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Nuclear clustering, alpha decays, and multiparticle correlations are important components of nuclear dynamics.
In this work we put forward the cluster-nucleon configuration interaction model. We use the modern configuration
interaction approach with advanced realistic shell-model Hamiltonians in order to study clustering phenomena;
the study is facilitated by the algebraic properties of many-nucleon configurations in the harmonic oscillator basis.
Using a translationally invariant formalism we built cluster channels that satisfy the Pauli exclusion principle
as well as orthogonality and normalization conditions. We formally justify the formalism and demonstrate that,
within the new method, clustering strengths satisfy sum rules that are consistent with the statistical properties
of nuclear reactions with composite particles. Using properly renormalized cluster form factors our approach
appears to resolve long-standing problems related to absolute normalization of the alpha clustering spectroscopic
factors and their behavior in sd-shell nuclei. Our methods are demonstrated in studies of α spectroscopic factors
in sd-shell nuclei and in 16O treated in p-sd shells. Comparison with experimental data supports the validity of
the approach.
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I. INTRODUCTION

Clustering, or an emergence of multinucleon substructures
in a nucleus, is a pronounced and robust property of nuclear
systems. The phenomenon is well confirmed experimentally:
selective population of states in transfer and knock-out
reactions, cluster decays, broad alpha-decaying resonances,
features of electromagnetic form factors, as well as mass
systematics—all support nuclear clustering. For an exhaustive
overview we refer the reader to the Clusters in Nuclei series [1].
Recent developments of experimental techniques, such as the
inverse kinematics thick target technique [2,3], have generated
a wealth of information concerning α-particle resonances in
complex spectra, at high excitation energy, and for nuclei
that manifest single-particle, collective, and cluster degrees
of freedom [4–6].

A variety of theoretical techniques have been developed
to study nuclear clustering, all approaching the problem from
different directions, and with their specific advantages and
disadvantages. Structures of highly clustered states have been
explored using symmetry based approaches such as the one
found in Ref. [7]; in this approach cluster degrees of freedom
are introduced by construction. Within modern microscopic
models such as antisymmetrized molecular dynamics [8] and
fermionic molecular dynamics [9], clustering properties of
various nuclear states have been confirmed to emerge directly
from nucleon-nucleon interactions. Cluster structures are seen
in these models as peaks in the density distribution in the
body-fixed coordinate frame; more quantitative techniques for
evaluation of cluster and single-particle characteristics have
yet to be developed. Other approaches stem from the micro-
scopic ab initio direction; they include Green’s function Monte
Carlo [10] and no-core shell model calculations of cluster reac-
tions [11]. Computational complexity is the primary limitation
of these ab inito calculations; this limitation renders studies of
highly excited states infeasible at this time. In this presentation
we turn to a configuration interaction approach which has

the traditional nuclear shell model at its core. Our approach
appears to be the middle ground among all techniques.

For over sixty years the nuclear shell-model approach has
remained one of the most powerful theoretical tools available
in studies of nuclear many-body problems [12–14]. The ability
of the multiconfiguration shell model (SM) to obtain level
spectra and multiple other observables for a broad range of
nuclear spectra using a single Hamiltonian, although it is
somewhat phenomenological, gives this approach a practical
advantage. Generalization in the form of the configuration
interaction technique and applications involving the effective
non-Hermitian Hamiltonians permit treatment of weakly
bound and unstable systems [15,16]. Significant progress has
been made towards ab initio understanding of the nucleon-
nucleon interactions [17].

Advances in computational techniques and capabilities
have broadened the areas of the nuclear chart where the
shell model can be successfully applied. The small config-
uration space has always been the main criticism for this
direction of work. With a few exceptions [18,19], previous
configuration interaction studies of clustering were limited
to fixed-configurations or to paired, superfluid states [20,21].
Modern, large-scale multiconfiguration versions of the SM
have the prospect to overcome this criticism.

The study of cluster reactions and decays based on SM wave
functions (WFs) has been continuously progressing [22–26]
since the pioneering work in Ref. [27]. Identification of
quantitative measures of clustering characteristics has been
central in the development of clustering theory [27,28]. The
formalism for the description of clustering in the SM is
presented in detail in the monograph [29].

Let us emphasize the main ideas motivating further explo-
ration and development of the shell-model approach to cluster
physics.

First, over many years of research a large body of
experimental data related to cluster physics in light- and
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medium-mass nuclei has been accumulated. As many as one
hundred states and the corresponding alpha decay widths
have been measured for certain isotopes. Recent experiments
with resonance scattering of clusters, most commonly alpha
particles, have greatly benefited from the advent of thick target
techniques in the inverse kinematics [2,3]. These methods
allow one to study dense spectra of cluster resonances in
light (up to A ∼ 40) nuclei in wide energy ranges—see,
for example, Refs. [4,5,30]. A good theoretical description
of dense cluster spectra in a broad range of energies and
a simultaneous description of other observables, such as
single-nucleon emission, electromagnetic decays, etc., remain
difficult and out of reach for most theoretical techniques. The
large-scale shell model approach to clustering presented in this
work provides some grip on this physics.

Second, the connection between the many-nucleon cluster
channel WFs and the two-body cluster-nucleus optical model
solutions has been brought to a better understanding in
Ref. [31], where the so-called “new spectroscopic factors”
were proposed to meet the normalization and orthogonality
conditions of the cluster channels. This definition represents
a new mindset on the cluster processes and, while it eventu-
ally received broad support in the research community, see
Refs. [32,33], its application so far has been limited to alpha-
and cluster radioactivity processes only. In the present work
we accept this new definition, and promote it to the theory of
direct and resonance nuclear reactions. We further contribute
to Fliessbasch’s theory by developing an algebraic formalism
of the new spectroscopic factors in the oscillator basis. Our
studies support the validity of this approach and emphasize
some important physical properties of the new spectroscopic
factors.

