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Background: The linear response of the nucleus to an external field contains unique information about the
effective interaction, the correlations governing the behavior of the many-body system, and the properties of its
excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By
comparing computed sum rules with experimental values, the information content of the response can be utilized
in the optimization process of the nuclear Hamiltonian or the nuclear energy density functional (EDF). But the
additional information comes at a price: compared to the ground state, computation of excited states is more
demanding.
Purpose: To establish an efficient framework to compute energy-weighted sum rules of the response that
is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have
developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle
random-phase approximation (QRPA).
Methods: To compute sum rules, we carry out contour integration of the response function in the complex-energy
plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the Thouless
theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse-energy-weighted sum rule.
Results: We derive the sum-rule expressions from the contour integration of the complex-energy FAM. We
demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA.
We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the
dielectric theorem for the inverse-energy-weighted sum rule to nuclear density functional theory in cases when
the EDF is not based on a Hamiltonian.
Conclusions: The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when
optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel
computing. The FAM formulation is especially useful when standard theorems based on commutation relations
involving the nuclear Hamiltonian and the external field cannot be used.
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I. INTRODUCTION

Atomic nuclei exhibit various kinds of collective excita-
tions, with characteristics considerably different from simple
nucleonic excitations [1,2]. Among those, giant resonances
form a distinct class [3]. Although their excitation energies are
relatively high compared to the low-energy collective modes,
the main characteristics of giant resonances are understood
in terms of the superposition of many nucleonic excitations.
Experimentally, various types of giant resonances have been
seen. Examples are shape vibrations, spin excitations, and
charge-exchange excitations of various multipolarities and
isospins. These modes carry rich information about basic
nuclear properties.

There has been excellent progress in the modeling of atomic
nuclei using nuclear density functional theory (DFT) [4]. State-
of-the-art energy density functionals (EDFs), optimized to
various classes of data [5–9], enable a quantitative description
of global nuclear properties throughout the nuclear landscape

[10–12]. Ground-state properties of nuclei, such as binding
energies, charge radii, effective single-particle energies of
doubly closed shell nuclei, and basic parameters characterizing
the nuclear matter equation of state, are typically used as
empirical inputs in EDF parameter optimization. However,
properties of excited states, such as giant resonances, are
seldom considered (see Refs. [5,13–19] for representative
examples of work along those lines). This results in large
uncertainties of EDF parameters sensitive to, and governing,
low- and high-frequency nuclear excitations. The EDFs of the
next generation are expected to overcome this deficiency by
including selected properties of the giant resonances into the
pool of observables used in the optimization.

To extract the information content of giant resonances,
the sum-rule technique [20–24] has been widely used. For
instance, mean giant resonance energies can be related to
the ratio of the sum rules of different energy moments
[22,25–28]. The inverse-energy-weighted sum rule provides
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information about the nuclear polarizability, which is the
fundamental quantity characterizing the nuclear response. An
important quantity, in the context of studies of neutron-rich
matter, is the electric dipole polarizability, which is related
to symmetry energy and its density dependence [29–31].
Various polarizabilities carry information about instabilities
in nuclear matter [32–34]. In some cases, the Thouless
theorem [35–37] provides a simple way to access sum rules
directly from the Hartree-Fock-Bogoliubov (HFB) solution.
Unfortunately, the Thouless theorem applies to positive-odd
energy moments, and simple expressions can be derived only
for simple operators (such as multipole moments). Moreover,
the theorem is justified only if a Hamiltonian representation of
the interaction is available, which is generally not the case for
nuclear DFT where modern EDFs are usually not connected
to an underlying Hamiltonian and often break local gauge
invariance [38]. Therefore, an efficient technique to compute
nuclear sum rules, regardless of the form of the operator F̂ , is
desired.

The direct evaluation of sum rules from self-consistent
quasiparticle random-phase approximation (QRPA) matrix
solutions is computationally demanding because of the con-
figuration spaces involved. A recent formulation of the sum
rule in terms of QRPA matrices enables the computation
of sum rules without diagonalizing the QRPA matrix [27].
Nevertheless, this method still requires knowledge of the
QRPA matrix, which has large dimensions, especially when
spherical symmetry is broken. Other recent developments
include applications of the Lanczos algorithm to random-
phase approximation (RPA) sum rules [39] and the use
of the Lorentz integral transform method and the Lanczos
technique [40].

The finite-amplitude method (FAM) [41], based on the
linear-response approach, significantly reduces the compu-
tational cost of the QRPA problem. The residual two-body
interaction is numerically computed from the finite-amplitude
nucleonic fields induced by an external polarizing field.
The FAM has been recently implemented in various self-
consistent frameworks, including three-dimensional Hartree-
Fock (HF) [41], spherical HFB [42], axially deformed
Skyrme-HFB [43–45], and relativistic mean-field models
[46,47]. The FAM has been applied to the description of
giant resonances and low-energy dipole strength [48,49], the
computation of the QRPA matrix elements [50], and the
description of discrete low-lying QRPA modes by means
of the contour integration technique in the complex energy
plane [51].

