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Background: Description of the collision process, which includes breakup, is one of the most challenging
problems of the quantum mechanics. Recently I have developed a formalism based on the complex-scaling
method, which describes accurately nuclear collisions in three- and four-body systems.
Purpose: To provide accurate calculations for n-3H scattering above the three- and four-nucleon breakup
thresholds.
Method: A four-nucleon system is described in configuration space employing Faddeev-Yakubovsky equations.
The complex-scaling method is applied to overcome the difficulties related with the complicated boundary
conditions.
Results: Elastic observables as well as total breakup cross sections are calculated for neutron scattering on tritium
at 14.1, 18, and 22.1 MeV using realistic NN interactions. Excellent agreement is found with the pioneering
calculations of this process reported by A. Deltuva et al. [Phys. Rev. C 86, 011001 (2012)]. Strong correlation of
the calculated cross sections is established with model-predicted trinucleon binding energy. The forementioned
observables reveal little sensitivity to the short-range details of NN interaction.
Conclusion: Reliable and accurate methods are now available to study four-nucleon scattering including the
breakup.
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Establishing properties of the nuclear forces remains one of
the most important challenges in nuclear physics. The success
of this enterprize strongly depends on our ability to build
accurate numerical tools, which could test modern nuclear
interaction models in describing nuclear reactions. Proper
formalisms for three-particle reactions have been introduced
by Faddeev in 1961 [1] and a few years later generalized by
Yakubovsky [2] for any number of particles. Regardless the
fact that this formalism enables handling of binary collisions
with relative ease, description of the breakup process into
three or more fragments constitutes an important challenge.
When formulated in momentum space, the kernels of the
Faddeev-Yakubovsky (FY) equations contain singularities,
whose complexity increases rapidly with a number of the
available particle channels. When solving FY equations in
configuration space, technical problems of the comparable
complexity arise due to the necessity of handling the compli-
cated boundary conditions, which are related with the behavior
of the system wave function in the asymptotes. Therefore
description of the breakup including collisions has been limited
for a long time to the three-body case.

It is also quite obvious that a direct approach based on
explicit treatment of the boundary conditions (or, equivalently,
singularities of the integral equation kernels in momentum
space equations) becomes overcomplex already for the
systems containing more than three or four particles. In
order to address such systems, it is necessary to find some
tricks which enable us to bypass this problem. In the late
sixties Nuttal proposed two different techniques, namely
complex-energy [3] and complex-coordinate [4] methods,

*rimantas.lazauskas@iphc.cnrs.fr

which makes possible the solution of a few-particle scattering
problem by avoiding explicit use of the asymptotic form of
the wave function. However, implementations of these two
methods in treating nuclear collisions have lingered for more
than three decades. The complex-energy method has been
revived in a work of Uzu et al. [5] and after some technical
improvements has been proved to be very efficient and accurate
in describing the most complex four-nucleon reactions by
Deltuva et al. [6]. Complex-coordinate (or complex-scaling)
method has also been reintroduced in nuclear physics lately,
mostly in studying nuclear reactions driven by the external
probe [7–12]. In some of my previous studies, realized in
collaboration with Carbonell, we have demonstrated validity
of the last method in describing elastic rearrangement as
well as breakup reactions for the three-body Hamiltonians
which may combine short-range Coulomb as well as optical
potentials [13,14]. Neutron-3H scattering has also been
considered above the four-nucleon breakup threshold using
the simplistic MT I-III variant of the Malfliet and Tjon
potential [15]. At that time, the spline collocation method
has been employed to solve the systems of integrodifferential
equations. In this work I have replaced the method of spline
collocation with a Lagrange-Laguerre mesh technique [16,17],
which turned out to be more accurate and efficient. Recent
numerical improvement permits addressing the n-3H
reactions, employing fully realistic nuclear Hamiltonians.

