.52
RIPL3 [30] 6.33 0.7 5.4 0.5

242Am (Sn = 5.5 MeV) This work 6.4 ± 0.1 0. 60 ± 0.13 5.8 ± 0.7 0.7 ± 0.3
Gavron et al. [9] 6.4 ± 0.2 (0.38) (5.05) –
Back et al. [25] (d,p) corrected 6.38 ± 0.20 0.50 ± 0.10 – –
Back et al. [24] 6.35 ± 0.15 0.6 ± 0.15 – –
Bjornholm and Lynn [39] 6.5 ± 0.2 0.65 5.4 ± 0.3 0.45
RIPL3[30] 6.32 0.60 5.78 0.40

241Am (Sn = 6.6 MeV) This work (from second-chance fission of 242Am) 6.6 ± 0.13 0.7 ± 0.2 4.6 ± 0.7 0.6 ± 0.3
Gavron et al. [9] 6.0 ± 0.2 (0.55) (5.1) –
Back et al. [25] 6.0 ± 0.2 0.8 ± 0.1 – –
Bjornholm and Lynn [39] 6.0 ± 0.2 0.8 5.1 ± 0.3 0.52
RIPL3 [30] 6.0 0.8 5.35 0.5

barrier and the calculation assuming axial asymmetry with the
angular-momentum distribution corresponding to 〈l〉 ≈ 7.6.
The two fits, including only the data below 7.5 MeV and all the
available data, show a similar agreement with the data. Only
the fit considering all the available data is plotted in Fig. 12(a).
We find an overall good agreement between calculations and
experimental data for the three nuclei. The values of the barrier
parameters from the best fits (those with the minimum χ2

deviation) are listed in Table V.
We have made a considerable effort to estimate the

uncertainty of the six fit parameters (the four barrier param-
eters and the two asymptotic level-density parameters) in a
rigorous way. For each fissioning nucleus we performed one
million of calculations with values for the six parameters
that were randomly and independently sampled from uniform
probability distributions. The uncertainty tabulated in Table V
corresponds to half of the total range spanned by the values
of the parameters for which χ2 � χ2

min + D. The quantity D
has been determined according to the procedure described by
Avni [43]:

Probability[χ2 (q fit parameters) � D] = CL, (37)

where CL is the confidence level. That is, D(CL,q) is the χ2

value that one finds from the table of a χ2 distribution with
q degrees of freedom. In our case we have q = 6 parameters
and we have chosen CL = 99%, therefore D(CL = 0.99, q =
6) = 16.8. In other words, the range of parameter values
for which χ2 � χ2

min + 16.8 includes the true values of the
parameters with 99% probability. We have tested this criterion
following the procedure of Avni [43], i.e., by simulating

a number of experimental fission-probability measurements
with known input values of the barrier and level-density
parameters. In 99% of the cases the interval defined by the
values of the fitted parameters with the uncertainty limits given
by the condition χ2 � χ2

min + 16.8 included the input values.
The uncertainties of the barrier parameters given in Table V

show that our data for 244Cm mainly constrain the height of the
outer barrier. For this nucleus we obtain a smaller difference
between the two barrier heights (under the assumption of
axial asymmetry). The results obtained when only the data
below 7.5 MeV are fitted agree within the uncertainties with
the results obtained fitting the whole range of excitation
energy.

The uncertainties given in Table V for 243Cm, 242Am,
and 241Am show that our data well constrain the height and
the curvature of the first fission barrier, while they weakly
constrain the barrier parameters of the second barrier. For
these nuclei our data require a first barrier that is significantly
higher than the second barrier. In this situation, the height of
the first barrier dominates the onset of the fission probability,
because 〈Nf,A〉 � 1, see Eq. (25). Only at higher excitation
energies is there some influence of the second barrier, which in
any case remains rather weak, due to the significant difference
between the two barrier heights.

In Table V our results are compared to the ones by Back
et al. and Gavron et al. and to the empirical systematics by
Bjornholm and Lynn [42] and RIPL3 [33]. The values for
�ωA and for EB by Gavron et al. are in parentheses because
they “should be regarded with extreme caution,” as stated by
the authors themselves. Our results for the first barrier of
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244Cm, using the assumption that the inner barrier is axial
asymmetric, are in good agreement with the ones of Gavron
et al. The differences between our data and that of Gavron
et al. at the highest excitation energies (see Fig. 8) are not
relevant for the determination of EA because EA is mainly
determined by the probability at the fission threshold. Our
value for the first barrier of 244Cm is also in good agreement
with the one by Back et al., despite the important differences
between fission probabilities on which the two analyses are
based. Obviously, if we would fit our model calculations to
the data by Back et al. we would obtain a higher inner barrier.
The reason for the good agreement in the barrier values might
be that Back et al. did not consider collective enhancement
in the level density, which results in a significant increase of
the level density. We may speculate that, with a much higher
level density, Back et al. would have obtained a significantly
higher barrier. Our results for EA assuming axial asymmetric
shapes are in good agreement with the recommended values
by RIPL3, whereas our results assuming axial symmetry are
in agreement with the systematics by Bjornholm and Lynn.
The calculations assuming axial asymmetric shapes at EA

give a value for EB that is higher than the value given by
RIPL3.