The objective of this study is to propose an efficient
approach to sum rules by using the contour integration
technique of Ref. [51]. Because of its inherently parallel
structure, the new method is ideally suited to optimizations
of next-generation nuclear EDFs, informed by experimental
data on multipole and charge-exchange strength. This paper is
organized as follows. Section II summarizes the basic expres-
sions. In Sec. III, we present the formulation of the complex-
energy FAM approach to sum rules. Section IV contains
numerical tests, benchmarking examples, and applications
to realistic cases. The conclusions and outlook are given in
Sec. V.

II. BASIC EXPRESSIONS

A. Sum rule

The ground-state (g.s.) strength function S(E) for a one-
body operator F̂ is defined as

S(E) ≡
∑

ν

δ(E − Eν)|〈ν|F̂ |0〉|2, (1)

where |0〉 and |ν〉 denote, respectively, the ground state and
excited state of the system with energies E0 and Eν . The kth
moment of S(E),

mk(F̂ ) =
∫

(E − E0)kS(E) dE, (2)

is called the energy-weighted sum rule of order k. In terms of
the transition matrix elements of F̂ , it is given by

mk(F̂ ) ≡
∑

ν

(Eν − E0)k|〈ν|F̂ |0〉|2. (3)

As discussed in, e.g., Refs. [1,2], certain sum rules are
independent of the specific many-body theory used to describe
the ground state and the excited states. For example, the nuclear
shell model and QRPA frameworks have been widely used
to evaluate the sum rules. In QRPA, the excitation energy
Eν − E0 is replaced with the QRPA frequency �ν , which is
the eigenvalue of the matrix equation:(

A B
−B∗ −A∗

)(
Xν

Y ν

)
= �ν

(
Xν

Y ν

)
, (4)

where A and B are QRPA matrices. The QRPA equation (4)
has positive-energy solutions �ν > 0 (ν > 0), with (Xν,Y ν),
and mirror negative-energy solutions �−ν = −�ν < 0, with
(X−ν,Y−ν) = (Y ν∗,Xν∗). The positive frequency solutions,
being the physically relevant ones, are used for the sum rule,
and the summation in Eq. (3) is, therefore, restricted to QRPA
modes with ν > 0.

B. Finite-amplitude method

The FAM is an efficient technique to obtain the response
function S(E) without explicitly computing the A and B QRPA
matrices in Eq. (4). For the details pertaining to the FAM,
we refer the reader to, e.g., Ref. [42]. The complex response
function for a given operator F̂ at a given complex frequency
ωγ = ω + iγ , found as a solution of the FAM equations, is
given as

S(F̂ ,ωγ ) = −
∑
ν>0

{
|〈ν|F̂ |0〉|2
�ν − ωγ

+ |〈0|F̂ |ν〉|2
�ν + ωγ

}
. (5)

The Lorentzian distribution of the strength function is obtained
by taking the imaginary part of S:

− 1

π
Im S(F̂ ,ωγ )

= γ

π

∑
ν>0

{
|〈ν|F̂ |0〉|2

(�ν − ω)2 + γ 2
− |〈0|F̂ |ν〉|2

(�ν + ω)2 + γ 2

}
. (6)

A contour integration along the path Cν , which encircles the
real energy pole �ν of the response function, gives the QRPA
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transition strength to state |ν〉 [51],

1

2πi

∮
Cν

S(F̂ ,ωγ )dωγ = |〈ν|F̂ |0〉|2 (�ν > 0), (7)

or, alternatively, along C−ν ,

1

2πi

∮
C−ν

S(F̂ ,ωγ )dωγ = − |〈0|F̂ |ν〉|2

= − |〈ν|F̂ †|0〉|2 (�−ν < 0). (8)

For a small γ � ω, the relation 1/(ω + iγ ) = P (1/ω) −
iπδ(ω) holds, and the sum rules can be formally calculated
using

mk(F̂ ) = − 1

π
lim
γ→0

∫ ∞

0
ωkIm S(F̂ ,ω + iγ )dω. (9)

An approximate value of the sum rules can be found from this
expression from a finite value of γ [42,43,47,49]. However,
to guarantee sufficient numerical accuracy, a very fine mesh
would be required for the integration (9) to take into account all
the QRPA modes, whose locations are not known beforehand.

III. SUM-RULE EXPRESSIONS IN THE FAM

In this section we introduce the sum-rule approach based on
the contour integration of the FAM. For simplicity, we assume
that the operator F̂ cannot excite spurious modes and that all
the QRPA energies �ν are nonzero. We also assume that the
HFB state is stable with respect to small density variations;
i.e., there are no imaginary-frequency QRPA solutions. This
guarantees that all the QRPA poles �ν lie on the real axis. In the
following, we adopt the notation ω for a complex frequency.

The basic idea behind the FAM approach to sum rules is to
utilize the identity based on Cauchy’s integral theorem:∮

D

f (ω)S(F̂ ,ω)dω =
∑
ν>0

f (�ν)|〈ν|F̂ |0〉|2, (10)

where the contour D encircles all the positive QRPA fre-
quencies �ν > 0 and excludes all the singularities of the
complex function f (ω). By setting f (ω) = ωk , we obtain the
expressions for the sum rule mk(F̂ ).