Neutron scattering on 3H represents the simplest exper-
imentally accessible four-nucleon system to handle theo-
retically. Regardless of its simplicity, this system presents
several important features. First this system, made of three
neutrons and only one proton, is one of the most neutron-rich
systems produced in a laboratory and thus represents an ideal
playground to study neutron-neutron interaction. On the other
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FIG. 1. (Color online) The FY components K4
12,3 and H 34

12 . As
z → ∞, the K-type components describe 3 + 1 particle channels,
while the H -type components contain asymptotic states of 2 + 2
channels.

hand, this system in the region Ec.m. ∼ 2–6 MeV exhibits
four rather broad resonances. Description of this system in the
region of resonances turns out to be quite challenging for the
realistic interaction models [18,19]. At higher energies, when
system breaks by releasing two or three neutrons, neutron
correlations might provide some additional information about
the NN and NNN interactions.

We use configuration space formulation based on the
Faddeev-Yakubovsky (FY) equations to describe dynamics of
a four-nucleon system [2,20]. In this formalism, the system
wave function is decomposed into the so-called FY compo-
nents (FYCs). There exist two distinct types of the FYCs for
a four-body system, namely the components of type K (Kl

ij,k)
and the components of type H (Hkl

ij ) with i,j,k,l representing
particle indexes. Furthermore, by permuting particle indexes
one may construct the 12 independent components of type
K as well as the 6 independent components of type H. The
components of type K are naturally associated with the 3 + 1
particle channels, whereas the components of type H are proper
for the 2 + 2 ones; see Fig. 1.

Each FY component F = (K,H ) is a function in nine-
dimensional configuration space, determined by the three
three-dimensional (3D) vectors (�x,�y,�z). It is convenient to
express the FYCs in their proper set of Jacobi coordinates;
see Fig. 1. For a four-body system of identical mass particles,
these coordinates are defined respectively by

�xK4
12,3

= �r2 − �r1 �xH 34
12

= �r2 − �r1

�yK4
12,3

=
√

4

3

(
�r3 − �r1 + �r2

2

)
�yH 34

12
= �r4 − �r3

�zK4
12,3

=
√

3

2

(
�r4 − �r1 + �r2 + �r3

3

)

�zH 34
12

=
√

2

( �r3 + �r4

2
− �r1 + �r2

2

)
. (1)

Partial-wave formalism is employed to express angular, spin,
and isospin dependence of the FYCs. The angular dependence
is described by using development in so-called tripolar

harmonics Yα(x̂,ŷ,ẑ), i.e.,

〈�x �y�z|F 〉 =
∑

α

Fα(xyz)

xyz
Yα(x̂,ŷ,ẑ). (2)

The quantities Fα(xyz), which depend only on radial variables
(xyz), are called regularized FY amplitudes. Here the label α
holds for a set of 10 intermediate quantum numbers, expressing
a given four-nucleon quantum state (Jπ ,T ,Tz). Using a
LS-coupling scheme, they read

YαK
≡ {[

(lx ly)lxy
lz
]
L

[((s1s2)sx
s3)S3s4]S

}
JπM

⊗[((t1t2)tx t3)T 3t4]T TZ
, (3)

YαH
≡ {[

(lx ly)lxy
lz
]
L

[
(s1s2)sx

(s3s4)sy

]
S

}
JπM

⊗[(t1t2)tx (t3t4)ty ]T TZ
, (4)

where the partial angular momenta are denoted with letters
l, the spins of the particles by letters s, and the isospins by
letters t .

Furthermore, isospin approximation is applied by consider-
ing neutrons and protons as two degenerate states of the same
particle, nucleon with a mass set to �

2/mN = 41.471 MeV
fm2. Moreover, the total isospin of the four-nucleon system is
considered to be conserved and set to T = 1.

Due to the particle permutation symmetry, the components
K (or H), which differ in particle ordering, become formally
identical. Therefore, in what follows particle indexing is
dropped by retaining only one component of type K and one
component of type H.

