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Multidimensional fission model with a complex absorbing potential
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We study the dynamics of multidimensional quantum tunneling by introducing a complex absorbing potential
into a two-dimensional model for spontaneous fission. We first diagonalize the Hamiltonian with the complex
potential to determine a resonance state as well as its lifetime. We then solve the time-dependent Schrödinger
equation with such basis in order to investigate the tunneling path. We compare this method with the semiclassical
method for multidimensional tunneling with imaginary time. A good agreement is found both for the lifetime
and for the tunneling path.
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I. INTRODUCTION

Spontaneous fission is a typical example of multidimen-
sional quantum tunneling, and its description has remained
a challenge in nuclear theory. The first step for any cal-
culation is to construct a potential energy surface in a
multidimensional space. A standard approach for this is the
macroscopic-microscopic method, with which the potential
surface is constructed using the shell correction method of
Strutinsky [1–3]. In recent years, a microscopic description
based on a self-consistent mean-field theory has also been
attempted [4–17]. Even though a microscopic understanding
of fission phenomena is important, there have still been many
open problems to be solved. For instance, the choice of relevant
degrees of freedom is still under discussion [9] and a large
uncertainty may arise from a choice of energy functional [18].
Moreover, a difficulty in constrained mean-field calculations
has also been pointed out [3,19].

In order to calculate the fission lifetime, most of the
calculations, with both the macroscopic and microscopic
approaches, rely on the semiclassical approximation. That is,
one often searches the least action path in a multidimensional
space [1,7,9] or equivalently solves the Newtonian equations
with the inverted potential [20–22].

In this paper, we investigate this problem from a different
perspective. That is, we solve the time-dependent Schrödinger
equation (TDSE) and monitor the time evolution of the wave
function in a fully quantum mechanical manner. This method
provides a good intuitive description for particle decays, and
has been applied to systems where the decay width of a
resonance state is about the same order of magnitude as the
resonance energy [23–27].

In the previous applications of this method, because the
TDSE has been solved by numerical integration, the time step
had to be small with respect to the typical time scale of the
process. The evolution was then restricted to the small time
regime. In this paper, we propose a new method introducing
a complex absorbing potential in the exterior region. The
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complex absorbing potential has been used in time-dependent
calculations [28–32] in order to absorb the wave function at
the boundary so as to avoid the reflexion that would otherwise
perturb the dynamics. For the decay problems, the absorbing
potential simulates the outgoing wave boundary condition,
which is imposed when one constructs a Gamow state. Notice
that this method is intimately related to the so-called complex
absorbing potential (CAP) method, which was developed to
compute resonances states in atomic physics [33–35] as well
as in nuclear physics [36–38], even though we do not take the
limit of vanishing complex absorbing potential.

The paper is organized as follows. In Sec. II, we present
the formalism for time-dependent calculations with a complex
absorbing potential, which describes quantum mechanically
multidimensional tunneling decay problems. In Sec. III, we
apply this method to a simple two-dimensional model for
spontaneous fission. We compare the results with those
in the semiclassical approximation for both the one- and
two-dimensional problems. We then summarize the paper in
Sec. IV.

II. FORMALISM

To investigate the multidimensional tunneling problem, we
solve the TDSE in a finite box. To this end, we add an imaginary
potential to the Hamiltonian H , that is, H ′ = H + iW (r).
The imaginary potential iW (r) absorbs the outgoing flux, and
should be applied only at the edge of the box in order to
not perturb the physical behavior of the decay process. This is
effectively equivalent to imposing the outgoing wave boundary
condition for resonance states. The TDSE can be integrated as

|�(t)〉 = e− i
�

tĤ ′ |�0〉, (1)

where |�0〉 is the initial wave function at t = 0.
To compute easily the propagator in Eq. (1), we expand the

wave function on the biorthogonal basis [39–41] formed by
the left and right eigenfunctions of the Hamiltonian H ′,

H ′∣∣ϕr
i

〉 = Ei

∣∣ϕr
i

〉
and

〈
ϕl

i

∣∣H ′ = Ei

〈
ϕl

i

∣∣. (2)

Notice that the eigenvalues Ei are complex since the Hamil-
tonian H ′ is non-Hermitian. The biorthogonal basis forms the
completeness relation as

∑
i |ϕr

i 〉〈ϕl
i | = 1, which leads to the
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simple evolution

|�(t)〉 =
∑

i

e− i
�

tEi
〈
ϕl

i

∣∣�0
〉∣∣ϕr

i

〉
. (3)

An advantage of this method is that the evolution of the system
can be followed for a very long time. This is particularly
suitable for a tunneling process where the lifetime is several
orders of magnitudes longer than the characteristic time scale
of the system.