In the following, we assume the operator F̂ to be Hermitian
for simplicity. In this case, positive and negative energy
solutions are associated with the same transition strength:

|〈ν|F̂ |0〉|2 = |〈0|F̂ |ν〉|2. (11)

The above equation does not hold when F̂ is not Hermitian.
However, Eq. (10) still can be used with an appropriately
chosen contour D.

A. Laurent series of the FAM response function

By using the Laurent series expansion of (1 − z)−1, we can
derive the expansion of the FAM response function. The FAM
response function has poles at ω = �ν and −�ν . In the inner
region below the lowest QRPA pole, |ω| < minν>0 �ν , S(F̂ ,ω)

Im ω

A1

A2

I1

I2

QRPA poles

Re ω

FIG. 1. (Color online) The contour D (oriented counterclock-
wise) in the complex-ω plane used to evaluate sum rules. The
contour consists of two semicircles A1 and A2 (of radii RA1 and
RA2 , respectively) and two segments I1 and I2 on the imaginary axis.
The positive QRPA poles are all located between RA2 and RA1 .

can be written as

S(F̂ ,ω) = −2
∞∑

n=0

m−(2n+1)(F̂ )ω2n. (12)

One can see that odd-k sum rules can be simply related to
the expansion coefficients of Eq. (12). The same is true in the
outer region above the highest QRPA pole, |ω| > maxν>0 �ν ,
where the response function can be expanded as

S(F̂ ,ω) = 2
∞∑

n=0

m2n+1(F̂ )

ω2n+2
. (13)

The expansions (12) and (13) are generalizations of
expansions proposed in Ref. [23] to the full complex energy
plane. We note that the inverse-energy-weighted sum rule
(k = −1) is found by setting ω = 0 in Eq. (12). This should be
done with care, however. If spurious modes are present, they
would produce a zero-frequency pole resulting in numerical
instabilities near or at the pole. If we choose the semicircle
A1 (counterclockwise) and A2 (clockwise) with the radii
satisfying 0 < RA2 < minν>0 �ν and RA1 > maxν>0 �ν , as
in Fig. 1, we can apply the series (12) and (13) along the
integration path. The odd-k sum rules are then given as

mk(F̂ ) =
{

1
2πi

∫
A1

ωkS(F̂ ,ω)dω (k > 0, odd),
1

2πi

∫
A2

ωkS(F̂ ,ω)dω (k < 0, odd).
(14)

To evaluate even-k sum rules, we need to connect A1 and A2

to enclose the positive-energy poles. To this end, we consider
contour D of Fig. 1 composed of semicircles A1 and A2

connected by straight segments I1 and I2 on the imaginary axis.
In summary, regardless of the moment k, the sum rule is

given by the integration along D:

mk(F̂ ) = 1

2πi

∮
D

ωkS(F̂ ,ω)dω =
∑
ν>0

�k
ν |〈ν|F̂ |0〉|2. (15)

However, for certain moments k, some parts of path D do
not contribute to the sum rule. For odd values of k, the
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TABLE I. Portions of the contour D required for computing
various sum rules mk . For sum rules with even k, the contributions
from I1 and I2 are identical.

k Required portions of D

Negative, even A2, I1, I2 (RA1 → ∞)
Negative, odd A2 (RA1 → ∞)
0 A1, A2, I1, I2

Positive, odd A1 (RA2 → 0)
Positive, even A1, I1, I2 (RA2 → 0)

contributions from I1 and I2 cancel each other. Furthermore,
for negative k, application of Jordan’s lemma, together with a
limit of RA1 → ∞, allows for the removal of the contribution
from A1. For positive k, there is no pole at ω = 0, and the limit
RA2 → 0 can be taken. Table I lists the portions of the contour
D required for each k. Furthermore, for even k, the contribu-
tions from I1 and I2 are identical. Similar contours are consid-
ered in Refs. [52–54] to compute energy-weighted sum rules.

IV. RESULTS

A. Numerical checks and benchmarking against MQRPA

To check the FAM approach to sum rules, following
Refs. [43,51] we consider the oblate configuration of 24Mg
computed with the SLy4 [55] Skyrme EDF. The HFB calcula-
tions were carried out with the DFT solver HFBTHO [56] in a
model space of five harmonic oscillator shells by employing a
volume pairing with the strength of V0 = −125.20 MeV fm3

and a 60 MeV quasiparticle energy cutoff. The resulting oblate
minimum of 24Mg has nonzero pairing in protons and neutrons.
The small single-particle model space employed makes it pos-
sible to benchmark FAM results against the matrix formulation
of the QRPA (MQRPA) [57] without any further truncation. To
compute spatial integrals we used Gauss-Hermite (NGH = 30),
Gauss-Laguerre (NGL = 30), and Gauss-Legendre (NLeg =
30) quadratures. The finite-amplitude expansion parameter
η was set to be 10−7, and the convergence criterion of the
FAM was set such that the change of the individual FAM
amplitudes from the previous iteration should be less than

10−5. This convergence criterion is chosen to be consistent
with the accuracy obtained with a given value of η, as discussed
in Ref. [43]. The integration along semicircles A1 and A2

was discretized with NA1 and NA2 points, respectively. In
addition, the integration along I1 was discretized with NI1

points and evaluated using the composite Simpson’s rule. As
for negative-k moments, the composite Simpson’s rule was
applied to the variable 1/ω to describe the divergent behavior
of integrand around ω = 0. In this particular test case, the
smallest and largest energy MQRPA poles appear at 1.3 and
128.7 MeV, respectively. Consequently, the contour radii were
set to RA2 = 1 MeV and RA1 = 200 MeV. To systematically
assess our numerical procedure for different moments k, we
used the same contour D for all cases, without simplifications
listed in Table I.

