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2Grand Accélérateur National d’Ions Lourds, CEA/DSM-CNRS/IN2P3, B.P. 55027, F-14076 Caen Cedex 5, France
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Background: The available data for E2 transition strengths in the region between neutron-deficient hafnium and
platinum isotopes are far from complete. More and precise data are needed to enhance the picture of structure
evolution in this region and to test state-of-the-art nuclear models. In a simple model, the maximum collectivity
is expected at the middle of the major shell. However, for actual nuclei, particularly in heavy-mass regions,
which should be highly complex, this picture may no longer be the case, and one should use a more realistic
nuclear-structure model. We address this point by studying the spectroscopy of Hf as a representative case.
Purpose: We remeasure the 2+

1 half-lives of 172,174,176Hf, for which there is some disagreement in the literature.
The main goal is to measure, for the first time, the half-lives of higher-lying states of the rotational band. The
new results are compared to a theoretical calculation for absolute transition strengths.
Method: The half-lives were measured using γ -γ and conversion-electron-γ delayed coincidences with the fast
timing method. For the determination of half-lives in the picosecond region, the generalized centroid difference
method was applied. For the theoretical calculation of the spectroscopic properties, the interacting boson model
is employed, whose Hamiltonian is determined based on microscopic energy-density functional calculations.
Results: The measured 2+

1 half-lives disagree with results from earlier γ -γ fast timing measurements, but are in
agreement with data from Coulomb excitation experiments and other methods. Half-lives of the 4+

1 and 6+
1 states

were measured, as well as a lower limit for the 8+
1 states.

Conclusions: This work shows the importance of a mass-dependent effective boson charge in the interacting
boson model for the description of E2 transition rates in chains of nuclei. It encourages further studies of
the microscopic origin of this mass dependence. New experimental values on transition rates in nuclei from
neighboring isotopic chains could support these studies.
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I. INTRODUCTION

The absolute strength of E2 transitions between low-
lying states of even-even nuclei is an important observable
to test nuclear models that describe collective phenomena.
Well-deformed even-even nuclei exhibit large quadrupole
transition strengths B(E2; 2+

1 → 0+
1 ) [1]. In a simple picture

this strength increases smoothly for an increasing number of
valence nucleons or holes along an isotopic or isotonic chain
as collectivity increases. Assuming symmetry of particles
and holes, this model yields a maximum at midshell [2].
Microscopic effects can break the particle-hole symmetry and
lead to a different picture.

Recent measurements on tungsten and osmium isotopes
[3–5] showed that for a given isotopic chain the maximum
of the absolute strength B(E2; 2+

1 → 0+
1 ) is not found at

midshell but at lower neutron number. Furthermore, there
seems to be a sudden increase at N = 98, which is not expected
for a collective observable. The overall picture of available
data on B(E2)s is rather erratic for these and neighboring
nuclei, which makes a comparison to nuclear-structure models
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difficult. In many cases important data are missing or there
exist disagreeing results from experiments using different
methods. For a better understanding of nuclear-structure
evolution in this region it is important to have a more complete
picture of absolute transition strengths for the isotopes with
70 � Z � 78.

In this paper, new B(E2) values for hafnium isotopes (Z =
72) are presented. They were measured using the method of
delayed coincidences with LaBr3(Ce) detectors and an Orange
conversion-electron spectrometer. The results improve the data
situation and enable us to test current model predictions of both
absolute and relative transition strengths.

On the theoretical side, a quantitative and detailed descrip-
tion of spectroscopic properties for heavy nuclei has been
provided by fully microscopic many-body theories, which in-
clude the large-scale shell-model [6–8] and the self-consistent
mean field [9–11] or the energy density functional (EDF),
approaches with a suitably chosen effective nucleon-nucleon
interaction.

In the case of strongly deformed heavy nuclei, like the ones
considered here, the dimension of the shell-model configura-
tion space becomes exceedingly large, requiring an appropriate
truncation scheme to reduce the computational cost while
keeping the essential features of low-lying collective states.
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Along this line, one could assume that the nuclear many-body
problem is approximated by a system of interacting bosons: the
interacting boson model (IBM) [12]. The essence of the model
is the association of the collective nucleon pairs relevant for
the low-energy states, e.g., with spin J = 0+(S),2+(D), . . ., to
the equivalent bosonic degrees of freedom (s,d, . . .) by means
of a well-defined mapping procedure. The physical states and
their decay properties are obtained from the calculations in the
boson space [13,14].

In recent years the IBM has been used with considerable
success in spectroscopic studies [15–19] of a large set of nuclei
with proton and neutron numbers in the range Z = 50–82
and N = 82–126, respectively. However, those studies are
rather phenomenological because the parameters of the IBM
Hamiltonian are determined by a fit to known experimental
data.

On the other hand, the mean-field framework has also
been successfully applied to the study of nuclear-structure
phenomena [9]. In both the nonrelativistic [20,21] and the
relativistic [10,22] regimes, it is possible to obtain a global
and reasonable description of the ground-state properties and
collective excitations of all nuclei across the nuclear landscape
with a single parametrization of the corresponding EDF.
However, to describe in detail spectroscopic properties, one
needs to go beyond the mean-field level to restore symmetries
broken in the mean-field approximation as well as to take
into account fluctuations with collective coordinates. Much
effort has been devoted to increase the feasibility of such
calculations, mostly in the framework of the pure generator
coordinate method [9,23–26] or its approximations [27,28].
The results confirm the usefulness and reliability of these
EDF-based approaches for the study of nuclear spectroscopy.

To investigate the spectroscopic properties of the neutron-
deficient hafnium isotopes, we use the procedure of Ref. [29],
which determines the Hamiltonian of the IBM from EDF-
based mean-field results. The idea behind this method is to
map the deformation energy surface resulting from a set of
the constrained mean-field calculations onto the equivalent
energy surface for the system of interacting bosons, that is,
onto the expectation value of the IBM Hamiltonian in the boson
condensate state [30]. The parameters of the IBM Hamiltonian
determined by this procedure do not require any additional
adjustment to experimental data. The resulting Hamiltonian is
used to calculate energy spectra and transition rates. So far,
the predictive power of the method has been verified in all the
possible regimes of low-energy quadrupole collective states:
spherical vibrational [31], γ -soft [31,32] and well-deformed
rotational [33] nuclei.

Given the predictive power of our procedure, it is interesting
to check whether the IBM Hamiltonian determined from the
microscopic mean-field calculation can explain the absolute
transition rates for the neutron-deficient hafnium isotopes. The
microscopic input used is the Gogny EDF with the recent
parametrization D1M [34], which has been shown [35–37] to
have a similar level of predictive power in the description of
nuclear-structure phenomena as the standard parametrization
D1S [38]. However, and to confirm the robustness of our
results, we also discuss the results obtained with the more
traditional Gogny D1S parametrization.