Finally, advances in computational methods open a new
era of nuclear structure theory. Shell-model calculations using
an extremely large-scale basis, such as in Ref. [34], have
been very successful in reproducing and predicting the nuclear
properties. This includes high excitation energy and high spin,
single-particle and collective properties, and electromagnetic
and weak decays. Ab initio no-core methods extend the
shell model toward the fundamentals of nucleon-nucleon
physics [17,35]. All of these advances have yet to be involved
in the exploration of nuclear clustering.

In this work we present our approach, which is referred to as
the cluster-nucleon configuration interaction model (CNCIM).
Some preliminary results, experimental studies, and examples
not presented here can be found in [6,36–39]. In the following
sections we outline the formalism, and present two studies
selecting deliberately simpler and more advanced limits that
highlight the CNCIM. A brief summary is presented in Sec. IV.

II. FORMALISM

A. Fractional parentage coefficients in the configuration
interaction approach

The single particle states are built using the harmonic
oscillator basis φn�m(r) = φn�(r)Y�m(�r), the radial part being
given by the function φn�(r); � stands for orbital quantum
number and m for its magnetic projection. We adopt a
somewhat unusual notation by using n to denote the number of

oscillator quanta, i.e., the main oscillator shell; this is different
from the usual notation of the principal quantum number n,
the number of nodes in the radial wave function, but the
connection is simple: n = 2n + �. The angular part of the
single-particle wave function is given by the usual spherical
harmonics Y�m(�r), which is then coupled with the spin part
giving total angular momentum quantum number j and its
magnetic projection m. An explicit form of the single-particle
wave functions for the harmonic oscillator potential can be
found in Ref. [40].

Following the strategy of the traditional shell model
approach, the multinucleon wave functions are found as linear
combinations of the Slater determinants of single-particle
states,

|�〉 ≡ �̂†|0〉 =
∑

{1,2,3,...,A}
〈1,2, . . . ,A|�〉 â

†
1â

†
2 · · · â†

A|0〉. (1)

Here we use the formalism of the second quantization where â
†
1

represents the nucleon creation operator in the single particle
state with the set of quantum numbers 1 ≡ {n1,�1,j1,m1}. The
numeric coefficient 〈1,2, . . . ,A|�〉 in Eq. (1) determines the
weight of each Slater determinant in the linear superposition.
In Eq. (1) |0〉 denotes the vacuum state, and polymorphism
between states and operators is highlighted by the introduction
of the many-body creation operator �̂†.

The multinucleon states |{nαi

i }[f ](λ,μ) : L,S,T 〉 that carry
the harmonic oscillator symmetry provide a basis for expan-
sion of cluster channels. These states are identified by the
configuration {nαi

i }, where αi denotes the number of particles
in the major oscillator shell ni. Therefore,

n =
∑

i

αini and A =
∑

αi. (2)

The symmetry is specified with the usual orbital, spin,
and isospin quantum numbers, L, S, and T , respectively;
(λ,μ) label the irreducible representation of Elliott’s SU(3)
group; and the Young frame specifies [f ] that classifies the
permutation symmetry. In the present paper we discuss alpha
clustering, therefore we consider four-nucleon oscillator states
with the permutation symmetry [f ]= [4] characterized by the
“stretched” SU(3) representation (λ,μ)= (n,0):∣∣�η

(n,0):L

〉 ≡ (
�̂

η
(n,0):L

)† |0〉
≡ ∣∣{nαi

i

}
[f ]= [4](n,0) : L,S =0,T =0

〉
. (3)

The index η in the superscript identifies the configuration
{nαi

i } and includes additional quantum numbers that may be
necessary to uniquely distinguish the state from others. Strictly
speaking, η is unnecessary for the particular cases consid-
ered in this work, since for the valence spaces considered,
configurations are fully established by the total number of
oscillator quanta, n. The states in Eq. (3) are constructed
by diagonalization of linear combinations of second-order
Casimir operators; L2, S2, T 2 are used for orbital, spin, and
isospin quantum numbers, and the SU(3) Casimir operator of
the second rank is used to build a state that belongs to the
irreducible representation (λ=n,μ=0); finally, the Majorana
operator (sum of all possible pairwise permutation operators)
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is used to establish permutational and spin-isospin symmetry
simultaneously.

The fractional parentage coefficient (FPC) between a parent
state |�P 〉 and an antisymmetrized product of an oscillator-
symmetry state (3) and a daughter state |�D〉, where both
parent and daughter states are of the form (1), is

Fη
nL ≡ 〈

�P

∣∣Â{
�

η
(n,0):L �D

}〉 = 〈0|�̂P

{
�̂

η
(n,0):L�̂D

}†|0〉. (4)

This is evaluated in the configuration interaction approach
using the formalism of the second quantization where the
antisymmetrization operator Â is inherent. The curly brackets
in Eq. (4) imply a proper angular momentum coupling of
the states �

η
(n,0):L and �D to that of the parent state �P ; the

magnetic quantum number is omitted for brevity of notation.
The state-operator polymorphism facilitates manipulations
with four-nucleon states in Eq. (3). The FPCs for some selected
states of SU(3) symmetry and related tests can be found in
Ref. [39].