As far as the external field F̂ is concerned, we considered
the isoscalar (IS) and isovector (IV) monopole (M) and
quadrupole (Q) operators:

F̂ ISM = eZ

A

A∑
i=1

r2
i , (16)

F̂ IVM =
A∑

i=1

eeff(τ3i)r
2
i τ̂3i , (17)

F̂ ISQ = eZ

A

A∑
i=1

r2
i Y20(θi,ϕi), (18)

F̂ IVQ =
A∑

i=1

eeff(τ3i)r
2
i Y20(θi,ϕi)τ̂3i , (19)

where eeff(n) = eZ/A and eeff(p) = −eN/A.
It is worth noting that neutron and proton pairing-rotational

spurious modes, associated with the breaking of the particle
number symmetry, are present in the Kπ = 0+ sector. Fortu-
nately, these modes—generated by the neutron and proton
particle number operators—cannot be excited by particle-
hole operators (16)–(19). Therefore, the presence of pairing-
rotational spurious modes does not cause any additional
difficulties [41,43].

TABLE II. The real part of the integral (15) for −4 � k � 4 and F̂ ISM (in MeVk e2 fm4) along the semicircle A1 with RA1 = 200 MeV. The
integral was discretized with NA1 points. The numbers in parentheses denote powers of 10.

NA1 k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4

2 −9.0(−9) −2.6(−6) −3.8(−4) −2.7(−3) 14.4510 4195.31 608 575 4 318 446 −23 121 542 422
3 9.0(−9) 6.8(−8) −1.7(−4) 1.1(−4) 13.8328 4199.78 574 147 4 338 677 −10 598 058 261
4 3.3(−9) −2.6(−9) −1.4(−4) −5.7(−6) 13.5751 4199.39 562 629 4 336 463 −8 502 934 038
5 2.5(−9) 2.2(−10) −1.3(−4) 4.1(−6) 13.4599 4199.44 557 421 4 336 545 −7 722 808 528
7 2.0(−9) 7.1(−12) −1.2(−4) 2.9(−6) 13.3593 4199.44 552 937 4 336 634 −7 119 788 306
9 1.9(−9) 2.1(−12) −1.1(−4) 2.9(−6) 13.3181 4199.44 551 106 4 336 643 −6 889 795 483
10 1.8(−9) 1.9(−12) −1.1(−4) 2.9(−6) 13.3061 4199.44 550 575 4 336 644 −6 824 728 295
11 1.8(−9) 1.9(−12) −1.1(−4) 2.9(−6) 13.2972 4199.44 550 183 4 336 638 −6 777 106 568
12 1.8(−9) 2.0(−12) −1.1(−4) 2.9(−6) 13.2905 4199.44 549 885 4 336 648 −6 741 178 415
101 1.6(−9) 1.9(−12) −1.1(−4) 2.9(−6) 13.2556 4199.44 548 341 4 336 643 −6 558 793 102
201 1.6(−9) 1.9(−12) −1.1(−4) 2.9(−6) 13.2552 4199.44 548 325 4 336 643 −6 556 876 296
301 1.6(−9) 2.0(−12) −1.1(−4) 2.9(−6) 13.2551 4199.44 548 322 4 336 644 −6 556 517 206
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TABLE III. Similar to Table II but for the integration along A2 for several values of NA2 with RA2 = 1.0 MeV.

NA2 k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4

5 −1.20 929 0.0 372 710 3.26 165 5.00 438 3.23 108 1.0(−3) −1.22 915 2.2(−3) 0.996 926
11 −1.06 784 0.0 369 978 3.21 892 5.00 387 3.18 902 2.7(−5) −1.09 039 4.1(−5) 0.691 152
15 −1.05 236 0.0 369 925 3.21 386 5.00 386 3.18 407 7.1(−6) −1.07 507 3.9(−6) 0.663 895
16 −1.05 021 0.0 369 910 3.21 315 5.00 385 3.18 338 4.1(−6) −1.07 293 −7.8(−7) 0.660 178
21 −1.04 368 0.0 369 929 3.21 099 5.00 385 3.18 127 6.2(−6) −1.06 646 −6.4(−7) 0.649 056
31 −1.03 883 0.0 369 918 3.20 937 5.00 385 3.17 968 6.1(−6) −1.06 164 9.9(−7) 0.640 898
51 −1.03 625 0.0 369 916 3.20 851 5.00 385 3.17 884 5.6(−6) −1.05 908 1.0(−6) 0.636 594
101 −1.03 512 0.0 369 918 3.20 813 5.00 385 3.17 847 5.9(−6) −1.05 797 7.2(−7) 0.634 728