This paper is organized as follows. In Sec. II we describe the
experimental procedure and the data analysis. We then present
the results of the experiment in Sec. III. In Sec. IV, we compare
the present experimental results with the predictions by the
IBM-2 calculation combined with the self-consistent mean-
field method using the Gogny EDF. A conclusion is given in
Sec. V. Finally, in the Appendix, the theoretical procedure is
described in detail.

II. EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

The experiments were performed at the Institut für Kern-
physik of the University of Cologne. The Cologne FN tandem
accelerator delivered an α beam to induce the reactions
170Yb(α,2n)172Hf and 172Yb(α,2n)174Hf at a beam energy of
27 MeV and 174Yb(α,2n)176Hf at a beam energy of 26 MeV.
The target thickness was 0.40, 0.40, and 0.42 mg/cm2,
respectively. Thin targets were chosen to minimize energy
straggling and absorption of emitted internal conversion
electrons (ce’s). These were measured with the Cologne
Orange spectrometer, a toroidal magnetic spectrometer. The
electrons are measured with a fast plastic scintillator detector
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FIG. 1. Conversion-electron momentum spectra of the three
investigated nuclei (I is the current applied to the magnetic spec-
trometer; see text for more details). Different conversion lines from
the same nuclear transition are marked accordingly. The step intervals
during the scans were 0.3 A (172Hf and 174Hf) and 0.5 A (176Hf).
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FIG. 2. (Color online) Photograph of the γ detector array in
maintenance position. The position of the four BGO shielded LaBr
detectors (red circles) and the two unshielded LaBr detectors (blue
crosses) can be seen. Only the BGO shield is mounted where the
germanium detector was positioned during the experiment (green
star). The view is from the target position; the beam direction is from
right to left.

at the exit slit of the spectrometer. See Ref. [39] for more details
on this instrument. A scan with different magnetic fields,
i.e., different electric currents, yields an electron momentum
spectrum with the different conversion lines corresponding to
each nuclear transition. Figure 1 shows ce spectra measured for
the three investigated reactions. The exponential background at
low energies is attributable to δ electrons, which are produced
by the beam ions traversing the target. Note that these electrons
are not correlated in time with the decay radiation emitted after
a nuclear reaction.

The γ rays were measured using a small array of six
LaBr3(Ce) (hereafter called LaBr) scintillator detectors and
one high-purity germanium detector (HPGe) (see Fig. 2),
which were mounted perpendicular to the beam next to the
target position of the Orange spectrometer. The LaBr-crystals
were cylindrical and 1.5 × 1.5 in. Four of the LaBr detec-
tors were equipped with bismuth germanate (BGO)
Compton shields and conical lead collimators to provide active
Compton suppression and passive shielding. The reduction
of Compton events generated in the LaBr crystal and the active
suppression of stray γ rays produced by primary Compton
scattering in the experimental surrounding is important in
delayed coincidence timing measurements. Such background
events, including interdetector Compton scattering (cross-talk
events), are time correlated and the determination of their
timing contribution poses a major source of uncertainty of
the final result. The two remaining LaBr detectors were
unshielded. The HPGe detector was installed perpendicular
to the beam axis. Its main purpose during the experiment
was to monitor the reaction, taking advantage of its energy
resolution, which is superior to that of the LaBr detectors [see
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FIG. 3. γ -ray spectra of 174Hf from one experimental run with
different coincidence conditions. (a) A spectrum measured with the
Ge detector in coincidence with electrons corresponding to the L
conversion of the 2+

1 → 0+
1 transition. The Ge detector was shielded

with lead and copper to suppress x rays. (b) LaBr γ -γ projection
without electron coincidence condition. (c) LaBr γ -γ projection with
the same electron coincidence condition as in (a).

Fig. 3(a)]. In the analysis the HPGe data were used to confirm
the level schemes and to identify contaminations which could
otherwise possibly be overlooked in the LaBr spectra. This was
especially important for the 172Hf data, as 172Hf is β unstable,
albeit with a long half-life of 1.87 yr [40].

Lifetimes were deduced with the method of delayed
coincidences. The time difference between two signals was
measured using time-to-amplitude converters (TACs) arranged
in a fast timing circuit as described in Ref. [41]. The data
were recorded triggerlessly in a list mode format and analyzed
offline. This way it was possible to sort the data with a double
(ceγ and γ γ ) as well as with a triple coincidence condition
(ceγ γ ). LaBr γ γ projection spectra for both cases are shown
in Figs. 3(b) and 3(c).

A. Half-life of 2+
1 states

The half-life of the 2+
1 state of 172Hf and 174Hf was

determined using ce-γ coincidences. For this purpose the
Orange spectrometer was set to the electric current corre-
sponding to the L-conversion line of the 2+

1 → 0+
1 transition.
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FIG. 4. ce-γ (a),(b) and γ -γ (c) delayed coincidence time spectra
of the cascade 4+

1 → 2+
1 → 0+

1 . Compton background has been
subtracted to yield spectrum (c). The half-life was determined by
fitting the slope. The best fit of an exponential function is shown as
a solid line. The random background, shown as a dashed line, was
determined separately.

The L-conversion line was preferred over the K-conversion
line because the latter lies at 23 keV, where it is buried in the
δ-electron background, which increases exponentially towards
lower energies. Furthermore, the K-conversion coefficient
αK is smaller than αL for the 2+

1 → 0+
1 transition in the

investigated nuclei. For example, α = 5.77, αK = 1.18, αL =
3.49, for an 88.35-keV E2 transition in 176Hf. A LaBr energy
gate was then set on the 4+

1 → 2+
1 transition to produce

the TAC spectra shown in Figs. 4(a) and 4(b). Only the
Compton-suppressed LaBr detectors were used. A fit of the
slope yields the half-life of the first excited 2+ state. Several
different parametrizations of the random background were

TABLE I. Measured half-lives in 172Hf. If there is more than one
intermediate level, and where the final result is an upper limit, the
effective half-life is given in the column T ′

1/2. The adopted half-life
values are set in boldface. The values determined with the GCD
method are corrected for background contributions. For more details,
see text.

State Edecay Efeeder T ′
1/2 T1/2

(keV) (keV) (ps) (ps)

2+
1 95 214 1250(40)

4+
1 214 319 66(5)

214 409 78(6) 63(12)
214 484 88(13) 70(17)
214 543 95(18) 73(20)

6+
1 319 409 15(8)

319 484 18(9) 15(12)

8+
1 409 484 3(7) <10

tried. All variations were consistent within the uncertainty.
The results are shown in Tables I–III.