B. Traditional cluster spectroscopic characteristics

The cluster form factor (CFF), also commonly referred to
as the amplitude of the spectroscopic factor, is defined by the
expression

ϕ�(ρ ′) =
〈
Â

{
δ(ρ − ρ ′)

ρ2
Y�m(�ρ)� ′

α � ′
D

}∣∣∣∣� ′
P

〉
, (5)

where � ′
P , � ′

D , and � ′
α are internal, translationally invariant,

and free of the center-of-mass (c.m.) coordinate WFs of the
parent (P ) nucleus, the daughter (D) nucleus, and the α cluster,
respectively. The coordinate ρ is the Jacobi radial coordinate
of the relative cluster-daughter motion, with ρ being its radial
part. Here and in what follows we use primed notation to
denote wave functions that have no dependence on the total
center-of-mass (c.m.) variable of the system; one should
distinguish these WFs from those of the shell model type (1).
The relative cluster-daughter motion is considered separately
for each partial wave �, and a proper coupling to a relative
angular momentum � is established using spherical harmonics.
As in Eq. (4), curly brackets imply that the intrinsic angular
momenta of daughter and alpha and the angular momentum
of their relative motion are coupled to the same value as the
angular momentum of the parent system, thus the CFF does
not depend on magnetic projection.

In connection with the harmonic oscillator basis discussed
in Sec. II A, it is convenient to expand the CFF using radial
harmonic oscillator wave functions

ϕ�(ρ) =
∑

n

〈φn�|ϕ�〉φn�(ρ), (6)

where the expansion coefficients 〈φn�|ϕ�〉 are known as
spectroscopic amplitudes but, strictly speaking, represent the
the fractional parentage coefficients of the translationally
invariant shell model [41],

〈φn�|ϕ�〉 = 〈Â{φn�m(ρ) � ′
α � ′

D}|� ′
P 〉. (7)

Next we describe a set of steps that allows one to obtain
translationally invariant fractional parentage coefficients for
an alpha particle in Eq. (7) from the fractional parentage

coefficients for basis configurations (4) in nontranslationally
invariant SM formalism [22,28,29,42]. Recent works in this
direction can be found in Refs. [26,43]. The many-body
WFs �P and �D for the parent and the daughter systems
are determined using the traditional SM approach. These
WFs, in the form (1), depend on their c.m. coordinates
RP and RD, respectively. In this work, as in a number of
previous studies, the translational invariance of the SM wave
functions is recovered by implementing the Glockner-Lawson
procedure [40,44]. This procedure results in a factorized form
of the WF where the c.m. component is in the lowest oscillator
state φ000(R), namely,

�D = φ000(RD) � ′
D and �P = φ000(RP ) � ′

P . (8)

The oscillator length parameter depends in the usual way on
the mass number.

We assume that the intrinsic α-particle’s WF � ′
α is

represented by the lowest-energy translationally invariant four-
nucleon configuration with quantum numbers [f ]= [4], (λ=
0,μ=0), and L=S =T =0. This wave function can be
expressed using the shell model (0s)4 configuration

|�α〉 ≡ ∣∣(0s)4[f ]= [4](0,0) : L=0,S =0,T =0
〉
, (9)

where �α = φ000(Rα) � ′
α.

Let us now consider a general WF φn�m(Rα)� ′
α where

the c.m. of the α particle is in the harmonic oscillator state
φn�m(Rα). Due to factorization (8) the overlap

〈�P |Â{φn�m(Rα)� ′
α �D}〉

= 〈� ′
P |Â{φn�m(ρ)� ′

α � ′
D}〉

× 〈φ000(RP ) φn�m(ρ)|φn�m(Rα) φ000(RD)〉 (10)

contains on the right-hand side a translationally invariant
FPC (7) of interest. The second factor on the right-hand side
appears due to the transformation from the c.m. coordinates
of the daughter nucleus RD and the cluster Rα to the relative
cluster—daughter motion described by coordinate ρ and the
overall center-of-mass coordinate which coincides with RP :

RP = mDRD + mαRα

mD + mα

, ρ = RD − Rα. (11)

The factor

〈φ000(RP ) φn�m(ρ)|φn�m(Rα) φ000(RD)〉
≡ 〈00,n� : �|{n�}mα

,{00}mD
: �〉 (12)

is known as the oscillator bracket or Talmi-Moshinsky co-
efficient [45,46]. For particles of different masses, as in the
case here with a daughter nucleus of mass mD and an alpha
particle of mass mα, the generalized oscillator bracket was
studied by Smirnov [42,47]; additional informative discussion
and methods of evaluation can be found in Refs. [48,49]. We
define the recoil factor as the inverse of the oscillator bracket.
Due to the simple Gaussian scalar form of the 0s oscillator
state, the recoil factor is given by an analytic expression that
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depends on the total number of the oscillator quanta n:

Rn� ≡ (〈00,n� : �|{n�}mα
,{00}mD

: �〉)−1

= (−1)n
(

mD + mα

mD

)n/2

. (13)

Finally, the four-nucleon symmetry configurations (3) can
be used as a basis for expansion:

φn�m(Rα)� ′
α =

∑
η

X
η
n� �

η
(n,0):�m . (14)

The expansion coefficients X
η
n�, referred to as the cluster

coefficients, are known analytically [22,28,50]:

X
η
n� ≡ 〈

�
η
(n,0):�m

∣∣φn�m(Rα) � ′
α

〉 =
√

1

4n

n!∏
i(ni!)αi

4!∏
i αi!

,

(15)

where ni and αi refer to the configuration of �
η
(n,0):�; see

Eqs. (3) and (2). Using expansion (14) in Eq. (10) we find
a connection between the SM FPC Fη

n� in Eq. (4) and the
translationally invariant FPC 〈φn�|ϕ�〉 for the alpha particle in
Eq. (7) in the following form [22,28,29,42]:

〈φn�|ϕ�〉 = Rn�

∑
η

X
η
n� Fη

n� . (16)

C. New cluster spectroscopic characteristics

It has been common in the literature to interpret the total
norm of the CFF,

S (old)
� = 〈ϕ�|ϕ�〉 =

∫
ρ2dρ |ϕ�(ρ)|2 =

∑
n

|〈φn�|ϕ�〉|2, (17)

as the spectroscopic factor. However, based on results in
Ref. [51], Fliessbach argued in Refs. [31,52] that the direct
interpretation of ϕ�(ρ) as the the two-body cluster-nucleus
solution is not appropriate. Let us discuss this next.