To begin with, we checked the convergence of the integral
(15) along A1, A2, and I1 with respect to the number of
integration points. The results are presented in Tables II–IV
for the isoscalar monopole operator. As seen in Table II, the
integrals along A1 are small for negative k. Analytically, these
values should be zero for negative-odd values of k; hence,
nonzero values in Table II reflect the numerical error of
calculations. As far as the positive k moments are concerned,
the convergence is faster for odd-k sum rules. In particular,
the convergence for k = 1 is excellent, because a six-digit
accuracy is achieved already with NA1 = 5. The integration
along A1 captures the total m1 and m3 sum rules; the result
in Table II indicates that these sum rules can be computed
very efficiently. Moreover, because the semicircle A1 is
located very far from the QRPA poles, FAM calculations
along A1 converge very quickly, typically after six iterations.
Furthermore, each FAM calculation at a given ω along the
contour is easily parallelizable; this could significantly reduce
the total computational time, although not so many points are
required for the convergence of m1 and m3.

Table III shows the convergence of the integral (15) along
A2. This portion of the contour is required for the sum
rules with negative k. Of most practical importance is the
inverse-energy-weighted sum rule m−1. The value of m−1

converges here with NA2 = 16 points. In general, as compared
to integration along A1, more FAM iterations are required
to achieve reasonable convergence along A2. In the case
considered, typically 50 FAM iterations are necessary for each
ω. When choosing RA2 one has to keep in mind that its value
should be smaller than the lowest QRPA pole, whose energy
is not a priori known. At the same time, the convergence of
FAM calculations for negative-k moments deteriorates rapidly
when RA2 gets too close to zero.

Table IV illustrates the convergence along the segment I1

on the imaginary axis. As discussed, this integration should be
nonzero only for even-k moments. The convergence for k = 0

is reached rather slowly, especially when compared with the
k = 4 and −4 cases. This is because the Simpson’s formula
used approximates the integrand with quadratic functions,
which is a poor ansatz for k = 0.

To benchmark our FAM approach, in Table V we display the
values of sum rules for the isoscalar and isovector monopole
operators; they are compared with the MQRPA results based
on the direct evaluation of the right-hand side of Eq. (15).
Overall, there is an excellent agreement between the two sets
of calculations. This result indicates that the proposed FAM
technique can be used to predict sum rules of interest in model
spaces that are too large to be treated with MQRPA. The
convergence of integration along A2 is not sufficient in the
case of k = −4; this sum rule is, however, less important than
other moments discussed.

B. Thouless theorem for energy-weighted sum rule

The Thouless theorem [35] gives the relation between
the energy-weighted sum rule m1(F̂ ) for isoscalar F̂ =∑A

i=1 f (r̂ i) or isovector F̂ = ∑A
i=1 f (r̂ i)τ̂3i one-body oper-

ators and the expectation value of the double commutator at
the ground state [21–23,58]:

m1(F̂ ) = 1

2
〈[F̂ ,[Ĥ ,F̂ ]]〉 = 1

2
(1 + κ)〈[F̂ ,[T̂ ,F̂ ]]〉

= (1 + κ)
�

2

2m

∫
|∇f (r)|2ρ(r)d r, (20)

where T̂ is the kinetic energy operator and κ is the enhance-
ment factor, which is present in the case when F̂ is an isovector
operator. The explicit expressions for the right-hand side of
Eq. (20) for the operators (16)–(19) are given in the Appendix.

The theorem is exact when both the ground state and the
excited states are many-body shell-model states and has been
proven for HF + RPA [35], HFB + QRPA [36], and second

TABLE IV. Similar to Table II but for the integration along I1 for several values of NI1 with RA1 = 200 MeV and RA2 = 1.0 MeV.

NI1 k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4

10 0.523 854 −6.6(−8) −1.472 654 1.3(−7) 61.4767 −2.0(−6) −208 884 2.3(−2) 3 356 473 886
30 0.523 849 1.2(−6) −1.478 626 −1.6(−6) 61.7093 −6.0(−7) −208 523 −4.2(−3) 3 356 786 248
50 0.523850 −1.1(−6) −1.477 671 1.4(−6) 61.7024 −2.2(−6) −208 522 3.3(−2) 3 356 787 504
100 0.523 850 −1.5(−6) −1.477 427 2.0(−6) 61.7044 −1.4(−6) −208 522 2.8(−2) 3 356 787 251
200 0.523 850 −8.7(−7) −1.477 417 1.2(−6) 61.7052 −1.8(−6) −208 522 2.2(−2) 3 356 787 739
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TABLE V. Sum rules (in MeVk e2 fm4) for the isoscalar and isovector monopole operators calculated with the MQRPA and the FAM. The
FAM calculations were performed by using NA1 = 301, NA2 = 101, and NI1 = 200 integration points.

k = −4 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4

MQRPA(ISM) 0.013 077 0.037 185 0.253 118 5.00 072 139.825 4200.82 131 368 4 342 358 157 906 069
FAM(ISM) 0.012 579 0.036 992 0.253 186 5.00 385 139.844 4199.44 131 277 4 336 644 157 058 272

MQRPA(IVM) 0.00 063 616 0.00 273 872 0.07 120 949 2.78 540 113.908 4735.03 199 525 8 527 358 370 625 216
FAM(IVM) 0.00 043 157 0.00 275 227 0.07 133 510 2.78 615 113.908 4734.30 199 510 8 524 830 368 643 941

RPA [58,59]. In the case of HF + RPA, expression (20) also
holds for the Skyrme force due to the δ-character of the
momentum-dependent terms [23,24]. However, as pointed
out in Ref. [33], the theorem has not been proven for a
generalized EDF, which is not explicitly related to an effective
interaction. Deviations from relation (20) can be caused by,
e.g., different assumptions about particle-hole and pairing
channels, the Slater approximation to the Coulomb exchange
term, approximations to spin-orbit and tensor terms [60], and
generalized density dependence [61–63]. To the best of our
knowledge, the Thouless theorem has not been proven in the
case of generalized EDFs.