In the 176Hf experiment we encountered a problem with
the TAC that was started by the electron detector which was
not noticed until after the beam time. It was not possible
to extract reliable ce-γ time spectra and the γ -γ approach
was therefore used in this case. The 2+

1 → 0+
1 transition is

highly converted and at very low energy and the γ line
in the LaBr spectra is therefore weak and on top of a lot
of time-correlated background. The background subtraction,
which yields the spectrum shown in Fig. 4(c), increases the
uncertainty dramatically. The result agrees well with the value
from Coulomb excitation measurements given in the nuclear
data sheets [42].

B. Half-life of higher-lying yrast states

For the measurement of the previously unknown, shorter
half-lives of the 4+, 6+, and 8+ states, TAC spectra of γ -γ
coincidences between two LaBr detectors were analyzed. LaBr
coincidence energy spectra are shown in Fig. 5. For these fast
timing measurements in the ps region the generalized centroid
difference (GCD) method was employed [41], a refinement

TABLE II. Same as in Table I but for 174Hf.

State Edecay Efeeder T ′
1/2 T1/2

(keV) (keV) (ps) (ps)

2+
1 91 1280(40)

4+
1 207 311 77(5)

207 401 101(6) 85(9)
207 476 99(15) 84(15)
207 941 65(47) 49(52)
207 1252 72(47)

6+
1 311 401 16(5)

311 476 22(6) 18(8)

8+
1 401 476 5(5) <10
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TABLE III. Same as in Table I but for 176Hf.

State Edecay Efeeder T ′
1/2 T1/2

(keV) (keV) (ps) (ps)

2+
1 88 202 1470(60)

4+
1 202 307 90(6)

202 401 110(6) 93(9)
202 483 114(6) 92(12)
202 736 109(8) 93(11)
202 1043 97(13)

6+
1 307 401 17(6)

307 483 23(7) 18(11)

8+
1 401 483 6(9) <15

of the centroid shift method [43]. With the GCD method,
the centroids of two time distributions are measured for a
combination of transitions that mark the population (feeding
transition) and the depopulation (decay transition) of a nuclear
excited state. In the case of the present setup, if the half-life
of the excited state is shorter than 1 ps, the decay can be
considered prompt. If the half-life is longer, a shift of the
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FIG. 5. Examples of gated LaBr γ γ coincidence spectra for
174Hf. The transition which was gated on is indicated in the top-right
corner of each panel. No coincident electron was demanded.

FIG. 6. PRD calibration points measured with a 152Eu source for
172Hf, 174Hf (a), and 176Hf (b). The reference energy is Eγ = 344 keV.
The fitted calibration function is shown as a solid line. The uncertainty
of ±10 ps is indicated as shifted dashed lines. For better comparison
the data point at Eγ = 40 keV is shown as an inlay. See text for more
details.

centroid is observed. If the decay is gated on the stop (stop
signal on the TAC), the result is a delayed time spectrum with
a centroid Cdelayed shifted to the right with respect to the prompt
distribution. If the decay is gated on the start (start signal on the
TAC), the result is an antidelayed time spectrum with centroid
Cantidelayed. A lifetime will show itself as a shift of Cantidelayed

to the left with respect to the prompt position. The half-life of
the excited state can be measured by measuring the difference
between the delayed and antidelayed centroid if the centroid
difference of two prompt signals for the respective energy
combination of decay and feeder is known. The necessary
calibration of the prompt response difference (PRD) was
obtained from measurements with a 152Eu source, as described
in detail in Ref. [41], using the calibration function given in
the same reference. Figure 6 shows the PRD calibration points
and the fitted function for the reference energy 344 keV for
the two parts of the experiment. An accuracy of ±10 ps was
adopted. Given good statistics and peak-to-background ratio,
this is the main contribution to the experimental uncertainty.
The experimental observable to be measured is the centroid
difference �C = Cdelayed − Cantidelayed, which is determined
from the delayed and antidelayed time spectra like the ones
shown in Fig. 7. The difference between �C and the mean
PRD, shifted to a given reference energy, corresponds to twice
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FIG. 7. (Color online) γ -γ time difference spectra for direct decay-feeder cascades in the nuclei 172Hf (left), 174Hf (center), and 176Hf
(right). The delayed spectra, with the decay gated on the stop branch, are shown in gray (green). The antidelayed spectra, where the decay
is gated on the start branch, are shown in black (red). The top row shows the time spectra for the 6+

1 → 4+
1 → 2+

1 cascade (with ce gate),
the center row those for the 8+

1 → 6+
1 → 4+

1 cascade, and the bottom those for the 10+
1 → 8+

1 → 6+
1 cascade (both without ce coincidence

condition).

the lifetime τ = T1/2

ln(2) ,

2τ = �C − PRD(�Eγ )| (1)

PRD(�Eγ ) = PRD(Efeeder − Edecay). (2)

Analyzed time spectra which are measured using γ de-
tectors, like the ones shown in Fig. 7, necessarily contain
background from Compton scattering and cross-talk events.
These are correlated in time with the transitions gated on, but
not in the same way as the full energy peaks. This timing
background is delayed with respect to the prompt response
for full energy events, which leads to a systematic error in
�C. Therefore, a time correction related to the Compton
background contribution was performed in all cases, according
to the procedure outlined in Ref. [44]. The centroid of the
background distribution at the gate position was determined
by interpolation. By assuming that the measured distribution
is the sum of the background distribution and the desired full
energy response, the centroid of the latter can be determined
with the additional knowledge of the peak-to-background (ptb)

ratio. The correction, of course, contributes to the measurement
uncertainty σT1/2 . That is,

σT1/2 =
√

σ 2
�C + σ 2

PRD +
[
σ (�C − �CC)

ptb

]2 ln(2)

2
, (3)

with σ�C from the measurement of the centroid difference,
σPRD = 10 ps from the PRD calibration, and the uncertainty
from the background correction, which includes the interpo-
lated centroid difference of the Compton background �CC.
The uncertainties are those for the actually measured quantity
2τ . The result is then scaled to the half-life value via the
rightmost factor in Eq. (3). Dependent on the ptb and the
time shift between the measured CD and the interpolated time
response of the Compton background �CC, the correction
can be important. For an estimation of the magnitude of the
correction and its effect on the uncertainty of the final half-life,
we give an example in numbers: In the case of the 311–401
coincidence in 174Hf ptb ratio ≈5. The absolute value of the
correction of �C is 2 ps, i.e., rather small. The uncertainty
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of T1/2 is σT1/2 = 3.9 ps without background correction and
σT1/2,bg = 4.8 ps with background correction. In the case of
the 311–417-keV coincidence in 174Hf, with ptb ratio ≈2, the
absolute value of the correction of �C is about 16 ps. The
uncertainties are σT1/2 = 4.0 ps and σT1/2,bg = 5.9 ps. From this
example it can be seen that the background correction is very
important, especially in the second case. The effect on the
uncertainty of the final half-life, however, is small compared
to the contribution of the overall PRD uncertainty of 10 ps.