The cluster-nucleon motion is expressed using the channel
WF

� ′
ch = Â{f�(ρ)Y�m(�ρ)� ′

α � ′
D}. (18)

The channel WF is subject to a many-body Schrödinger
equation. It can be written in the form

� ′
ch =

∫
f�(ρ ′)P�m(ρ ′) ρ ′2dρ ′ (19)

using a projector state P�m(ρ ′) that depends on the parameter
ρ ′,

P�m(ρ ′) ≡ Â
{

δ(ρ − ρ ′)
ρ2

Y�m(�ρ)� ′
α � ′

D

}
. (20)

Projection of the many-body Schrödinger equation onto the
radial degree of freedom using form (19) leads to the
differential equation of the resonating group method for
the one-dimensional WF f�(ρ),

Ĥ� f�(ρ) = EN̂ �f�(ρ); (21)

see Ref. [53] and references therein. This equation contains
nonlocal linear operators Ĥ� and N̂ � of integral type generated
by the projection procedure

〈P�m(ρ)|� ′
ch〉 = N̂ �f� =

∫
N�(ρ ′,ρ)f�(ρ)ρ2dρ, (22)

where the kernel is

N�(ρ ′,ρ ′′) = 〈P�m(ρ ′)|P�m(ρ ′′)〉

=
〈
Â

{
δ(ρ − ρ ′)

ρ2
Y�m(�ρ)� ′

α � ′
D

} ∣∣∣∣
× Â

{
δ(ρ − ρ ′′)

ρ2
Y�m(�ρ)� ′

α � ′
D

} 〉
. (23)

The kernel for Ĥ� is defined similarly using the microscopic
Hamiltonian [54,55]. The channel WFs are to be normalized
in a usual way; namely, by Kronecker or Dirac delta functions
for bound and continuum states, respectively. For brevity we
use 1 to denote this normalization,

〈� ′
ch|� ′

ch〉 = 〈N̂ 1/2
� f�

∣∣N̂ 1/2
� f�

〉 = 1. (24)

This shows that the function

F�(ρ) ≡ N̂ 1/2
� f�(ρ), (25)

and not the WF f�(ρ), is normalized to unity. Substituting
F�(ρ) from Eq. (25) into Eq. (21) and acting with an operator

N̂ −1/2
reduces this equation to the orthogonality conditions

model equation [51]

N̂ −1/2
� Ĥ� N̂ −1/2

� F�(ρ) = EF�(ρ), (26)

which has the form of an ordinary Schrödinger equation with
a Hermitian effective Hamiltonian. Solutions of this equation
corresponding to different eigenvalues are orthogonal. The
norm operator N̂ is different from identity only for relatively
small distances; therefore, F�(ρ) and f�(ρ) are equal in remote
asymptotic regions, at ρ → ∞. The asymptotic amplitude of
these functions defines the intensities of observable channel
flux and decay widths.

Establishing correspondence between the parent state � ′
P

and the channel state � ′
ch is a central problem in studies

of clustering. This correspondence can be established by
comparison of projections where the multinucleon Hilbert
space is projected onto the subspace of single coordinate ρ
using (20). A key assumption of the SM approach to the cluster
problem is that the CFF ϕ�(ρ) obtained in the limited oscillator
space extends far enough in separation distance permitting the
comparison

〈P�m(ρ)|� ′
P 〉 ≡ ϕ�(ρ) ↔ 〈P�m(ρ)|� ′

ch〉 = N̂ �f�(ρ). (27)

While dealing with cluster channels one usually works with a
solution of an ordinary two-body Schrödinger equation with a
Hermitian effective Hamiltonian which, obviously, possesses
normalization properties analogous to the ones of the function
F�(ρ). Hence, the observed characteristics of resonance cluster
scattering and cluster decay should be associated not with the
traditional relationship ϕ�(ρ) ↔ F�(ρ), but with one of the

form ϕ�(ρ) ↔ N̂f�(ρ) = N̂ 1/2
F�(ρ); see Eq. (27). Therefore,
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for F�(ρ) the correspondence F�(ρ) ↔ ψ�(ρ) is established
with a renormalized “new” cluster form factor

ψ�(ρ) ≡ N̂ −1/2
� ϕ�(ρ). (28)

This leads to a new definition of the spectroscopic factor (SF):

S
(new)
� ≡ 〈ψ�|ψ�〉 =

∫
ρ2dρ |ψ�(ρ)|2 . (29)

It should be stressed that the SF is a definition-dependent
theoretical concept and the definition proposed here is an
attempt to best reflect the conventional choice of the channel
wave function in the form of the solution of the two-body
Schrödinger equation.