For 243Cm, our results [see Fig. 12(b)] for EA agree within
the uncertainties with the results by Gavron et al. They
observed that for this nucleus EA was particularly sensitive
to the used level-density description, leading to the large
uncertainty of 500 keV given in Table V. Note that the model
calculation by Gavron et al. did not fit well the data in the
excitation-energy region around 7 MeV. Our results for EA

and �ωx are in good agreement with Bjornholm and Lynn, but
our value for EA is somewhat higher than the value given in
RIPL3.

The value of EA obtained for 242Am [see Fig. 12(c)] agrees
well with the result by Gavron et al. We find also very good
agreement with the results by Back et al., despite the significant
lower fission probabilities, in particular for the uncorrected
data [24]. This may be due to the fact that in Ref. [24] additional
information on shape isomer half lives and isomeric ratios was
used to constrain the barrier parameters and curvatures. Our
results are also in good agreement with Bjornholm and Lynn
and RIPL3. For 241Am our result for EA is somewhat higher
than the other published values.

Table VI shows the values of ãx/ãn that best reproduced the
data, where ãx is the asymptotic level density parameter at the
fission barrier and ãn at the ground state of the corresponding
residual nucleus after neutron emission [whose value follows
from Eq. (31)]. Our results are affected by rather large

TABLE VI. Values of the asymptotic level density parameters at
the barriers used in this work. The values for 244Cm correspond to the
fit to the ensemble of data.

Fissioning nucleus ãA

ãn

ãB

ãn

244Cm 0.95 ± 0.30 1.18 ± 0.06
243Cm 1.19 ± 0.16 1.08 ± 0.24
242Am, 241Am 1.16 ± 0.50 1.26 ± 0.10

uncertainties and agree within the error bars with the starting
values recommended by RIPL3 (between 1.05 and 1.07) [33].

VI. CONCLUSION

We have measured the fission probabilities of 242Am,
243Cm, and 244Cm induced by few-nucleon transfer reactions
between a 3He beam and a 243Am target. The details of
the experimental setup and the data analysis have been
described. We have presented a detailed uncertainty analysis.
To our knowledge, it is the first time that such a rigorous
uncertainty study has been performed on transfer-induced
fission probabilities. This analysis shows that the covariance
between the single and coincidence events has a significant
impact on the final uncertainty of the fission probability.
We have also carefully investigated the correlation between
the experimental data at different excitation energies. This
correlation is caused by the fission-detection efficiency, which
is given by the solid angle of the fission-detector and is constant
for all excitation energies and by the target-contaminant
subtraction. The increase of the correlation with excitation
energy is due to the target-contaminant subtraction.

We have compared our fission probabilities to those by
Gavron et al. [9], obtained using the same transfer reactions
and similar experimental conditions. For 242Am we find good
agreement; however, there are significant differences at the
fission thresholds of 243Cm and 244Cm and above 7.5 MeV
for 244Cm. The uncertainties of our data are generally much
lower than the ones of previous measurements by Gavron
et al. [9] and Back et al. [7,24,25]. Therefore, our data
can be used to provide additional constraints on the barrier
parameters and level densities of the nuclei investigated.
We have observed clear subthreshold structures for 243Cm.
It would be desirable to perform dedicated experiments to
investigate these structures with sufficient statistics at different
detection angles of the ejectile and in combination with
measurements of the fission-fragment angular distributions.

We have extracted information on the properties of the
fission barriers and the level-density parameters of the inves-
tigated nuclei by comparing our results to statistical-model
calculations. Our model is based on the simple assumption
of a double-humped barrier in the complete damping limit.
We have determined the uncertainties of the parameters in a
rigorous way. These uncertainties show that our data provide
a significant constrain on the parameters of the first barrier
of 243Cm, 242Am, and 241Am, which have been determined
with an uncertainty of less than 200 keV. The other barrier
parameters of 243Cm, 242Am, and 241Am, and the ensemble of
barrier parameters of 244Cm are affected by larger uncertain-
ties. Our results are in general good agreement with the barrier
parameters reported in the literature. The experimental data are
well reproduced using asymptotic level-density parameters at
the barriers ãx that agree within rather large error bars with the
values recommended in RIPL3 [33].
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