It was possible to set a coincidence condition on the
detection of a 2+

1 → 0+
1 electron for the γ -γ timing analysis to

clean the LaBr spectra. This improved the ptb ratio in the LaBr
energy gates used for the GCD analysis by a factor of up to
1.4 in the energy region below 300 keV. An example is shown
in Fig. 3. The statistics are, of course, drastically reduced.
In the case of the strong 4+ → 2+ transition, however, the
systematic uncertainty owing to the background is the most
severe among all transitions. Therefore, this approach was
only used for the determination of the 4+

1 half-life. Throughout
the analysis only time spectra from coincidences between
shielded LaBr detectors were used, except in the determination
of the lower half-life limit of the 8+

1 states. Here the transition
energies are greater than 400 keV, i.e., above the region where
cross-talk events play a significant role [45]. The measurement
of the centroid of a single distribution imposed an uncertainty
between ±0.5 and ±4 ps, depending on available statistics.
Time spectra of direct feeder-decay cascades for the 4+

1 , 6+
1 ,

and 8+
1 states are shown in Fig. 7. The spectra were rebinned

to 8 ps per channel for the purpose of display. The original
resolution was 2 ps per channel. All measured half-lives are
summarized in the Tables I–III.

One merit of the GCD, which it inherits from the centroid
shift method [43,46], is that lifetimes τ1,τ2, . . . of intermediate
levels connected by a cascade of several transitions lead to a
centroid shift about an effective lifetime τ ′, which corresponds
to the sum of the single lifetimes [46],

τ ′ = τ1 + τ2 + · · · .

This way it is possible to check the measured half-lives, and not
least the PRD calibration, for consistency by analyzing time
spectra with several coincidence conditions, i.e., decay-feeder
combinations. Where possible, this approach was also used
(see Tables I–III).

III. EXPERIMENTAL RESULTS

All measured half-lives are shown in Table IV along with
B(E2) values. Conversion coefficients for the determination
of B(E2) values were calculated using BrIccFO [47], see
Table V.

Figure 8 shows a comparison of the results from this work
with results from earlier measurements of B(E2,2+

1 → 0+
1 )

in the three hafnium isotopes that were investigated. For
172Hf there is one other measurement which also applied
the γ γ fast timing method, by Abou-Leila [52], who gives
a value of T1/2 = 1.55(10) ns. This results in B(E2,2+

1 →
0+

1 ) = 154(11) W.u., which is several σ ’s lower than the value
from this work. Another measurement, performed using ce-ce
fast timing with the Cologne Double Orange Spectrometer,

TABLE IV. Adopted values of the measured half-lives (see
Tables I–III) and the corresponding B(E2) value for the transition
to the next lower-lying state in the ground-state rotational band.

State 172Hf 174Hf 176Hf

T1/2 B(E2) T1/2 B(E2) T1/2 B(E2)
(ps) (W.u.) (ps) (W.u.) (ps) (W.u.)

2+
1 1250(40) 194(6) 1280(40) 199(6) 1470(60) 182(7)

4+
1 66(5) 274(18) 77(5) 270(20) 90(6) 251(18)

6+
1 15(8) 189

(+216

−66

)
16(5) 197

(+90

−47

)
17(6) 195

(+106

−51

)
8+

1 <10 >85 <10 >91 <15 >60

resulted in B(E2,2+
1 → 0+

1 ) = 199(3) W.u. [45], in agreement
with the value found in this work. The situation is similar
for 174Hf, for which the Nuclear Data Base gives an adopted
value of B(E2,2+

1 → 0+
1 ) = 152(8) W.u. [48]. Two sources

are cited which also used γ -γ fast timing. From those the
adopted value is calculated. One measurement, however, used
Coulomb excitation [54], yielding a significantly larger value
of B(E2,2+

1 → 0+
1 ) = 184(13) W.u. This is in agreement

with the value determined in this work. A ce-ce fast timing
measurement resulted in B(E2,2+

1 → 0+
1 ) = 201(3) W.u.,

also much higher than the value adopted by the Nuclear
Data Sheets. For 176Hf the value of this work agrees well
with the one adopted by the NNDC. In this case, the sources
do not contain any γ γ fast timing experiments from before
1972. The measurements which resulted in the low values
cited above were all performed in the late 1960s and used
NaI detectors. The energy resolution of these detectors is
much worse than that of LaBr detectors used today. Under
such circumstances it is difficult to control and estimate the
background contributions, especially for transitions as low in
energy as the 2+

1 → 0+
1 transition in deformed nuclei, which

typically lie around or below 100 keV. For this reason we adopt
the B(E2,2+

1 → 0+
1 ) values measured in this work for our

further discussion. The other half-lives and absolute transition
strengths measured in this work are measured for the first time.

The new B(E2) values complete the picture of evolution
of quadrupole transition strength in the ground-state band of
midshell hafnium isotopes. The result is a smooth increase
from low neutron numbers N towards midshell and a subse-
quent smooth decrease [see Fig. 9(a)]. It is well established
that the investigated hafnium isotopes display the character-
istics of an axially deformed rotor. In such nuclei the ratio

TABLE V. Internal conversion coefficients (ICCs) from
BrIccFO [47] used for the calculation of B(E2) values.

Transition Internal conversion coefficient α

172Hf 174Hf 176Hf

2+
1 → 0+

1 4.32(6) 5.12(8) 5.86(9)
4+

1 → 2+
1 0.230(4) 0.256(4) 0.278(4)

6+
1 → 4+

1 0.0660(10) 0.0711(10) 0.0739(11)
8+

1 → 6+
1 0.0327(5) 0.0345(5) 0.0345(5)

044301-7



M. RUDIGIER et al. PHYSICAL REVIEW C 91, 044301 (2015)

FIG. 8. (Color online) Comparison of measured B(E2,2+
1 → 0+

1 ) values of 172Hf, 174Hf, and 176Hf. The respective adopted values found in
the nuclear data sheets [40,42,48] are shown as a solid line with dashed lines indicating the uncertainty. Other data are from Hansen et al. [49],
Bjerrefard et al. [50], Fossan and Herskind [51], Abou-Leila [52], Charvet et al. [53], Ejiri and Hagemann [54], Ronningen et al. [55], Hammer
et al. [56], Tanaka et al. [57], and Régis [45]. The experimental method is indicated by ce-ce, γ -γ , β-ce (delayed ce-ce, γ -γ , and β-ce
coincidence fast timing), Clx (Coulomb excitation), and μ-atom (muonic atom spectroscopy).