The importance of this new definition is discussed in details
in Refs. [21,32]. We evaluate the redefined “new” cluster
form factor using expansion in the oscillator basis. The matrix
corresponding to the norm kernel in oscillator basis is

〈φn′�|N̂ �|φn�〉 = 〈Â{φn′�m(ρ) � ′
α � ′

D}|Â{φn�m(ρ) � ′
α � ′

D}〉.
(30)

The norm kernel matrix in the oscillator basis is evaluated
using second-quantization techniques within the SM approach.
Taking steps similar to the ones described in Sec. II B, where
in derivations it is convenient to use a complete set of
intermediate parent states∑

P

|�P 〉〈�P | ≡ 1̂ , (31)

one arrives at the following expression:

〈φn′�|N̂ �|φn�〉 = Rn′�Rn�

∑
ηη′

X
η′
n′�X

η
n�

〈
0
∣∣{�̂η′

(n′,0):� �̂D

}∣∣
× {

�̂
η
(n,0):� �̂D

}†∣∣0〉
. (32)

The coupling to particular channel quantum numbers that
coincide with those of the parent nucleus is assumed when
curly brackets are used. In practical applications a matrix (32)
for the norm operator is diagonalized, N̂ �|k�〉 = Nk�|k�〉; here
|k�〉 is an eigenvector and Nk� is the associated eigenvalue,
both corresponding to angular momentum �. The expansion
coefficients of the new CFF in the harmonic oscillator basis
are

〈φn�|ψ�〉 =
∑
k n′

1√
Nk�

〈φn�|k�〉〈k�|φn′�〉〈φn′�|ϕ�〉, (33)

and the new SF is evaluated using an intermediate set of
eigenstates of the norm operator and the harmonic oscillator
basis as

S
(new)
� =

∑
k

1

Nk�

∣∣∣∣∣
∑

n

〈k�|φn�〉 〈φn�|ϕ�〉
∣∣∣∣∣
2

. (34)

The new SFs are normalized; for any given parent nucleus
the sum of all SFs for a given partial wave � and to a
particular daughter state equals to the number of doorway
configurations (characterized by different values of n in four-
nucleon functions �(n,0):l) involved. In order to demonstrate
that, let us consider a complete set of parent states (31). For

each state P we have a CFF in the form of a radial function
ϕ(P )

� (ρ) defined by Eq. (5). The norm kernel can be calculated
by including the complete set of parent states in Eq. (30). In
the space of radial functions this means

N̂ � =
∑
P

∣∣ϕ(P )

�

〉〈
ϕ(P )

�

∣∣. (35)

By combining Eq. (35) and the definition in Eq. (29), and using
an expansion in any radial basis states, one can show that the
sum of SFs for all parent states with fixed quantum numbers
equals the dimensionality of the space, i.e., the dimension of
the matrix (30),∑

P

S
(new)
� (P ) =

∑
P

〈
ϕ(P )

�

∣∣N̂ −1
�

∣∣ϕ(P )

�

〉 =
∑

n

1. (36)

In the case with one doorway configuration where, for
example, the model space limits the number of four-nucleon
operators (3) to just one for a fixed number of oscillator quanta
n and partial wave �, the single diagonal matrix element for
the norm (32) can be expressed as

〈φn�|N̂ �|φn�〉 =
∑
P

S (old)
� (P ), (37)

therefore

S
(new)
� (P ) = S (old)

� (P )∑
P ′ S (old)

� (P ′)
=

(F (P )

n�

)2

∑
P ′

(F (P ′)
n�

)2 . (38)

The obtained sum rule represents an important property
of the new spectroscopic factors. In contrast to the traditional
definition they establish the total spectroscopic strength, which
is given by the number of possible doorway states identified
by the value of the principle quantum number that the relative
cluster-daughter nucleus motion can have, assuming a fixed
relative angular momentum �. The presented sum rule provides
grounds for qualitative conclusions about the distribution of
clustering strength.

III. APPLICATIONS

A. α-clustering in sd-shell nuclei

The physics of sd-shell nuclei is one of the best examples
demonstrating the success of the phenomenological shell
model [56]. Therefore this mass region has been an appealing
arena for testing and development of theoretical methods
targeting nuclear clustering [23,24,28,57,58].

Experimentally the alpha clustering in low-lying states of
sd-shell nuclei has been studied using transfer and knock-out
reactions, such as the ones discussed in Refs. [59–62]. Some
representative results for α-particle SFs for ground state
to ground state transitions from previous experimental and
theoretical works are shown in Table I. The experimental
information is summarized in columns 2, 3, and 4 of Table I.
Columns 2 and 3, from Refs. [63] and [64], respectively, show
absolute values of SF’s from knock-out reactions. Transfer
reactions usually determine only relative values of the SFs,
therefore the SFs presented in column 4 are normalized to
the value of the SF in 20Ne. Given that the experimental
absolute value of SF in 20Ne according to [63] is very
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TABLE I. Ground state to ground state α-particle SFs: the exper-
imental SFs S

(exp)
0 extracted from the cross sections of (p,pα) [63,64]

and (6Li,d) [65] reactions, traditional S (old)
0 obtained in Ref. [23] and

in the current work, and “new” SFs S
(new)
0 .

AP -AD S
(exp)
0 S

(exp)
0 S

(exp)
0 S (old)

0 S (old)
0 S

(new)
0

[63] [64] [65] [23] this work

20Ne-16O 1.0 0.54 1 0.18 0.173 0.755
22Ne-18O 0.37 0.099 0.085 0.481
24Mg-20Ne 0.76 0.42 0.66 0.11 0.091 0.411
26Mg-22Ne 0.20 0.077 0.068 0.439
28Si-24Mg 0.37 0.20 0.33 0.076 0.080 0.526
30Si-26Mg 0.55 0.067 0.061 0.555
32S-28Si 1.05 0.55 0.45 0.090 0.082 0.911
34S-30Si 0.065 0.062 0.974
36Ar-32S 0.070 0.061 0.986
38Ar-34S 1.30 0.034 0.030 0.997
40Ca-36Ar 1.56 0.86 1.18 0.043 0.037 1

close to 1.0, the remaining relative SFs in column 4 may
be viewed as the absolute ones. The experimental data is
subject to some substantial uncertainty coming from reaction
models. In particular, the imaginary part of the nucleus-
nucleus potential for the types of reactions involved is poorly
known. Nevertheless, all experiments describe consistently the
variation of the relative values of the SFs with the increase in
the nuclear mass.