Among the eigenstates of H ′, we identify the state |ϕr
i 〉

which has the smallest value of the imaginary part of the
eigenenergy, Ei = Er

i − i�i/2, with the physical resonance
state. The real part of energy, Er

i , corresponds to the reso-
nance energy while the imaginary part, �i , corresponds to
the resonance width. In fact, it is straightforward with the
TDSE to show that this state has the lifetime of τi = �/�i .
In this method, the details of the initial wave function |�0〉 is
unimportant as long as it has an appreciable overlap with the
resonance wave function, |ϕr

i 〉.

III. RESULTS

A. Model Hamiltonian

We now apply the formalism presented in the previous
section to a fission problem and compare the results with those
in the semiclassical approximation. To this end, we employ a
two-dimensional fission model considered in Refs. [42,43].
This model consists of the elongation R between the two
fission fragments and an intrinsic degree of freedom ξ coupled
to the elongation. The Hamiltonian then reads

H (R,ξ ) = − �
2

2M

∂2

∂R2
+ U (R) − �

2

2m

∂2

∂ξ 2
+ 1

2
mω2ξ 2 + gRξ.

(4)

The potential U (R) is chosen to be

U (R) = 1

2
M	2R2

(
1 − R

Rb

)
, (5)

in order to form a barrier. The total potential, V (R,ξ ) =
U (R) + 1

2mω2ξ 2 + gRξ , has a saddle at

Rs = 2Rb

3M	2

(
M	2 − g2

mω2

)
, (6)

ξs = − 2gRb

3Mm	2ω2

(
M	2 − g2

mω2

)
, (7)

with the barrier height of

Vb = 1

6

(
2Rb

3M	2

)2 (
M	2 − g2

mω2

)3

. (8)

When the intrinsic degree of freedom ξ is neglected, the saddle
is at Rs = 2Rb/3 with the height of Vb = 2M	2R2

b/27 [42].
In the calculations presented below, we use the same

parameters as those in Refs. [42,43] except for Rb, which we
vary to study the tunneling in the potential with different barrier
heights. Those parameters were determined in order to mimic
the symmetric fission of 234U with a coupling to the β vibration.
The parameters are then taken to be �	= �ω = 0.97 MeV,

g2 = Mm	2/(16�
2), M = 234MN/4, and m = 3AMNR2

0/
(8π ), where MN is the nucleon mass, A = 234 is the atomic
number of the nucleus, and R0 = 1.2A1/3 fm is the equivalent
sharp radius (notice that the vertical axis in Fig. 4 in Ref. [43]
is actually R0ξ , rather than ξ itself). In the actual calculations,
we modify the total potential to a constant value in the
outer region to avoid the divergence of the potential, that is,
V (R,ξ ) → max(V (R,ξ ), − 3).

B. One-dimensional problem

Before we discuss the tunneling dynamics in the two-
dimensional space, let us first solve the problem in one dimen-
sion neglecting the ξ degree of freedom. In the one-
dimensional problem, the tunneling path is trivial, and the
decay lifetime is obtained in the semiclassical approximation
as

τ = 2π

	
e2S/�, (9)

with

S =
∫ R1

R0

√
2M[U (R) − E0] dR, (10)

where E0 is the energy of the decay state, and R0 and R1 are
the inner and the outer turning points, respectively, satisfying
U (R0) = U (R1) = E0. For a cubic potential given by Eq. (5),
the semiclassical formula can also be transformed to [20,42]

τ = 1

	

√
π�

60S ′ e2S ′/�, (11)

with

S ′ =
∫ R′

1

0

√
2MU (R) dR, (12)

where U (R′
1) = U (0) = 0.

To solve the same problem quantum mechanically, we first
determine the initial wave function |�0〉 by modifying the
potential U (R) so that the modified potential has a bound
state. To this end, we replace the potential outside the barrier
with a constant value [27,44], which we take to be 1 MeV
as shown by the dashed line in Fig. 1(a). The corresponding
initial wave function is plotted by the dashed line in the lower
panel of Fig. 1.

For the complex absorbing potential, we employ the shifted
polynomial function [37,38]

W (R) = W0(R − Ra)2θ (R − Ra), (13)

with W0 = −0.387 MeV fm−2 and Ra = 14 fm. We have
confirmed that the results do not significantly change even if
we vary the value of W0 and Ra as well as the size of the box.

With this complex potential, we then determine the en-
semble of eigenstates and eigenvalues of the Hamiltonian H ′
defined by Eq. (2). It should be mentioned here that due to
the large difference in the order of magnitude between the real
and imaginary parts of the resonance energy, it is numerically
necessary to use the quadruple precision in the program. With
this prescription, physical quantities can be calculated up to
about 34 decimal digits. This allows us to calculate a lifetime
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FIG. 1. (Color online) (a) One-dimensional potential U (R) with
Rb = 6 fm (the red solid line). The figure also shows the modified
potential for the initial wave function (the blue dashed line) and the
absorbing potential W (R) (the green dotted line). (b) The resultant
initial wave function (the blue dashed line) and the resonance wave
function (the red solid line).

of the order of 109 years when the characteristic time of the
system is of the order of 10−22 s. Another important parameter
in the calculations is the lattice mesh size R, which has
to be small enough to describe correctly the tunneling wave
function. In our calculations, we take R = 0.25 fm with the
finite difference formula with 9 points for the second derivative
in the kinetic energy operator.