B42 = B(E2,4+
1 → 2+

1 )/B(E2,2+
1 → 0+

1 ) can be calculated
as the ratio of Clebsch-Gordan coefficients (Alaga rules),
which yields B42 = 1.43. As can be seen in Fig. 9(b), the newly
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FIG. 9. (Color online) Experimental B(E2; J → J − 2) values
in hafnium isotopes (Z = 72) (a) and the ratio B42 = B(E2,4+

1 →
2+

1 )/B(E2,2+
1 → 0+

1 ) (b). Values measured in this work are marked
with a box. Other values are taken from the Nuclear Data
Sheets [58–62].

measured transition strengths fit well into the systematics for
rigid rotors, as expected.

IV. CALCULATION AND DISCUSSION

A. Description of the model and discussion of mean-field results

To help understand the data, we have performed theoretical
calculations of spectroscopic properties by employing the
recently proposed methodology of Refs. [29,33]. The essential
idea of the method is to determine the Hamiltonian of an
appropriate version of the IBM by computing the bosonic
deformation energy surface so that it reproduces, in a way
described below, the basic topology of the deformation energy
surface of the many-fermion system computed microscopi-
cally with the Hartree-Fock-Bogoliubov (HFB) method. The
resultant Hamiltonian is used to calculate energy levels and
wave functions of excited states.

Our starting point is the microscopic calculation of the
deformation energy surface within the self-consistent mean-
field model. We have performed, for each individual Hf
nucleus, a set of the constrained HFB calculations and obtained
the deformation energy surfaces in terms of the quadrupole
collective coordinates β and γ [1]. It is also possible to
parametrize the energy surfaces using the quadrupole moments
Q20 and Q22 related to the β and the γ variables by β =√

4π
5

Q
A〈r2〉 and γ = tan−1 Q22

Q20
, with Q =

√
Q2

20 + Q2
22 (see

Ref. [33] for more details). In the definition of β we use the
mean-squared radius 〈r2〉 evaluated with the corresponding
HFB state. Throughout this work, the D1M parametrization
of the Gogny EDF [34] is employed for the effective nucleon-
nucleon interaction.

In Fig. 10, the deformation energy surfaces obtained from
the Gogny-D1M HFB calculations for the 168–180Hf nuclei, are
plotted in terms of the β and γ deformations. We limit the plot
to the range 0.0 � β � 0.5 and 0◦ � γ � 60◦, because it is the
relevant scope for our purposes. Energy surfaces for 166Hf and
180Hf are not shown because they are quite similar in topology
to the ones of the adjacent nuclei 168Hf and 178Hf, respectively.
In general, the energy minimum is located around β = 0.3 on
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FIG. 10. (Color online) Contour plots of the deformation energy surfaces in terms of the quadrupole deformations β2 and γ for the nuclei
168–178Hf, obtained from the Gogny HFB calculations using the D1M interaction. The color scale varies in steps of 0.25 MeV and the contour
lines are drawn in steps of 0.5 MeV. The range of the plot is 0.0 � β � 0.5 and 0◦ � γ � 60◦. The absolute minimum is identified by an open
circle.

the γ = 0 axis, being characteristic of an axially deformed
prolate rotor. While any significant change in the topology
is visible from the microscopic energy surface, the minimum
appears to be steeper in both β and γ directions for heavier Hf
isotopes. Although not shown here, the results with D1S look
quite similar to the D1M ones. However, as compared to the
D1M results, the energy minima of the D1S energy surfaces
are steeper in both β and γ directions than in the D1M case.
In Table VI we observe that for the nuclei 170–178Hf the HFB
energy of the minimum [relative to the energy of the spherical
configuration (β,γ ) = (0,0) and denoted as Emin] is generally
around 1.2–1.7 MeV smaller in magnitude in the D1M case
than the D1S one.

In Fig. 11 the β value at the absolute minimum of the
microscopic energy surface (denoted hereafter as β2,min) is
plotted as a function of neutron number. It exhibits a parabolic

TABLE VI. The HFB energy at the minimum (relative to the
spherical configuration, and denoted by Emin) as well as the position
of the minimum β2,min are given for both parametrizations of the
Gogny force and the 170–178Hf nuclei.

Emin (MeV) β2,min

D1S D1M D1S D1M

170Hf −12.214 −10.944 0.339 0.325
172Hf −13.788 −12.277 0.360 0.332
174Hf −14.724 −13.061 0.353 0.326
176Hf −15.068 −13.385 0.320 0.307
178Hf −14.960 −13.328 0.301 0.288

behavior with its maximum at N = 100 instead of the midshell
value N = 104. The D1S results are generally larger than the
D1M ones but in both cases they show their maximum value
at N = 100. However, as observed in Table VI, the minimum
energy Emin reaches its maximum at midshell for both the D1S
and the D1M sets.
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FIG. 11. (Color online) The β2,min values, where the HFB energy
has its absolute minimum are plotted as a function of neutron number
for the 166–180Hf isotopes. Solid and dotted curves represent the results
from D1S and D1M interactions, respectively.
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TABLE VII. The parameters for the IBM Hamiltonian ĤIBM

of Eq. (4), as well as the proportionality coefficient Cβ for the
deformation parameter β, obtained from the mapping of the HFB
to the IBM energy surfaces for 166–180Hf.

A ε −κ χπ χν κ ′ Cβ eB

(keV) (keV) ×103 ×103 (keV) (efm2)

166 474 281 213 −813 −9.95 3.65 15.3
168 439 285 213 −729 −11.9 3.20 16.3
170 451 292 241 −895 −13.0 2.96 15.9
172 333 281 454 −878 −10.5 2.96 15.5
174 238 267 303 −768 −6.46 3.00 14.3
176 166 242 237 −723 −2.00 3.30 12.9
178 97.7 258 709 −1086 −0.952 3.50 12.3
180 88.0 273 359 −801 −3.36 3.60 13.5

For the boson calculation, we employ a proton-neutron IBM
(IBM-2) Hamiltonian,

ĤIBM = ε(n̂dπ + n̂dν) + κQ̂π · Q̂ν + κ ′L̂ · L̂, (4)

where the first and the second terms stand for the d-boson
number operator and the quadrupole-quadrupole interactions,
respectively. They are given by the expressions n̂dτ = d†

τ · d̃τ

and Q̂τ = s†τ d̃τ + d†
τ s

†
τ + χτ [d†

τ × d̃τ ](2), with τ being either
π (proton) or ν (neutron). The third term is relevant for
rotational bands and it is shown [33] to be necessary for
the description of deformed nuclei. It is given in terms of
the total angular momentum operator L̂ = L̂π + L̂ν , with
L̂τ = √

10[d†
τ × d̃τ ](1).