Similar theoretical results were obtained by various au-
thors [23,24] in the past. A set of representative theoretical
SFs obtained by Chung I., Ref. [23], is shown in Table I,
column 5. Comparison of the previous theoretical values with
the experimental data highlights some long-standing problems.
First, the theoretical SFs are several times smaller, in certain
cases nearly by an order of magnitude, than the measured ones.
In analogy with the approach taken in experiments involving
transfer reactions, it is a common practice to renormalize
theoretical data using the value of the α-particle SF in 20Ne;
and yet this leaves the question about the absolute scale unan-
swered. Second, even after renormalization the tendency for
the theoretical values of SFs to decrease rapidly, while going
from 20Ne to 40Ca, is not confirmed by the experimental data.

Our results for α-particle SFs for ground state to ground
state transitions are listed in the 6th and 7th columns of
Table I. The calculations were performed using the USDB [56]
Hamiltonian. The valence space is restricted by the sd
shell. Within this model only one four-nucleon operator with
SU(3) quantum numbers (8,0) contributes, and therefore the
relationship (38) holds.

Our results, shown in the last (7th) column in Table I
highlight the merits of the method and appear to resolve the
above mentioned long-standing theoretical problems. Indeed,
the agreement between absolute SFs found in experiment
(columns 2–4) and those from our study (column 7) is good
without any renormalizations. This includes the trend of SFs
to drop down towards the middle of the sd shell and to increase
at the edges.

The traditional (old) SFs obtained by us are shown in
Table I, column 6. Our results are close to the ones presented in

Ref. [23] (column 5); the difference between the two does not
exceed 20 percent. This emphasizes that the renormalization
of the channel WFs proposed by Fliessbach, Eq. (28), is the
main reason for this improvement.

B. α clustering in 16O

In this section we demonstrate the CNCIM in its full
scale using the 16O example. The structure of this nucleus is
well studied experimentally. Multiple experimental methods
with different probes have been used, leading to a wealth of
information on single-particle, collective, clustering, and other
properties. Over a hundred excited states are known [66,67],
most of which are in the region between 10 and 20 MeV of
excitation energy. This doubly-magic nucleus has been used
as a challenge and a gauge for nuclear structure theories.
As discussed in the introduction, the approach that we put
forward appears to be most promising for providing a unified
theoretical understanding of all experimentally available in-
formation. In our study we examine α clustering of the ground
and multiple excited states in 16O relative to channels involving
the 12C nucleus in the ground state. Both parent and daughter
systems are treated in the unrestricted p-sd configuration space
with the effective interaction Hamiltonian from [34]. The study
in Ref. [34] suggests that this effective Hamiltonian describes
well the multiparticle correlations in 16O which makes it a
good choice for exploring clustering.

In order to obtain the wave functions in the factorized
form (8) the spurious components are projected out us-
ing the Glockner-Lawson procedure where the shell model
Hamiltonian was diagonalized with the c.m. Hamiltonian
(Hc.m. − 3/2�ω) scaled by a factor β = 30 MeV/�ω. The
p-sd configuration space does not fully contain all c.m.
excitatons, therefore the nonspurious states described by
Eq. (8) with 0�ω c.m. excitation no longer form the null space
of the (Hc.m. − 3/2�ω) Hamiltonian matrix exactly; this makes
their exact projection impossible. However, it is well known
empirically that the Glockner-Lawson approach is still very
effective because the eigenvalues of the (Hc.m. − 3/2�ω) matrix
for nonspurious states in the truncated space are usually many
orders of magnitude smaller than those of spurious states, and
thus contamination with spurious components is small. In our
study the largest contamination 〈�P |β(Hc.m. − 3/2�ω)|�P 〉 ≈
0.3 MeV was observed for the lowest 1− state in 16O. We
estimate that the uncertainty in S

(new)
� due to c.m. problem is

about 0.005. Overall, in our study the c.m. problem appears to
be insignificant when compared to other theoretical issues and
uncertainties in experimental information.

The p-sd valence space allows for the following four-
nucleon |�(n,0) : �〉 configurations:

|�(n,0):�〉 = |(p)q(sd)4−q [4](n,0) : �,S =0,T =0〉, (39)

where q = 0,1, . . . ,4; n = 8 − q; � = n,n − 2, . . . ,1 or 0;
and π = (−1)�.

A broad part of the low-lying 16O spectrum was examined
in our studies targeting the distribution of the alpha-cluster
spectroscopic strength. We start with an overview of our
results. In Fig. 1 the experimentally observed and theoretically
calculated spectra of 16O are presented; the scale is limited to
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FIG. 1. (Color online) Spectrum of 16O is shown: experimentally
observed spectrum is on the left and calculated shell model spectrum
is in the middle. Selected states are labeled with spin, parity, and with
a number in subscript indicating their position ordered by excitation
energy. On the right side, using the same vertical excitation energy
scale, the distribution of spectroscopic factors S

(new)
� is shown. The

SFs are given for channels involving α and the ground state of 12C;
different colors are used to differentiate spins and parities.

about 17 MeV of excitation and only the states of natural
parity are shown. The spectroscopic factors S

(new)
0 , Eq. (34),

are shown on the right, using the same energy scale. The
distribution of the alpha spectroscopic factors appears to
strongly support the clustering nature of the low-lying states
found in other models; see [68,69] and references therein.