In the following, we refer to the value (20) as the “HFB
value” of the energy-weighted sum rule. In Table VI the
energy-weighted sum rules obtained in HFB and the FAM
are compared for different model spaces given by Nsh. In a
small model space of Nsh = 5, the difference between FAM
and HFB values is non-negligible but quickly becomes small
with Nsh. This can be attributed to a poor representation of the
operator F̂ in small basis spaces, resulting in an error on the
derivative of the function f (r̂) in Eq. (20). Despite the fact that
the SLy4 EDF combined with volume pairing cannot be related
to a force, the numerical test in Table VI demonstrates that the
Thouless theorem provides a reasonably good approximation
to the value of the sum rule m1 for the Skyrme EDF.

In the notation of Ref. [64], the time-odd part of the Skyrme
EDF reads

Eodd =
∑
t=0,1

[
Cs

t (ρ0)s2
t + C�s

t st · �st

+ C
j
t j2

t + C
∇j
t st · (∇ × j t ) + CT

t st · T t

]
. (21)

By taking the Skyrme interaction as a starting point, the time-
odd and time-even coupling constants of the Skyrme EDF are
related to each other. That is, by fixing time-even coupling
constants, the time-odd part becomes also determined. This
choice also guarantees the EDF’s gauge invariance [65]. In the
EDF picture, however, the time-odd coupling constants can be
treated as independent parameters, where some of them can
be constrained by local gauge invariance [64,66]. With local
gauge invariance assumed and tensor terms excluded, the last
term of Eq. (21), proportional to CT

t , vanishes. In standard
HFB calculations for even-even nuclei, the time-odd fields
do not contribute because of time-reversal symmetry; hence,
the time-odd part (21) does not affect the HFB value (20).
However, when time-reversal symmetry becomes broken, as
in the case of FAM calculations, time-odd terms become active.

As shown in Table VI, the inclusion of the current-current
term C

j
t j2

t is necessary in the FAM to recover the HFB value of
the energy-weighted sum rule of the monopole and quadrupole
operators. This indicates that the gauge invariance of the term
ρτ − j2 should not be broken when applying the Thouless
theorem to QRPA sum rules. Other terms in the time-odd
functional do not impact the energy-weighed sum rule. Local
gauge invariance also couples the C

∇j
t and C∇J

t terms, but
the numerical results demonstrate that these do not affect the
energy-weighted sum rule.

C. Dielectric theorem for the inverse-energy-weighted sum rule

The dielectric theorem connects the inverse-energy-
weighted sum rule (related to nuclear polarizability) with
the constrained potential energy surface. This theorem is
proposed in Refs. [20,23] for the HF case and is proven in
the HFB framework in Ref. [27]. Based on this theorem, the

TABLE VI. The energy weighted Kπ = 0+ sum rule (in MeV e2 fm4) for the operators (16)–(19) at the oblate minimum of 24Mg as a
function of Nsh. The FAM values were obtained by taking RA1 = 200 MeV and NA1 = 12; they are compared to HFB values (20). The results
without time-odd terms except for the current-current coupling (Cj

t 
= 0 and Cs
t (ρ0) = C�s

t = C
∇j
t = CT

t = 0) (a) and with the full time-odd
functional except for the current-current and kinetic spin-spin couplings (Cj

t = CT
t = 0, Cs

t (ρ0) 
= 0,C�s
t 
= 0, and C

∇j
t 
= 0) (b), obtained with

Nsh = 20, are also listed.

Nsh FAM(ISM) HFB(ISM) FAM(IVM) HFB(IVM) FAM(ISQ) HFB(ISQ) FAM(IVQ) HFB(IVQ)

5 4199.44 4303.67 4734.25 4752.37 762.638 767.933 848.110 845.235
10 4524.39 4502.75 4970.34 4940.08 779.019 775.724 852.995 849.015
15 4521.39 4523.80 4958.02 4960.52 776.587 776.161 849.482 849.116
20 4530.01 4529.46 4966.98 4966.01 777.425 776.832 850.145 849.747

20(a) 4530.07 – 4966.98 – 777.506 – 850.132 –
20(b) 5297.64 – 5298.46 – 905.461 – 905.441 –
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TABLE VII. Inverse-energy-weighted sum rule (in MeV−1 e2 fm4) computed using the dielectric theorem (HFB) and the FAM for various
sizes of the model space given by Nsh. FAM calculations were performed using NA2 = 22 and RA2 = 1.0 MeV.