To select the physical resonance wave function among the
eigenstates of H ′, we take the lowest energy state |ϕr

1〉 which
has the maximum overlap with the initial state. The resulting
wave function is shown in Fig. 1(b) by the solid line. We
see that the wave function is smoothly damped up to a factor
of 1030 before reaching the reflecting edge of the lattice at
R = 54 fm. The decay width can then be read off from the
imaginary part of the eigenenergy.

To have a more intuitive picture of the decay process, we
compute the time-evolution of the wave function according to
Eq. (3). The probability density at different times obtained with
a larger value of Ra (Ra = 54 fm) is shown in Fig. 2. At t = 0,
the confining in the modified potential is suddenly removed,
and the initial wave function is coupled to the continuum.
In the first instant of the dynamics, one can see the emitted
wave going outward from the potential barrier. After about
t = 104 fm/c, the emission becomes stationary, and the wave
packet has the same shape as the metastable wave function
constructed by diagonalizing the Hamiltonian [see the solid
line in Fig. 1(b)]. At later time, the wave packet is absorbed
exponentially keeping the same spatial shape.
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FIG. 2. (Color online) Time evolution of the square of the wave
function during the decay process. The time is indicated in unit of
fm/c.

The decay width can be calculated with the TDSE by
computing the survival probability defined as

P(t) =
∫ Rlim

−∞
|�(R,t)|2dR, (14)

as a function of time, where Rlim is taken outside the barrier.
The survival probability obtained with Rlim = 20 fm is plotted
in Fig. 3 for the potential with Rb = 11 fm. We find that both
the TDSE method and the imaginary part of the eigenenergy
of H ′ yield 1/τ = 5.76 × 10−9 (1/yr) while the semiclassical
approximation yields 1/τ = 5.69 × 10−9 (1/yr). The agree-
ment between the quantal and the semiclassical calculations is
rather good for this parameter set, partly because the barrier

(b)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

P(
t)

10−3

10−2

10−1

1

P(
t)

0.0 0.2 0.4 0.6 0.8 1.0

t [109 yr]

FIG. 3. (Color online) Survival probability as a function of time
computed dynamically using the formula (14) with Rlim = 20 fm
(the blue crosses). The Rb parameter in the potential is taken to be
Rb = 11 fm. The survival probability is plotted both in the linear
scale (the upper panel) and in the logarithmic scale (the lower panel).
For a comparison, the figure also shows the survival probabilities
for an exponential decay with the decay width obtained from the
semiclassical approximation given by Eq. (9) (the red solid line).
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FIG. 4. (Color online) Wave function for the metastable state
plotted in the logarithmic scale. This state corresponds to an eigenstate
of the Hamiltonian H ′ for the potential with Rb = 6 fm and with the
imaginary potential given by Eq. (13) with W0 = −0.1 MeV and
Ra = 11 fm. The total potential V (R,ξ ) is also plotted by the contour
lines.

is high and the multiple reflections under the barrier can be
neglected.

C. Two-dimensional problem

We now discuss the tunneling dynamics in the two-
dimensional surface. To this end, we diagonalize the Hamil-
tonian H ′ in two dimensions in a lattice of dimension R ∈
[−4.75 fm : 16 fm] and ξ ∈ [−7.25 : 5.5] with a mesh size
of R = 0.25 fm and ξ = 0.25. The imaginary potential is
implemented with the same expression as Eq. (13) with W0 =
−0.1 MeV and Ra = 11 fm. The reference wave function
to be used to select the physical resonance state is obtained
in a similar manner as in the previous subsection. The wave
function for the metastable state is plotted in Fig. 4 for the
choice of Rb = 6 fm, together with the total potential V (R,ξ )
in the contour lines. One can see that this wave function is well
confined inside the barrier with a small component outside
due to the quantum tunneling, as in the one-dimensional case
shown in Fig. 1.

Notice that this wave function corresponds to the wave
function after the decay becomes stationary. The pre-stationary
decay at the first instant of the decay process is shown in Fig. 5,
following the time evolution from the reference wave function
as the initial state. One can see that the flow occurs in a small
region in the potential energy surface.