The states 0+
2 , 2+

1 , 4+
1 , and 6+

2 are often viewed as the
K = 0 rotational band [68,70]. These states are highlighted
in the figure. The B(E2) transitions involving these states
are shown with arrows whose widths represent the strengths
of the transitions. These reduced transition strengths are also
listed in Table II > and support the rotational nature of the
band. For example, assuming a K = 0 band and using the
computed quadrupole moment of the first 2+

1 state, Q(2+
1 ) =

−12.5 e fm2, the intrinsic quadrupole moment is found to be
Q0 = −(7/2)Q(2+

1 ) = 43.8 e fm2. For this intrinsic deforma-
tion B(E2, 2+ → 0+) = Q2

0/(16π ) = 38.2 e2 fm4 agrees well
with the value of B(E2, 2+

1 → 0+
2 ) in Table II.

The detailed analysis of our results is summarized in
Table III. The table is organized based on the theoretically
calculated spectrum of 16O. The first column identifies the
spin, parity, and the order in excitation energy of a state,
the computed excitation energies and α-spectroscopic factors
are listed in the second and third columns, respectively. We
made an effort to identify each theoretically predicted state

TABLE II. List of selected B(E2) transitions
computed for 16O; the values are in units of e2fm4.
�ω = 41 A−1/3 MeV with A = 16 is assumed.

Transition B(E2)

2+
1 → 0+

1 4.1
2+

1 → 0+
2 44.2

4+
1 → 2+

1 15.4
4+

1 → 2+
2 4.2

6+
1 → 4+

1 0.2
6+

2 → 4+
1 18.3

8+
1 → 6+

1 0.1
8+

1 → 6+
2 31.7

with an experimentally known counterpart. The table includes
states of natural parity and zero isospin up to 22 MeV in
excitation energy. In particular, the T = 1 states that are not
listed in the table are 0+

7,10, 1−
3,7,12, 2+

9,10,14, 3−
2,8, 4+

6,9,13, and
5−

5 . Beyond 22 MeV the density of states is too high and only
a very small fraction of states are identified experimentally.
As a general rule, the states with spins J = 4,5 are included
up to 20 MeV of excitation, and those with J � 3 up to
18 MeV of excitation energy. The 16O nucleus has proton and
neutron separation energies at around 12.13 and 15.6 MeV,
respectively; therefore low-spin states above these energies
have large single-nucleon decay widths. Focusing on the
clustering properties in Table III, we restrict our presentation
to the states with SFs greater than 0.005. Experimentally
observed excitation energy S

(new)
� and α spectroscopic strength

θ2
α are listed in the last two columns. Most of the experimental

information is taken from the spectroscopic tables [66,67]. The
reduced widths θ2

α of α decay were calculated using standard
relations of resonance reaction theory. The values of θ2

α are
viewed as the experimental SFs S(new), but it should be noted
that the accuracy of this interpretation is limited. On the other
hand, the values of θ2

α vary a lot from state to state, which
makes its interpretation easier. For subthreshold states the SFs
are obtained using the (6Li,d) reaction [71], those SFs are
measured relative to 4+

1 10.356 MeV. Therefore some error
is introduced by the rescaling of this data using the reduced
width of the over-threshold reference state.

In establishing theory-experiment correspondence in
Table III an agreement within a factor of 4 in SF is the primary
criterion; a theory-experiment agreement in excitation energy
within about 1 MeV is considered secondary.

Overall, we find the agreement between theory and ex-
periment displayed in Table III encouraging; about 2/3 of
theoretical results obtained without introducing any param-
eters or fitting procedures turn out to be supported by the
experimental data. For most levels observed in experiments
theoretical partners may be found. Other properties of the 16O
states, such as electric quadrupole transitions and possible
rotational bands—see Table II—are also well described.

Discrepancies between theory and observations in Table III
shed new light on the nature of states and provide guidance
for further development of microscopic approaches to nuclear
clustering and for future experiments.
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TABLE III. Shell-model (E(sm)) and experimental (E(exp)) energy levels, the α-particle SFs S
(new)
� , and the reduced widths θ2

α for states in
16O. Symbol < denotes cases where only the total decay width is known.