As has been demonstrated in a previous study [15], after
applying the complex-scaling method it is convenient to
separate an incoming wave solution. For the n-3H collisions,
considered here, the incoming wave is fully absorbed by the
components of type K, namely K ≡ K in + Kout; H ≡ H out.
Here the incoming wave K in is built from the ground-state
wave function of 3H nucleus combined with the incoming wave
of the neutron. Then for a system of four-identical fermions,
the driven antisymmetrized FY equation reads [15,20]

(E−H0 − V12)Kout−V12(P + + P −)[(1 + Q)Kout + H out]

= V12(P + + P −)[QK in],

(E − H0 − V12)H out − V12P̃ [(1 + Q)Kout + H out]

= V12P̃ [(1 + Q)K in]. (5)

where H0 is a kinetic energy operator, whereas Vij describes
the interaction between ith and j th nucleons. FYCs are
converted from one coordinate set to another by using the
particle permutation/basis rotation operators, which are sum-
marized as follows: P + = (P −)−1 ≡ P23P12, Q ≡ −P34, and
P̃ ≡ P13P24 = P24P13, with Pij standing for an operator with
interchange particle indexes i and j . Using these definitions,
total wave function of an A = 4 system may be expressed in
terms of FYCs by

� = [1 + (1 + P + + P −)Q](1 + P + + P −)K

+ (1 + P + + P −)(1 + P̃ )H. (6)

Asymptotes of the components Kout and H out contain only
various combinations of outgoing waves, thus bringing an
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TABLE I. Some calculated phase shifts δ and inelasticity pa-
rameters η for 22.1-MeV neutron scattering on triton using INOY04
potential. This work results are compared with the ones from Ref. [6].

η δ (deg)

PW This work Ref. [6] This work Ref. [6]

1S0 0.985 0.990 62.74 62.63
3P0 0.959 0.959 43.07 43.03
3P2 0.949 0.950 65.25 65.27

interest to apply the complex-scaling (or coordinates) method,
proposed by Nuttall and Cohen [4]. It is easy to see that
by acting on outgoing wave with a complex-scaling operator
(CSO),

Ŝ = eiθr ∂
∂r = eiθ(x ∂

∂x
+y ∂

∂y
+z ∂

∂z
), (7)

one gets exponentially bound functions, if the complex-scaling
angle θ is chosen in the interval (0,π ).

Action of the complex-scaling operator on the set of Eqs. (5)
gives

Ŝ(E − H0 − V12)Ŝ−1K̃out

− ŜV12Ŝ
−1(P + + P −)[(1 + Q)K̃out + H̃ out]

= ŜV12Ŝ
−1(P + + P −)[QK̃ in], (8)

Ŝ(E − H0 − V12)Ŝ−1H̃ out

− ŜV12Ŝ
−1P̃ [(1 + Q)K̃out + H̃ out] (9)

= ŜV12Ŝ
−1P̃ [(1 + Q)K̃ in]. (10)

While action of the complex-scaling operator on outgoing
waves gives exponentially bound functions, the same oper-
ation rends functions K̃ in (or H̃ in) exponentially divergent.
Nevertheless these functions appear only in inhomogeneous
term of the FY equations (8)–(10) readily premultiplied with
a potential energy operator, and thus if interactions are expo-
nentially bound the kernel of the complex-scaled equations
may become compact. Still, as discussed in Refs. [13,21], to
achieve this goal an additional kinematical condition should
be satisfied for A > 2 systems.

The complex-scaled FY equations (10) are solved for the
transformed FY components K̃out = ŜKout and H̃ out = ŜH out.
The radial dependence of these complex-scaled FY compo-
nents K̃out and H̃ out is expanded on the Lagrange-Laguerre
basis, whereas the system of integrodifferential equations is

transformed into a linear algebra problem by using Lagrange-
mesh method [16,17]. Complex-scaled wave functions of 3H
ground state, required to build the incoming wave functions,
are obtained by solving Eq. (10) where dependence on
the Jacobi coordinate z is removed. Scattering amplitudes
including the breakup ones may be calculated from the
transformed solutions K̃out (or H̃ out) employing the integral
relations; see Refs. [15,21] for the details.