Nsh FAM(ISM) HFB(ISM) FAM(IVM) HFB(IVM) FAM(ISQ) HFB(ISQ) FAM(IVQ) HFB(IVQ)

5 5.00 385 5.00 375 2.78 615 2.78 614 4.44 830 4.44 765 0.798 680 0.798 680
10 11.2 033 11.2 102 5.09 467 5.09 671 5.21 547 5.21 586 1.07 516 1.07 524
15 12.4 930 12.5 009 5.71 677 5.71 960 5.31 250 5.31 268 1.12 916 1.12 910
20 12.9 506 12.9 634 6.06 842 6.07 304 5.35 499 5.35 730 1.15 744 1.15 771

inverse-energy-weighted sum rule m−1 can be obtained from
the curvature of the total energy E at equilibrium:

m−1(F̂ ) = 1

2

∂2

∂λ2
E(λ)

∣∣∣∣
λ=0

= 1

2

∂ 〈φ(λ)| F̂ |φ(λ)〉
∂λ

∣∣∣∣
λ=0

, (22)

where the constrained HFB state |φ(λ)〉 is obtained by
minimizing the total Routhian containing a linear constraint
−λF̂ . We use the relation (22) to compute the m−1 sum
rule. The derivative is evaluated with a finite difference of
�λ = 0.0001 MeV e−1 fm−2. The resulting m−1 values are
compared with those from the FAM in Table VII. A good
agreement is found already in a small model space (Nsh = 5)
where m−1 is not fully converged, indicating that the dielectric
theorem works well, independently of the size of the model
space. This finding is consistent with the proof of Ref. [27],
which applies to an arbitrary size of quasiparticle space.

D. Example of systematic calculations

As an illustrative example, we discuss the energy-weighted
Kπ = 0+ sum rules in the shape transitional region of
142−152Nd and 144−154Sm. The calculations were carried out by
using the SLy4 EDF parametrization with the volume pairing
strength Vn = Vp = −190 MeV fm3 in the model space of
Nsh = 20 oscillator shells. The pairing strength was adjusted
to reproduce the experimental proton pairing gap of 1.23 MeV
in 142Nd. In this realistic calculation we use NGH = NGL = 40

and NLeg = 80, which are the recommended values based on
recent analysis [56]. The FAM contour integration was carried
out using a semicircle with RA1 = 200 MeV, discretized with
NA1 = 12 points.

Table VIII summarizes the results. The calculated ground-
state properties show a gradual spherical-to-deformed shape
transition with increasing neutron number. Moreover, in some
of the isotopes we predict pairing collapse. For that reason,
the chosen set of nuclei is representative of a realistic situation
encountered in global surveys across the nuclear landscape,
where deformations and pairing may vary rapidly as a function
of proton and neutron number.

The energy-weighted sum rules computed with the FAM
agree well with the HFB expressions in the Appendix. This
agreement holds regardless of nuclear shape or pairing. As
expected, the energy-weighted sum rule for the isoscalar
monopole operator increases with N in the region of the shape
transition; this is attributed to an increase of the rms radius due
to deformation. Similarly, the isoscalar quadrupole operator
increases even more rapidly with increasing quadrupole
deformation.

Next, we consider the energy-weighted sum rules in
constrained HFB states. The constrained HFB potential energy
curve as a function of quadrupole moment was obtained using
the quadratic constraint. The contribution from the quadratic
constraining potential to the residual field in the FAM was
included consistently. This kind of calculation represents the
local QRPA on top of the constrained HFB [67]; it contains
dynamical information about nonequilibrium configurations
in the deformation space.

TABLE VIII. Isoscalar monopole and quadrupole energy-weighted Kπ = 0+ sum rules in units of MeV e2 fm4 computed with the FAM
and the HFB techniques for 142−152Nd and 144−154Sm isotopes. The quadrupole deformation β, neutron and proton pairing gaps (�n and �p ,
respectively), and total rms radius

√
〈r2〉 are also shown.

β �n (MeV) �p (MeV)
√

〈r2〉 (fm) HFB(ISM) FAM(ISM) HFB(ISQ) FAM(ISQ)

142Nd 0.0 0.00 1.21 4.92 50 497 50 724 10 046 10 068
144Nd 0.09 0.49 1.09 4.95 50 453 50 647 10 606 10 626
146Nd 0.15 0.55 1.00 4.99 50 590 50 769 11 042 11 062
148Nd 0.21 0.00 0.93 5.03 50 788 50 936 11 412 11 429
150Nd 0.31 0.64 0.00 5.11 51 667 51 806 12 287 12 301
152Nd 0.32 0.00 0.00 5.14 51 649 51 762 12 375 12 383
144Sm 0.0 0.00 1.10 4.94 53 635 53 873 10 670 10 693
146Sm 0.06 0.55 1.08 4.97 53 492 53 712 11 048 11 069
148Sm 0.16 0.56 1.07 5.01 53 754 53 957 11 770 11 792
150Sm 0.21 0.16 0.93 5.06 53 979 54 145 12 189 12 207
152Sm 0.28 0.57 0.69 5.11 54 474 54 646 12 768 12 786
154Sm 0.32 0.09 0.65 5.16 54 707 54 849 13 071 13 084
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FIG. 2. (Color online) Energy-weighted sum rule of the isoscalar
quadrupole operator in 142Nd obtained in the HFB (solid line with
asterisks) and FAM (dashed line with open circles) frameworks as
a function of quadrupole deformation β for the constrained HFB
solutions.