The most general IBM-2 Hamiltonian contains many more
terms and parameters than the one in Eq. (4). The present
IBM-2 Hamiltonian is rather simple compared with a general
Hamiltonian, but contains the minimal number of interaction
terms relevant for the description of low-lying quadrupole
states. The Hamiltonian parameters are determined by map-
ping the HFB energy surface onto the IBM one. Some technical
details of the procedure are described in the Appendix . In
Table VII we tabulate the IBM-2 parameters determined by
the mapping procedure for the 166–180Hf isotopes.

Having all the relevant parameters at hand, the Hamiltonian
is diagonalized to obtain energies and wave functions of the
excited states. For the numerical diagonalization of the IBM-2
Hamiltonian and the calculations of the E2 transition rates,
the computer program NPBOS [63] has been used. Using the
resultant wave functions, the transition probabilities between
the states are calculated. In particular, the B(E2; J → J ′)
value is obtained by

B(E2; J → J ′) = 1

2J + 1
|〈J ′||T̂ (E2)||J 〉|2, (5)

where J and J ′ are the total angular momenta of the initial
and the final states of the transition, respectively. The E2
operator is written as T̂ (E2) = eπQ̂π + eνQ̂ν , where Q̂τ is the
quadrupole operator defined in Eq. (4) and the same values
of χπ,ν parameters are used. The parameter eτ is the boson
effective charge for proton and neutron. Here we assume that
the effective charge is the same for protons and neutrons,
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FIG. 12. (Color online) Experimental (a) and the theoretical
(D1M parametrization) (b) level energies of the low-lying yrast 2+,
4+, 6+, 8+, and 10+ states as functions of neutron number.

eπ = eν ≡ eB . In most of the previous IBM calculations, a
fixed value of the effective charge eB , which is determined by
fitting to the experimental data for the B(E2) values, is used
for all members of the isotopic chain.

B. Energy levels

To confirm that the present framework gives a reasonable
description of the energy levels, we display in Fig. 12
the experimental level energies for the yrast 2+, 4+, 6+,
8+, and 10+ states and the corresponding theoretical level
energies calculated by the mapped IBM-2. Overall, our IBM-2
calculation follows the experimental trend satisfactorily and
reproduces the energies for each nucleus rather well at a
quantitative level. However, the energy levels have a minimum
as a function of neutron number at midshell N = 104 in the
experiment, while the minimum is at N = 100 in the theory.

To illustrate this deviation of the 2+
1 excitation energy, we

show in Fig. 13 the moments of inertia (denoted as MOIs) of
the rotational band, obtained from the rotor formula E(J ) ∝
J (J + 1) (with J = 0+,2+,4+, . . .) and the 2+ energies of
the IBM result [denoted as “E(2+

1 ) IBM” in the figure] and
the experiment [“E(2+

1 ) Exp.”]. The MOI, which is equal
to 3/E(2+

1 ), of the IBM is maximal at N = 100, while the
experimental MOI is maximal at N = 104 but changes much
less than the theoretical value with neutron number.

The reason for the discrepancy in the systematics of the
MOI between the IBM result and the experiment can be
attributable to the inclusion of the L̂ · L̂ term in the IBM-2
Hamiltonian. To shed more light upon this point, we plot
in the same figure the MOI obtained from the cranking
calculation in the Gogny HFB model using the Thouless-
Valatin (TV) formula [64] (denoted as “Gogny-HFB TV”
in the figure for the two different parametrizations D1S
and D1M) and the one calculated in the IBM without the
L̂ · L̂ term (denoted as “IBM-cranking”). As described in the
Appendix, the coefficient of the L̂ · L̂ term is determined
so that the “IBM-cranking” MOI becomes identical to the
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FIG. 13. (Color online) The moments of inertia (MOIs) of the
ground-state rotational band of the 166–180Hf nuclei obtained in
different approaches are plotted as a function of neutron number.
The MOIs are computed using the cranking calculations of the IBM
in the coherent state “IBM-cranking” and the self-consistent HFB
cranking method that leads to the Thouless-Valatin MOI with both
the D1M “Gogny-HFB TV (D1M)” and the D1S “Gogny-HFB TV
(D1S)” parametrizations. Also shown are the MOIs extracted from the
2+

1 excitation energies of the IBM-2 “E(2+
1 ) IBM” and the experiment

“E(2+
1 ) Exp.” using the rigid rotor formula.

“Gogny-HFB TV (D1M)” one. For that reason, we do not
plot the IBM cranking MOI with the L̂ · L̂ term. In Fig. 13,
one should see that the “IBM-cranking” MOI is peaked at
N = 104 or 106, consistent with the experimental MOI, while
the “Gogny-HFB TV (D1M)” MOI is peaked at N = 100
(the same applies for the D1S values). For the nuclei with
N � 102, the difference between the “IBM-cranking” and the
“Gogny-HFB TV (D1M)” MOIs is rather large as compared to
the one for N � 104. Thus, the lowering of the energy owing
to the inclusion of the L̂ · L̂ is much more significant in the
N � 102 Hf nuclei than in the N � 104 ones. Consequently,
the maximum point of the “E(2+

1 ) IBM” MOI appears at
N = 100 owing to the inclusion of the L̂ · L̂ term. This
correlates with the evolution of the derived κ ′ parameter,
presented in Table VII: For example, the parameter κ ′ for
172Hf is much larger in magnitude than that for 176,178Hf. We
also note that the same conclusion would be extracted from
the D1S parametrization as it predicts the same systematics as
the D1M set.

It is certainly worth noting that, contrary to the empirical
trend, the TV MOI becomes maximal, irrespectively of the
choice of the parametrizations, not at the midshell N = 104
and that this systematics is well correlated with the evolution
of the β2,min in Fig. 11.

Alternatively, it has been shown [65] that the MOI of the
ground-state rotational band calculated in the cranking model
is rather sensitive to the details of the pairing interaction.
Therefore, it can be of interest that a small modification to
the relevant channel in the D1S and D1M functionals could
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FIG. 14. (Color online) The B(E2) values for hafnium (Z = 72)
isotopes calculated with two different choices of effective boson
charge eB: (a) eB = 0.123 eb fixed for all isotopes; (b) eB different
from nucleus to nucleus, each determined by adjusting the transition
quadrupole moment Qt (2

+
1 → 0+

1 ) from the IBM-2 calculation to
fit β2,min of the Gogny-HFB D1M calculation. The boson effective
charges eB used for the latter calculation are tabulated in Table VII.

lead to a substantial improvement of the agreement with the
experimental data.

Finally, we also note that the calculation generally under-
estimates the experimental level energies, in particular, for the
nucleus 172Hf. The reason would be that the effect of including
the L̂ · L̂ term is rather significant, as the TV MOI from the
Gogny-HFB calculation overestimates the experimental one
considerably (see Fig. 13).