We compare the quantum mechanical flow with the semi-
classical tunneling path. To this end, we follow the method
described in Refs. [20–22]. That is, the semiclassical tunneling
path is determined by solving the classical equations of
motion in an inverted potential, V (R,ξ ) → −V (R,ξ ). For the

initial condition, one can use R(0) = ε

√
�

2M	
cos θ , ξ (0) =

ε

√
�

2mω
sin θ , and Ṙ(0) = ˙ξ (0) = 0, where ε is a small number.

By searching with θ from 0 to 2π , one finds a special angle θ
for which the classical path reaches the equipotential surface
(and bounces back to the origin if one continues to follow the
time evolution of the path), while for other values of θ the
classical path is reflected before it reaches the equipotential
surface [20–22,43,45]. This special path is referred to as the
escape path, and plays an important role in the semiclassical
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FIG. 5. (Color online) Time evolution of the two-dimensional
wave function at time t = 0, 250, 500, and 1250 fm/c. For a
comparison, the semiclassical tunneling path is also shown with the
dashed line.

theory of multidimensional quantum tunneling. The escape
path so obtained is denoted by the dashed line in Fig. 5 (there is
only one escape path for the potential considered in this paper).
It is remarkable that the quantum mechanical time evolution
almost follows the semiclassical path. We have confirmed that
the tunneling path obtained by minimizing the classical action
with the algorithm in Ref. [46] provides the same result.

To make a further comparison of the tunneling path, we
compute the flux, j = (jR,jξ ), from the resonance wave
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FIG. 6. (Color online) Comparison of the quantum mechanical
flux computed with Eqs. (15) and (16) (the red arrows) with the
semiclassical escape path (the blue dashed line). The two-dimensional
potential energy surface is also shown by the black contour lines.
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FIG. 7. (Color online) Fission lifetime as a function of the Rb

parameter in the potential U (R). The lifetime computed quantum
mechanically is denoted by the blue crosses, while that evaluated
with the semiclassical method using Eq. (17) is denoted by the red
line.

function as

jR = �

2iM

(
ϕr∗

1
∂ϕr

1

∂R
− ϕr

1
∂ϕr∗

1

∂R

)
, (15)

and

jξ = �

2im

(
ϕr∗

1
∂ϕr

1

∂ξ
− ϕr

1
∂ϕr∗

1

∂ξ

)
. (16)

The flux is shown in Fig. 6 and is compared to the semi-
classical escape path. The quantum flow is a collection of
all the trajectories connecting the region around the origin
with the continuum region. We see that the main quantum
mechanical flow is systematically parallel to the semiclassical
trajectory. The semiclassical path can thus be regarded as the
mean trajectory of the quantum flow, whereas the quantum
flow takes into account the quantum mechanical fluctuation
around the classical trajectory.

In addition to the agreement for the tunneling path, we
also compare in Fig. 7 the resulting fission lifetime. Varying
the Rb parameter in the potential U (R), we obtain a range of
fission lifetimes from the characteristic time of the system
to a lifetime longer than the actual lifetime of the 238U
nucleus. The quantum mechanical lifetime is computed from
the imaginary part of the resonance energy, while the lifetime
in the semiclassical approximation is evaluated using the
Eq. (11) with the action integral evaluated along the escape

path P in the imaginary time,

S ′ =
∫
P

(MṘ2 + mξ̇ 2) dτ. (17)

The latter is equivalent to approximating the pre-exponential
factor by that for a one-dimensional problem with a cubic
potential along the escape path [43]. In the range shown
in the figure, a good agreement is found between the two
methods, the maximum deviation being up to about 20%.
Evidently, the semiclassical method provides a good approx-
imation to the multidimensional tunneling problem for this
Hamiltonian.

IV. SUMMARY

We have presented a full-quantum method to study a decay
lifetime as well as the tunneling dynamics. To this end, we
have introduced a complex absorbing potential, which is
effectively equivalent to the outgoing boundary condition, and
constructed the biorthogonal basis. We have shown that this
method provides a good tool to follow the time evolution of a
system over a very long time. This enables one to compute the
decay lifetime from a few fm/c to the order of 109 years. A
comparison with the semiclassical approximation has shown a
good agreement between the two methods. It has been shown
that the average of fissioning flux in a multidimensional plane
corresponds to the semiclassical tunneling path. For the decay
lifetime, the two methods yield similar values to one another,
where the maximum difference is only about by 20%.

The quantum mechanical method discussed in this paper
provides a good alternative to the semiclassical method. It
provides an intuitive picture of multidimensional quantum
tunneling, including the quantum mechanical fluctuation of
the classical path. It will also provide a convenient method
when a bifurcation of the tunneling path is important, e.g., in
the presence of a competition of several fission modes. We plan
to apply this method, both for dynamics and a determination of
resonance state, to more realistic systems using the constrained
mean-field theory for the potential energy surface and/or the
time-dependent generator coordinate method [13,14,47]. We
will report it in a separate publication.
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