In order to get numerically converged results one has to in-
clude in the expansion (3) partial waves with angular momenta
max(lx,ly,lz) � 4. In addition, a 3D Lagrange-Laguerre mesh
of ∼303 points is required to describe radial dependence of
the regularized FY amplitudes F̃ out

α (xyz). This brings to solve
a linear system with a typical size of ∼108 equations, which
is realized using the BICGSTAB(L) algorithm [22].

A few years ago, the complex-scaling method was applied
to study n-3H scattering above the breakup threshold [15]. In
that work, realized in collaboration with Carbonell, due to large
numerical costs we were obliged to use the simplistic S-waves
nucleon-nucleon interaction model. More recently, the spline
collocation method, employed previously to discretize radial
dependence of FY amplitudes, has been replaced by the
Lagrange-mesh technique. This modification allowed signifi-
cantly improved numerical accuracy and realistic description
of the four-nucleon reactions above the three- and four-
fragment breakup thresholds. As the first step of the longer
program intended to cover fully the four-nucleon continuum,
I have realized calculations of neutron scattering on the 3H
nucleus. The calculations presented here have been performed
using three formally and structurally different realistic nuclear
Hamiltonians: INOY04 [23], χN3LO [24], and AV18 [25].

Three years ago pioneering realistic calculation on the
n-3H system above the breakup threshold was undertaken
by Deltuva et al. [6]. Deltuva employs momentum-space
formulation of the complex-energy method [3,21]. In Table I
the phase shifts and inelasticity parameters obtained in this
study are compared with the ones published by Deltuva for
the INOY04 model. Excellent agreement is obtained between
the two calculations, reaching three-digit accuracy. The largest
discrepancy of 0.5% is observed for the inelasticity parameter
in the 1S0 channel, which is due to the fact that this parameter
is very close to unity.

Excellent agreement between the two calculations is also
obtained for the integrated cross sections; see Table II.
These calculations include all the scattering states with total
angular momentum J � 5. Including more partial waves
yields no change for the elastic cross section and only entirely

TABLE II. Integrated elastic (σel), breakup (σb), and total (σt ) cross sections for neutron scattering
on 3H. Calculations have been performed using INOY04 NN potential model. The results of this work
are compared with the ones from Ref. [6] and experimental values from Refs. [26,27].

This work Ref. [6] Exp.

En (MeV) σel (mb) σb (mb) σtot (mb) σel (mb) σb (mb) σtot (mb) σtot (mb)

14.1 927 19 947 928 19 947 978 ± 70
18.0 697 42 739 697 41 738 750 ± 40
22.1 535 61 596 536 61 597 620 ± 24
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FIG. 2. (Color online) Calculated n-3H elastic differential cross sections (left panel) and neutron analyzing power Ay (right panel) for
incident neutrons at laboratory energy 22.1 MeV. Calculated values are compared with the experimental results of Seagrave et al. [28].

insignificant changes for the breakup one. The total cross
sections are also in good agreement with the experimental data
from Battat [26] and Phillips [27]; they fall within experimental
error bars but favor slightly lower values than the experimental
centroid.

