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Isospin splitting of nucleon effective mass and shear viscosity of nuclear matter
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Based on an improved isospin- and momentum-dependent interaction, I have studied the qualitative effect of
isospin splitting of nucleon effective mass on the specific shear viscosity of neutron-rich nuclear matter from a
relaxation time approach. It is seen that for m�

n > m�
p , the relaxation time of neutrons is smaller, and the neutron

flux between flow layers is weaker, leading to a smaller specific shear viscosity of neutron-rich matter compared
to the case for m�

n < m�
p . The effect is larger in nuclear matter at higher densities, lower temperatures, and

larger isospin asymmetries, but it does not affect the behavior of the specific shear viscosity much near nuclear
liquid-gas phase transition.
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Understanding the basic strong interaction and the prop-
erties of nuclear matter is the main purpose of nuclear
physics. The knowledge of transport properties of the hot
dense matter is important in understanding the dynamics in
heavy-ion collision experiments as well as the properties of
protoneutron stars. The quark-gluon plasma (QGP) produced
in ultrarelativistic heavy-ion collisions is believed to be a
nearly ideal fluid and has a very small specific shear viscosity
η/s [1–4], i.e., the ratio of the shear viscosity η to the
entropy density s. It has been further found that the η/s
decreases with increasing temperature in the hadronic phase
while increases with increasing temperature in QGP, resulting
in a minimum value at the temperature of hadron-quark phase
transition [5,6]. At even lower temperatures, the η/s of nuclear
matter with nucleon degree of freedom has been investigated
from the relaxation time approach [7–9] and transport model
studies [10–13]. Similar to the behavior near hadron-quark
phase transition, the η/s also shows a minimum in the
vicinity of nuclear liquid-gas phase transition from various
approaches [11–16]. Since the correlation between the elliptic
flow and the specific shear viscosity seems to be a general
feature in not only relativistic [3] but also intermediate-energy
heavy-ion collisions [17], it might be promising to measure
the η/s experimentally, meanwhile providing an alternative
way of searching for nuclear liquid-gas phase transition in
heavy-ion collisions at intermediate energies in the future.

In my previous studies, the specific shear viscosity of
neutron-rich matter was investigated based on an isospin-
and momentum-dependent interaction [9,16]. Recently, this
interaction has been further improved [18], providing the
possibility of studying more flexibly detailed isovector prop-
erties of nucleon interaction, such as the neutron-proton
effective mass splitting. The interest was inspired by the
recent experimental data of double neutron/proton ratio from
the National Superconducting Cyclotron Laboratory, which
seems to favor a smaller neutron effective mass than proton
based on the calculation using an improved quantum molec-
ular dynamics model [19]. However, the well-known Lane
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potential, representing the nuclear symmetry potential, i.e.,
the difference between the mean-field potential of neutrons and
protons, decreases with increasing nucleon energy, leading to
a larger neutron effective mass than proton [20]. To explore the
possible uncertainty of neutron-proton effective mass splitting
on the η/s of hot neutron-rich nuclear matter, I extend my
study of the specific shear viscosity with the improved isospin-
and momentum-dependent interaction (ImMDI) in this Brief
Report.

The single-nucleon mean-field potential of the ImMDI
interaction is written as [18]
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where τ = 1(−1) for neutrons (protons) is the isospin index,
ρn and ρp are number densities of neutrons and protons,
respectively, δ = (ρn − ρp)/ρ is the isospin asymmetry, with
ρ = ρn + ρp being the total number density, and fτ ( �p) is
the phase-space distribution function. The x parameter is
used to mimic the slope parameter of the symmetry energy
at saturation density ρ0, while additional two parameters y
and z are introduced to adjust the symmetry potential Usym at
infinitely large nucleon momentum and the value of symmetry
energy Esym at saturation density, respectively, and they enter
the functional through the relations
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FIG. 1. (Color online) Binding energy in symmetric nuclear mat-
ter (a), symmetry energy (b), symmetry potential at saturation density
(c), and relative neutron-proton effective mass splitting (d) in nuclear
matter at saturation density and isospin asymmetry δ = 0.5 from the
two parameter sets based on the ImMDI interaction.

Cu(y,z) = Cu0 + 2(y − 2z)
p2
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�2 ln
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�2

] , (5)

where pf 0 is the nucleon Fermi momentum in symmetric
nuclear matter at saturation density. The values of parameters
Al0, Au0, B, Cl0, Cu0, �, and σ as well as the corresponding
macroscopic properties of nuclear matter from the ImMDI
interaction can be found in Ref. [18].