The energy-weighted sum rule of the isoscalar quadrupole
operator as a function of quadrupole deformation is shown
in Fig. 2. The sum rule increases monotonically with β and
agrees very well with HFB values. This, together with results
presented in Table VIII, indicates that the Thouless theorem
provides a good approximation to the energy-weighted sum
rule within the Skyrme-EDF picture, which is not based on the
underlying Hamiltonian.

In passing, we should note that when departing from the
HFB minimum, there is a possibility of imaginary energy
QRPA solutions; in such cases, a pair of QRPA poles would
appear on the imaginary axis. Although one expects no
contribution to odd-k sum rules from such a pair, a careful
consideration needs to be given to the choice of integration
contour in the FAM. A general extension of the complex FAM
formalism to the case of the local QRPA will be an interesting
avenue for future studies.

V. CONCLUSIONS

We propose an efficient formalism to compute sum rules by
using the contour integration formalism within the complex-
energy finite-amplitude method. In particular when the order
of the moment is odd, the obtained expression becomes
extremely simple, because the sum rules appear as expansion
coefficients of the Laurent series of the response function. The
new formalism has been successfully benchmarked against the
matrix diagonalization method of the QRPA.

We compare the energy-weighted sum rule obtained in the
FAM with those based on the Thouless theorem. Although
the double commutator cannot be evaluated for general EDFs
that are not based on a Hamiltonian, the numerical results
indicate that the theorem provides a very good approximation
to m1 when a large model space is employed and local
gauge symmetry of the EDF is satisfied. The inverse-energy-
weighted sum rule was compared with the constrained HFB
result using the dielectric theorem, and a perfect agreement
was obtained regardless of the model space.

Our results suggest that sum rules can be computed
efficiently in the FAM even in cases when other methods
are not easily available (e.g., the Thouless theorem cannot
be applied or constrained calculations cannot be carried out
because of self-consistent symmetries assumed). Of particular
interest is the systematic analysis of the isovector dipole sum
rule and neutron skins. The extension of the FAM formalism
to non-Hermitian operators is also straightforward, because it
has already been applied to the β-decay rates [44]. Extension
of the complex-energy FAM to weakly-bound systems near
the drip line, e.g., within the framework of Ref. [45], is also
an interesting future avenue.

The FAM approach to sum rules promises to add
new functionality to the EDF optimization framework of
Refs. [6–8] because it will allow adding new kinds of data
on multipole- and charge-exchange strength to the set of fit
observables defining the objective function. The new FAM
technique can be very useful when studying the nuclear
response to nontrivial operators such as the nuclear Schiff
moment, which is closely related to the isoscalar dipole
operator [68,69].
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APPENDIX: THOULESS THEOREM FOR MONOPOLE
AND QUADRUPOLE OPERATORS

According to the Thouless theorem (20), the energy-
weighted sum rules for isoscalar monopole and quadrupole
operators of an axially deformed nucleus are

m1(ISM) = 4e2

(
Z

A

)2
�

2

2m
A〈r2〉, (A1)

m1(ISQ) = e2

(
Z

A

)2
�

2

2m

5

2π
A〈r2〉

(
1 +

√
5

4π
β

)
, (A2)

where 〈r2〉 is the total rms radius and β is the mass quadrupole
deformation parameter:

β =
√

π

5

1

A〈r2〉
∫

(3z2 − r2)ρ(r)d r. (A3)

044323-8



COMPLEX-ENERGY APPROACH TO SUM RULES WITHIN . . . PHYSICAL REVIEW C 91, 044323 (2015)

For isovector operators, an enhancement factor appears,

κ = 8m

�2

(
Cτ

0 − Cτ
1

)∫ |∇f (r)|2ρn(r)ρp(r)d r∫ |∇f (r)|2ρ(r)d r
, (A4)

where Cτ
t is the coupling constant of the term ρtτt in the EDF

in the notation of Ref. [64]. The expressions for the isovector
monopole and quadrupole operators are

m1(IVM) = 4e2 �
2

2m

NZ

A2
[Z〈r2〉n+N〈r2〉p](1 + κIVM),

(A5)

κIVM = 8m

�2

(
Cτ

0 − Cτ
1

) 1

A〈r2〉
∫

r2ρn(r)ρp(r)d r, (A6)

and

m1(IVQ) = e2 �
2

2m

NZ

A2

5

2π

[
Z〈r2〉n

(
1 +

√
5

4π
βn

)

+N〈r2〉p
(

1 +
√

5

4π
βp

)]
(1 + κIVQ), (A7)

κIVQ = 8m

�2

(
Cτ

0 − Cτ
1

) 1

2A〈r2〉(1 +
√

5
4π

β
)

×
∫

(3z2 + r2)ρn(r)ρp(r)d r, (A8)

where the subscripts n and p indicate neutron and proton
expectation values, respectively.
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[5] P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn,
Phys. Rev. C 79, 034310 (2009).

[6] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich,
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