C. E2 transitions

Let us now turn our attention to the calculation of the
B(E2) values. In Fig. 14(a) the theoretical B(E2; J → J − 2)
values (J = 2,4, . . . ,10) calculated with an effective charge
eB = 0.123 eb are shown. The effective charge was fixed for
all the considered Hf nuclei as to reproduce the experimental
B(E2; 2+

1 → 0+
1 ) value of 182 W.u. in 176Hf. As antici-

pated from previous IBM fitting calculations for W and Os
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isotopes [5], the theoretical B(E2; J → J − 2) values with a
fixed eB value become maximal at midshell N = 104, which
disagrees with the experimental B(E2) systematics, showing
a peak at N = 100 or 102.

The failure can be partly attributed to the use of a
fixed effective charge eB. Then we consider eB to be mass
dependent and determine its value for each individual nucleus.
Specifically, we propose to derive eB so that it follows the
systematics of the Gogny-HFB β2,min values, mainly because
this quantity reaches its maximum value not at midshell but at
N = 100, as seen from Fig. 11.

A possible option to take this effect into account can be to
associate the transition quadrupole moment Qt , corresponding
to the 2+

1 → 0+
1 E2 transition matrix element, to the Gogny-

HFB β2,min value. In general, Qt for the transition from the
state with spin J to J ′ is written as

Qt (J → J ′) =
√

16π

5

B(E2; J → J ′)
(J200|J ′0)2

, (6)

with (J200|J ′0) being the Clebsch-Gordan coefficient. The
quantity Qt (J → J ′) is transformed into the intrinsic defor-
mation parameter βt (J → J ′),

βt (J → J ′) =
√

5π

3ZR2
Qt (J → J ′). (7)

The βt for the 2+
1 → 0+

1 E2 transition, βt (2
+
1 → 0+

1 ), is
eventually made equal, for each individual nucleus, to the
Gogny-HFB mean-field β2,min to obtain the effective charge
eB.

In Fig. 14(b) we plot the resulting B(E2; J → J − 2)
values with the effective charge determined in this way.
Although the B(E2; J → J − 2) values in panel (b) are
generally larger in magnitude than those in panel (a), the
systematic trend is more consistent with the experimental one,
as it becomes maximal at N = 100, not at the midshell nucleus
176Hf. Again, one notices that the result is well correlated with
the Gogny-HFB β2,min value (Fig. 11), the TV MOI (Fig. 13),
and the variation of the extracted eB value as a function of N
(Table VII).

The observed experimental B(E2) systematics in the
neutron-deficient Hf isotopes, indicating the maximum col-
lectivity not at the middle of the major shell, implies that
for the analysis of realistic nuclei a simple model may not
be sufficient and that certain microscopic effects have to be
taken into account. In particular, the mass dependence of eB

implies that the effect of the core polarization may become
non-negligible. In the present IBM framework, the polarization
effect cannot be included explicitly, but it could be somehow
taken into account by absorbing it in the variation of the boson
charge.

Alternatively, the mass dependence of the boson effective
charge could be explained by the renormalization effect of
the g boson [66]. In the sd IBM system, the g-boson effect
could show up as higher-order terms in the quadrupole
operator [66]. In that sense, the form of the quadrupole
operator used in the present work in Eq. (4), which is a
one-body operator, can be extended to include the higher-order
terms.
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FIG. 15. (Color online) Comparison of experimental and theo-
retical reduced transition strengths in hafnium isotopes (Z = 72).
(a) Calculation from Fig. 14(a) (eB = 0.123 eb). (b) Calculation from
Fig. 14(b) (eB mass dependent).

We also comment on the dependence of the IBM results on
the choice of the EDF parametrization. For the energies of the
ground-state rotational band, there is a certain quantitative
difference between the D1S and the D1M results, but the
overall tendency at the qualitative level is expected to be quite
similar, because the deformation energy surface, β2,min and
TV MOI for both parametrizations have been shown to exhibit
similar features as a function of neutron number. Likewise,
for the B(E2) systematics, as both the D1S and D1M sets
provide a similar trend of the β2,min value (cf. Fig. 11), if the
effective charges are determined in the same way, one would
obtain the results qualitatively similar to the ones from the
D1M interactions (cf. Figs. 14 and 15).

For completeness, in Fig. 15 we compare the B(E2; 4+
1 →

2+
1 ) and B(E2; 2+

1 → 0+
1 ) experimental values with the results

of the calculations with two different choices of the effective
charge: (a) eB = 0.123 eb fixed for all nuclei and (b) eB

dependent on mass. In Fig. 16, we compare the experimental
and theoretical (with the use of mass-dependent effective
charge) B(E2; 6+

1 → 4+
1 ) value (a) and the B42 ratio (b). It is

rather evident from Figs. 15(a) and 15(b) that the calculations
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FIG. 16. (Color online) Comparison of experimental and theo-
retical reduced transition strengths in hafnium isotopes (Z = 72).
(a) Calculation from Fig. 14(b) (eB mass dependent). (b) B42 as
defined in the text. The IBM SU(3) limit of B42 = 10/7 is indicated
as a gray line.

with the fixed boson effective charge do not reproduce the
experimental trend while a nice agreement between theory and
calculation is obtained if one chooses the effective charge for
each nucleus as to follow the variation of the β2,min value with
N . Overall, a reasonable description of the data is obtained
both qualitatively and quantitatively.

In Fig. 15(b), the calculated B(E2; 4+
1 → 2+

1 ) and
B(E2; 2+

1 → 0+
1 ) values overestimate the experimental values

for the nuclei around N = 100. This might be attributable
to the presence of a nonzero hexadecapole deformation β4.
A nonzero β4 has an influence on the transition quadrupole
moment Qt , and therefore on the extracted effective charge.
Likely, the inclusion of β4 will improve agreement with
experiment for these nuclei. In fact, the previous IBM-1
calculation indicated [17] that the hexadecapole degree of
freedom may be non-negligible, though in a different context
of some ground-state properties.

For the 6+
1 → 4+

1 E2 transition presented in Fig. 16(a), the
theoretical value shows a parabolic behavior. The experimental
one does not show this trend, but also has a large uncertainty.

In Fig. 16(b), we observe that both the experimental and
theoretical B42 ratio are close to each other, as well as to
the SU(3) limit of the IBM (=10/7) [12], showing that the
considered nuclei are well described as being good rotors.

In comparison to the other EDF-based calculation available
in the literature, the five-dimensional collective Hamiltonian
approach based on the Gogny-D1S parameter set has predicted
the maximum B(E2; 2+

1 → 0+
1 ) value at 102 [67]. It is one unit

different from our result, but in that calculation the difference
in the B(E2; 2+

1 → 0+
1 ) values between 172Hf and 174Hf is

negligible.