The values of x, y, and z do not affect the isoscalar
properties of nuclear matter, and the binding energy in
symmetric nuclear matter is shown in Fig. 1(a). The parameter
z is set to be 0 in the present study, while x and y change,
respectively, the magnitude and the momentum dependence
of the symmetry potential, and they both contribute to the
density dependence of the symmetry energy. With different
combinations of x and y, one can get very similar density
dependence of symmetry energy but different momentum
dependence of the symmetry potential, or equivalently, the
isospin splittings of nucleon effective mass, as can be seen from
Figs. 1(b)–1(d), with the nucleon effective mass calculated
from

m∗
τ

m
=

(
1 + m

p

dUτ

dp

)−1

. (6)

The parameter sets [(x = 0), (y = −115 MeV)] with m�
n > m�

p

and [(x = 1), (y = 115 MeV)] with m�
n < m�

p are thus chosen
in the following study.

I now briefly review the main ingredient of the relaxation
time approach used in previous studies [9,16]. The shear
viscosity is calculated by assuming that in the uniform nuclear
system there exists a static flow field in the z direction with
flow gradient in the x direction. The shear force, which is
related to the nucleon flux as well as the momentum exchange
between flow layers, is proportional to the flow gradient, and
the proportionality coefficient, i.e., the shear viscosity, turns

out to be [9]
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In the above, d = 2 is the spin degeneracy, p =√
p2

x + p2
y + p2

z is the nucleon momentum, and nτ is the local

momentum distribution
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with μτ and T being the chemical potential and the tempera-
ture, respectively. px/m�

τ is the nucleon velocity between flow
layers. ττ (p) is the relaxation time for a nucleon with isospin
τ and momentum p, and it can be further expressed as

1

ττ (p)
= 1

τ same
τ (p)

+ 1

τ diff
τ (p)

, (9)

with τ same(diff)
τ (p) being the average collision time for a

nucleon with isospin τ and momentum p when colliding
with other nucleons of same (different) isospin. For more
detailed derivations and the expressions of the relaxation time,
I refer the reader to Ref. [9]. The relaxation time depends
not only on the medium properties such as the density, tem-
perature, and isospin asymmetry, but on the nucleon-nucleon
scattering cross section as well. The free-space proton-proton
and neutron-proton cross sections (σNN ) are taken as the
parameterized forms from Ref. [21], while the in-medium
cross section is modified by the effective mass through [22]

σ medium
NN = σNN

(
μ�

NN

μNN

)2

, (10)

where μNN (μ�
NN ) is the free-space (in-medium) reduced mass

of colliding nucleons. The reduced mass scaling of the in-
medium cross section comes from the fact that the differential
cross section is inversely proportional to the relative velocity
between the two colliding nucleons [23], while the difference
between the scattering T matrix in free space and in the nuclear
medium is neglected in the present qualitative study.

Figure 2 displays the total relaxation time and those
for nucleon scatterings with same or different isospins. As
expected, all relaxation times are larger with in-medium cross
sections compared to the results with those in free space. In
neutron-rich nuclear matter, the scatterings are more frequent
for neutron-neutron than for proton-proton, and protons have
more chance to collide with nucleons of a different isospin than
neutrons. The total neutron relaxation time dominates the shear
viscosity due to the sharper neutron momentum distribution in
neutron-rich nuclear matter as can be seen from Eq. (7), and
it is larger for m�

n < m�
p than for m�

n > m�
p as a result of the

isospin-dependent modification from the in-medium effective
mass, while the difference of the total neutron relaxation time
for different isospin effective mass splittings is smaller with
free-space cross sections.

The extensive results of the specific shear viscosity in
nuclear matter of isospin asymmetry δ = 0.5 at various
densities and temperatures are shown in Fig. 3. Although the
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FIG. 2. (Color online) Momentum dependence of the total re-
laxation time and that for a nucleon to collide with other ones of
same or different isospin in nuclear matter at saturation density
and isospin asymmetry of δ = 0.5 using free-space or in-medium
nucleon-nucleon scattering cross sections.