In Fig. 2 the elastic differential cross section as well as
the neutron analyzing power Ay are presented for 22.1-MeV
neutron scattering on triton. In this figure, results obtained
using three different realistic nuclear Hamiltonians, namely
INOY04 [23], χN3LO [24], and AV18 [25], are presented.
Before discussing agreement with the experimental data, one
should notice that not all of the employed Hamiltonians are
equally successful in describing bound-state properties of 3H
(i.e., the target nucleus). It is commonly accepted that most of
the nuclear interaction models require a three-nucleon force
to provide extra binding for the trinucleon. The INOY04,
χN3LO, and AV18 models produce the tritons with binding
energies of 8.48, 7.85, and 7.62 MeV respectively, and thus
with the exception of the INOY04 model, they underbind triton
(experimental binding energy of the triton is 8.482 MeV).
However, correct positioning of the thresholds are crucial in
describing low-energy scattering cross sections. In the vicinity
of a threshold, due to the kinematical form factor, the breakup
cross section increases with the available kinetic energy. This
feature is clearly demonstrated in Fig. 3, where total cross
sections provided by four different realistic nucleon-nucleon
interaction models are plotted against the binding energy of
3H.1 On the other hand, the total elastic cross section has the
opposite behavior—it increases with the binding energy of
the triton compensating effect from the breakup cross section.
One may observe the linear correlation pattern for both cross
sections. Existence of such a correlation indicates that at these
energies the neutron cross sections are not very sensitive to the
off-shell structure of a nuclear Hamiltonian, determined by the
on-shell properties of the two-nucleon system and the binding
energy of the triton. It is expected that once three-nucleon force
is introduced to correct the binding energy of the trinucleons,
different realistic nuclear Hamiltonian predictions should align
with the result of the INOY04 model. While extensive model

1CD-Bonn model result is taken from Ref. [6].

dependence of the n-3H cross sections has been performed
only for 22.1-MeV neutrons, our other calculations suggest
that this tendency should remain valid for the broader energy
range above the three- and four-nucleon breakup thresholds.
On the other hand, this tendency is clearly broken below
the three-nucleon breakup threshold, where four pronounced
neutron resonances are present [18,19].

The same correlation pattern is also observed for the
differential elastic cross section; see Fig. 2. The elastic cross
section increases with the trinucleon binding energy, which
is the most pronounced at the cross-section minima. Cross
sections provided by the INOY04 model, which must stand
as a reference for any realistic Hamiltonian calculation with
correct trinucleon threshold, provide the worst agreement with
the experimental data of Ref. [28] at the cross-section minima.
On the other hand, as demonstrated in Ref. [6], the calculated
cross sections at En = 18 MeV lie in the middle between data
sets of Refs. [28] and [29]. Thus one might expect a lack
of reliability for the data from Ref. [28]. As disagreement
is due to the cross-section minima, underestimation of the
experimental error bars might be the reason of this discrep-
ancy. New precise measurements are required to resolve this
discrepancy.

FIG. 3. (Color online) Dependence of the calculated n-3H total
elastic and inelastic (breakup) cross sections on the triton binding en-
ergy. Calculations have been performed for neutrons with laboratory
energy of 22.1 MeV.

041001-4



RAPID COMMUNICATIONS

MODERN NUCLEAR FORCE PREDICTIONS FOR n- . . . PHYSICAL REVIEW C 91, 041001(R) (2015)

Agreement between the theoretical and the experimental
neutron analyzing powers is not perfect, but is much improved
compared to one obtained for slower neutrons. In particular, it
contrasts with the existence of the well-known Ay puzzle for
p-3He scattering below the p + p + d breakup threshold [30].

Conclusion. In this Rapid Communication new results for
an n-3H scattering above the four-nucleon breakup threshold
are presented, which have been obtained using the three
different realistic nuclear Hamiltonians. Correlation between
the calculated elastic and breakup cross sections with a model-
predicted three-nucleon binding energy has been observed. On
one hand, this proves an importance of the correct reproduction
of the thresholds in such calculations; on the other hand, it
reveals that 14- to 22-MeV neutron scattering on 3H is not a
very sensitive tool in testing short-range details of the realistic
nuclear Hamiltonians.

This work is the first effort to apply the complex-scaling
method in describing four-nucleon scattering above the
breakup threshold using fully rigorous and realistic formalism.
It is demonstrated that the level has been reached when
four-nucleon scattering problem in its full complexity is solved
accurately and reliably. The next step is to extend this study to
other four-nucleon systems, related with the continuum of 4He
and 4Li nuclei, which include repulsive Coulomb interaction.
Pioneering works in this direction has already been undertaken
based on momentum space formulation of the complex-energy
method by Deltuva and Fonseca [31,32].
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