V. CONCLUSION

The experimental technique of fast timing using a combi-
nation of LaBr detectors and a ce spectrometer is very well
suited to measure yrast B(E2) values in deformed nuclei. It
was possible to measure the half-lives of ground-state band
excitations of a nucleus from the 2+

1 to the 6+
1 state in one single

experiment with a relatively short amount of measuring time,
e.g., 48 h of net measuring time in the case of 172Hf. The GCD
method for extracting the shorter half-lives gave consistent
results for different decay-feeder energy combinations. The
detection limit for picosecond half-lives, given a good ptb
ratio, was around 5 ps.

In the present work the half-life of the 2+
1 state in the nuclei

172,174,176Hf were remeasured. The results are in agreement
with those from Coulomb excitation measurements and other
methods. The deviation with respect to results of γ γ fast timing
measurements from the late 1960s can possibly be explained
by the improved energy resolution of the LaBr detectors and
the use of the Orange spectrometer in the current work, both
of which allow for a better treatment of background and
contaminations. Furthermore the half-lives of the 4+

1 and 6+
1

states in the nuclei 172,174,176Hf were measured for the first
time. It was possible to deduce an upper limit for the half-life
of the 8+

1 state in the same nuclei.
The evolution of B(E2) transition strength in the considered

even-even hafnium isotopes is smooth, as was expected. The
maximum of the B(E2; 2+

1 → 0+
1 ) value is found not at

midshell N = 104, but at lower neutron number, which in this
case has turned out to be N = 102. A simple model cannot
explain this systematics, only predict the maximum collectivity
at the midshell. One should rather rely on a more realistic
or microscopic model for complex nuclei. Our spectroscopic
calculation, performed within the scope of this work, has
reproduced the experimental trend of the B(E2) very nicely
[see Fig. 14(c)], if the boson effective charge is determined as
to follow the prediction by the microscopic EDF calculation.
In the present calculation, any specific adjustment to the data
has not been invoked, but the result depends only on the EDF
parametrization and on the mapping procedure. The results of
microscopic EDF calculations on the quadrupole deformation
β2,min (Fig. 11) and the cranking MOI (Fig. 13) and the
corresponding IBM energy levels (Fig. 12) and E2 transition
rates (Figs. 14 and 15) are consistent and correlated with each
other very well in systematics.

On the other hand, the same behavior of the B(E2)
transition strength has also been observed in neighboring
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isotopic chains like erbium, ytterbium, and tungsten. In that
sense, it would be a very interesting subject of a future study
to analyze the spectroscopy of these neighboring nuclei in a
more systematic manner.

ACKNOWLEDGMENTS

This work has been supported by the DFG under Grant No.
JO 391/16-1. K.N. acknowledges the support by the Marie
Curie Actions grant within the Seventh Framework Program
of the European Commission under Grant No. PIEF- GA-
2012-327398. This work has been partially carried out during
his visit to the Institut für Kernphysik (IKP) of the University
of Cologne. He acknowledges Prof. J. Jolie and the IKP for
their warm hospitality.

APPENDIX: PROCEDURE TO EXTRACT PARAMETERS
FOR THE IBM HAMILTONIAN

The IBM-2 Hamiltonian of Eq. (4) contains five free
parameters (ε, κ , χπ , χν , and κ ′) to be determined. The
bosonic energy surface EIBM(β,γ ) is given by an analytical
expression, and is derived by taking the expectation value of
the IBM-2 Hamiltonian in Eq. (4) with the boson coherent
state |φ(β,γ )〉 [30],

|φ(β,γ )〉 = �τ

1√
Nτ !

(λ†
τ )Nτ |0〉, (A1)

where Nτ and |0〉 represent the number of proton or neutron
bosons and inert core, respectively,

λ†
τ = s†τ + 1√

2
β̄τ sin γτ (d†

τ+2 + d
†
τ−2) + β̄τ cos γτd

†
τ ,

(A2)

where β̄τ is the deformation parameter in the boson system
and we assume β̄π = β̄ν ≡ β̄. In the above equations, we
distinguish the deformation parameter β̄ of the boson system
from the usual β deformation parameter in the collective
model. The model space of the collective model spans the
entire nucleus, while only the valence nucleons are considered
in the IBM. Therefore, the deformation parameter for the
IBM system β̄ is always larger than the one in the collective
model β, and one can assume, to a good approximation,
that β̄ ∝ β [30]. This involves an additional parameter Cβ ,
which is the proportionality coefficient for the β deformation,
β̄ = Cββ.

The boson energy surface is given as

EIBM(β,γ ) = 〈φ(β,γ )|Ĥ IBM|φ(β,γ )〉
〈φ(β,γ )|φ(β,γ )〉 = ε′(Nπ + Nν)β̄2

1 + β̄2

+ NπNνκ

(1 + β̄2)2

[
4β̄2 − 4

√
2

7
(χπ + χν)β̄3 cos 3γ

+ 2

7
χπχνβ̄

4

]
, (A3)

with ε′ = ε − 6κ ′ and β̄ = Cββ.
The four parameters ε′(=ε − 6κ ′), κ , χπ , and χν plus

the additional coefficient Cβ are determined by adjusting the
bosonic energy surface EIBM(β,γ ) so that it reproduces the
topology of the microscopic energy surface EHFB(β,γ ) in
the neighborhood of the absolute minimum. This procedure
reduces to the fitting of the bosonic energy surface in Eq. (A3)
to the Gogny-D1M energy surface. For the fit, we utilize the
technique using the wavelet transform [31].

However, the L̂ · L̂ term does not contribute to the energy
surface of Eq. (A3) but takes the same analytical expression
as the first term in Eq. (4). Therefore, once the above
five parameters are obtained, the coefficient κ ′ should be
determined in a different way from the other five parameters.
To do this, we take the procedure of Ref. [33]: The cranking
MOI is compared between fermion and boson systems. We
then calculate the MOI for the 2+

1 state by TV formula
[64]:

ITV = J (J + 1)

2Eγ

. (A4)

Eγ stands for the 2+
1 excitation energy obtained from the

self-consistent cranking calculation with the constraint 〈Ĵx〉 =√
J (J + 1), where Ĵx represents the x component of the

angular momentum operator.
The equivalent quantity is derived for the IBM in the co-

herent state |φ(β,γ )〉, using the cranking formula of Schaaser
and Brink [68],

IIBM = lim
ω→∞

1

ω

〈φ(β,γ )|L̂x |φ(β,γ )〉
〈φ(β,γ )|φ(β,γ )〉 , (A5)

with ω being the cranking frequency.
With the parameters ε′(=ε − 6κ ′), κ , χπ , χν , and Cβ fixed

from the energy-surface fit, the IBM MOI in Eq. (A5) contains
only one parameter κ ′. The κ ′ value is determined so that IIBM

calculated at the equilibrium point, where the energy surface is
minimal, is equal to the ITV value at the corresponding energy
minimum.
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