momentum occupation probability nτ ( �p) at finite temperature
depends on the neutron-proton effective mass splitting [18],
the difference of the entropy density, which is calculated from

s = −
∑

τ

d

∫
[nτ ln nτ + (1 − nτ ) ln(1 − nτ )]

d3p

(2π )3
, (11)

turns out to be small between m�
n > m�

p and m�
n < m�

p. Despite
of the similar relaxation time for different isospin splittings
of nucleon effective mass using free-space cross sections, a
larger neutron effective mass leads to smaller neutron fluxes
between flow layers, reducing the shear viscosity as can be
seen from Eq. (7). I note that this is a robust feature even if a
naive mean-free-path formula is used. The isospin-dependent
modification for the in-medium cross sections further enhances
the difference of the specific shear viscosity between m�

n > m�
p

FIG. 3. (Color online) Specific shear viscosity with free-space
[(a), (b)] and in-medium [(c), (d)] cross sections in nuclear matter
of isospin asymmetry δ = 0.5 at different densities and temperatures
for m�

n > m�
p and m�

n < m�
p .

FIG. 4. (Color online) Isospin asymmetry dependence of the
specific shear viscosity in nuclear matter at different temperatures
and densities for m�

n > m�
p and m�

n < m�
p .

and m�
n < m�

p by giving a smaller relaxation time for neutrons
in the former case, as discussed in Fig. 2. In addition, one
sees that the difference is larger at higher densities and lower
temperatures when the relative isospin splitting of nucleon
effective mass is generally stronger [18].

The dependence of the specific shear viscosity on the
isospin asymmetry is displayed in Fig. 4 at different tempera-
tures and densities. It is seen that η/s increases with increasing
isospin asymmetry δ faster than a parabolic relation especially
for m�

n < m�
p, and it increases even faster at higher densities or

lower temperatures. The effect discussed here is quite relevant
for the evolution of hot neutron stars with a large neutron
excess.

During the liquid-gas phase transition (LGPT) in nuclear
matter, each phase satisfying the Gibbs condition [24,25] has
its own volume fraction. The thin lines in Figs. 5(a)–5(c)
show the evolution of the entropy when the nuclear matter
of isospin asymmetry δ = 0.5 is heated at different external

FIG. 5. (Color online) Temperature evolution of the entropy (up-
per panels) and specific shear viscosity (lower panels) in the presence
of nuclear liquid-gas phase transition (LGPT) at fixed external
pressure P = 0.05 [(a), (d)], 0.10 [(b), (e)], and 0.15 MeV/fm3 [(c),
(f)] and isospin asymmetry δ = 0.5 for m�

n > m�
p and m�

n < m�
p .

037601-3



BRIEF REPORTS PHYSICAL REVIEW C 91, 037601 (2015)

pressures. If the occurrence of nuclear LGPT is taken into
account, the entropy evolution will follow the thick lines,
with the overall entropy density from that in each phase
weighted by the volume fraction. In infinite nuclear matter
the total shear viscosity can also be calculated from that in
each phase weighted by the volume fraction [16], and the
temperature evolution of the specific shear viscosity is shown
in Figs. 5(d)–5(f). A minimum value of η/s is seen at a higher
temperature with increasing pressure, and this value is also
smaller at a larger external pressure. The isospin splitting
of nucleon effective mass has small effects on the entropy
evolution. The specific shear viscosity is smaller for m�

n > m�
p

than for m�
n < m�

p at lower temperatures (higher densities) in
the liquid phase side, but the difference is negligible at higher
temperatures (lower densities) in the gas phase side. Moreover,
the minimum point of η/s is not affected by the isospin splitting
of the nucleon effective mass. This general feature, which is
not sensitive to detailed behaviors of nuclear interaction, might
be helpful in searching for the occurrence of nuclear LGPT in
low- and intermediate-energy heavy-ion collisions, if people
find ways to measure the specific shear viscosity there.

In summary, the specific shear viscosity with different
isospin splittings of nucleon effective mass has been studied

in neutron-rich nuclear matter based on an improved isospin-
and momentum-dependent interaction. Qualitatively, it is seen
that the specific shear viscosity is larger for m�

n < m�
p than

for m�
n > m�

p, and the difference is more obvious at higher
densities, lower temperatures, and larger isospin asymmetries.
This is due to different neutron fluxes between flow layers
as well as the isospin-dependent modification to the in-
medium nucleon-nucleon cross sections. On the other hand, the
behavior of the specific shear viscosity near nuclear liquid-gas
phase transition remains robust and seems to be insensitive to
the detailed nuclear interaction. The study may be helpful in
understanding the transport property of the hot neutron-rich
nuclear matter produced in heavy-ion collision experiments as
well as that in hot neutron stars.
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