J π
i E(sm) S

(new)
� E(exp) θ 2

α J π
i E(sm) S

(new)
� E(exp) θ 2

α

0+
1 0.000 0.794 0 0.86a 0+

6 15.694 0.017 15.097 <0.024
3−

1 5.912 0.663 6.13 0.41a 5−
1 15.945 0.289 14.66 0.55

0+
2 6.916 0.535 6.049 0.40a 3−

5 16.080 0.00063 15.408 <0.028
1−

1 7.632 0.150 7.117 0.14 0+
8 16.159 0.075 no

2+
1 8.194 0.500 6.917 0.47a 6+

2 16.304 0.415 16.275 0.43
1− no 9.585 0.67 3−

6 16.557 0.038 15.828 0.14
2+

2 9.988 0.349 9.844 0.0015 2+
11 16.720 0.011 16.93 <0.04

4+
1 10.320 0.313 10.356 0.44 2+

12 16.818 0.0096 17.129 <0.015
0+

3 10.657 0.216 11.26 0.77 2+
13 17.259 0.0032 17.197 <0.022

2+
3 11.307 0.158 11.52 0.033 1−

8 17.357 0.015
4+

2 11.334 0.203 11.097 0.0014 1−
9 17.572 0.007

⎫⎪⎬
⎪⎭ 17.51 0.0223− no 11.6 0.68 1−

10 17.674 0.016
2+

4 12.530 0.123 no 1−
11 18.122 0.014

1−
2 12.681 0.038 12.44 0.023 3−

9 17.772 0.034 no
0+

4 12.764 0.049 12.049 0.00036 0+
11 18.214 0.040 18.089 <0.033

2+
5 13.125 0.015 13.02 <0.04 4+

10 18.251 0.051 17.784 <0.077
6+

1 13.286 0.465 14.815 0.17 5−
2 18.265 0.051 18.404 0.14

4+
3 13.308 0.160 14.62 0.19 4+

11 18.393 0.0079 18.016 0.0026
3−

3 13.733 0.144 14.1 0.21 7−
1 18.412 0.325 20.857 0.44

0+
5 13.767 0.054 14.032 0.037 6+

3 18.613 0.048 17.555 <0.11
3−

4 14.279 0.025 13.129 0.041 4+
12 19.081 0.030 18.785 <0.044

2+
6 14.646 0.102 14.926 <0.0098 5−

3 19.102 0.024 18.6 0.036
4+

4 15.002 0.067 13.869 0.043 6+
4 19.228 0.013 19.319 <0.023

1−
4 15.298 0.174 <0.085 4+

14 19.348 0.015 <0.0036
}

16.2

}
19.375

1−
5 15.884 0.009 4+

16 19.819 0.028
4+

5 15.474 0.152 0.13 5−
4 19.620 0.083 19.253 <0.011

4+
7 16.611 0.048

}
16.844 8+

1 20.018 0.34 no
4+

8 16.855 0.036 6+
5 20.078 0.035 21.052 0.051

2+
7 15.589 0.040 15.26 <0.052 6+

6 21.038 0.038 21.648 <0.026
2+

8 15.649 0.016 16.352 <0.093 7−
2 21.693 0.036 21.623 <0.024

aRecalculated values of the SFs from [71] (see the text).

First, for several states or groups of close-lying states
predicted by theory, such as 1−

4,5, 4+
5,7,8, 0+

8 , 1−
8,...,11, 3−

9 , 4+
14,...,16,

and 8+
1 , there are not enough equivalent states observed in

experiments. It is likely that some states have been missed
in experimental studies. Factors like high density of states,
weak alpha decay branch, short lifetime of broad states can all
prevent states from being observed.

Second, the most serious discrepancy that pertains to
problems with theory is the absence of strongly clustered
α-decaying states 1− with E(exp) = 9.585 MeV and 3− with
E(exp) = 11.6 MeV. However, there is good evidence that these
states correspond to configurations involving the fp shell. In
fact recent detailed experimental studies of 18O show similar
discrepancy, indicating that fp shell is needed for describing
the strongly clustered 1− and 3− states [6].

Finally, there are some discrepancies in the distribution of
strength, which is most noticeable in states 2+

3 and 4+
2 . For the

lowest four 4+ states in the region between 10 and 15 MeV
of excitation, the cumulative experimental and theoretical
strengths,

∑
i S

(exp)
4 (4+

i ) = 0.67 and
∑

i S
(new)
4 (4+

i ) = 0.74,
respectively, are in agreement. The situation is not as good
with the 2+ states where the cumulative measured strength

∑
i S

(exp)
2 (2+

i ) = 0.5, which is less than a half of what is
predicted by theory,

∑
i S

(new)
2 (2+

i ) = 1.2.
Overall, we find the agreement between theory and exper-

iment displayed in Table III to be encouraging. The model
includes no additional parameters, nor fits, and yet for most
levels observed in experiments, theoretical partners may be
found and acceptable level of agreement concerning alpha
transition strength to the ground state of 12C is seen. Many
states of a different nature with lower α SF, including those of
nonzero isospin (not listed in Table III), are also reproduced
by this theory. Other properties of the 16O states that include
electric quadrupole transitions and proton and neutron decay
widths are also described by this model. The same approach
can be applied to studies of the alpha-decay widths to excited
states of 12C. For example, the next channel of interest involves
� = 0 and 12C in the first excited 2+

1 state, which in our
model is at 4.894 MeV of excitation. This channel is most
strongly coupled to 2+

2 , 2+
1 , 2+

3 , 2+
5 , and 2+

8 states of 16O; the
corresponding SFs (S(new)

0 ) are 0.32, 0.21, 0.17, 0.11, and 0.10,
respectively. Unfortunately, experimental information about
alpha decay in inelastic channels is very limited.
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IV. SUMMARY

In this work we develop a formalism and methods for
conducting studies of nuclear clustering using the advanced
large-scale shell model technique. The formalism extends
the configuration interaction technique, the modern shell
model, towards clustering. Large configuration-space studies,
interplay between cluster and nucleon degrees of freedom,
and cluster strength distribution at high excitation energies are
the highlights of this technique. Numerous opportunities for
extension and development make the approach promising.

We put forward a renormalization scheme which follows
the orthogonality condition model. We formally justify that the
renormalizations are necessary for taking the Pauli exclusion
principle into account and for constructing the wave functions
of the cluster channels properly. The previously missing
absolute normalization of the clustering strength emerges
naturally from the developed formalism. We give a rigorous
proof that the reformulated clustering strengths satisfy sum
rules that are consistent with statistical properties of nuclear
reactions.

We exemplify our approach by examining alpha cluster
transitional spectroscopic strength between ground states of

sd-shell nuclei. Our results implementing old techniques
agree with previous theoretical studies that suffer from the
long-standing problems related to underestimation of SFs
and incorrectly predicted tendency of SFs to decrease with
increasing nuclear mass. Renormalized new SFs are free of
these issues and show good agreement with experiment.

We demonstrate our method by studying the 16O nucleus.
This nucleus is well studied experimentally, which makes it an
ideal choice for the first application of our method. The study is
done using an unrestricted p-sd valence space; over 60 exited
states have been examined, and most of them are in agreement
with experiment. The observables examined include excitation
energies, alpha decay widths, as well as the traditional single-
particle and electromagnetic properties. Our CNCIM approach
has been successful in other recent experimental studies of 18O
in Ref. [6].
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