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Magnetar superconductivity versus magnetism: Neutrino cooling processes
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We describe the microphysics, phenomenology, and astrophysical implication of a B-field induced unpairing
effect that may occur in magnetars, if the local B field in the core of a magnetar exceeds a critical value
Hc2. Using the Ginzburg-Landau theory of superconductivity, we derive the Hc2 field for proton condensate
taking into the correction (�30%) which arises from its coupling to the background neutron condensate. The
density dependence of pairing of proton condensate implies that Hc2 is maximal at the crust-core interface and
decreases towards the center of the star. As a consequence, magnetar cores with homogenous constant fields will
be partially superconducting for “medium-field” magnetars (1015 � B � 5 × 1016 G) whereas “strong-field”
magnetars (B > 5 × 1016 G) will be void of superconductivity. The neutrino emissivity of a magnetar’s core
changes in a twofold manner: (i) the B-field assisted direct Urca process is enhanced by orders of magnitude,
because of the unpairing effect in regions where B � Hc2; (ii) the Cooper-pair breaking processes on protons
vanish in these regions and the overall emissivity by the pair-breaking processes is reduced by a factor of only a
few.
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I. INTRODUCTION

The protonic fluid in the cores of magnetized neutron stars is
a type-II superconductor, i.e., it supports the magnetic B field
by forming quantized electromagnetic vortices with density
nv = B/�0, where �0 = π�c/e is the quantum of flux, in
the field range Hc1 � B � Hc2 [1]. The lower critical field
Hc1 is the field strength at which the emergence of the first
vortex (flux tube) becomes energetically favorable. At the
upper critical field strength Hc2 the normal cores of the vortices
touch each other and superconductivity is destroyed. The Hc2

field is density-dependent and is given by

Hc2 = �0

2πξ 2
p

, (1)

where ξp is the coherence length of the proton condensate,
which scales inversely with the pairing gap �. The coherence
length appears in Eq. (1) because Hc2 is the field at which
the Larmor radius of protons becomes comparable to the
size of a Cooper pair ∼ξp. A field B ∼ Hc2 disrupts the
coherence among the protons which form a Cooper pair and,
therefore, destroys their superconductivity. For the proton
superconductor in the cores of neutron stars 1015 � Hc2 �
1017 G, i.e., Hc2 is well above the fields expected in the interiors
of ordinary neutron stars (B ∼ 1012–1013 G).

The inferred magnetic fields on the surfaces of magnetars
are of the order of 1015 G. Their interior B fields are not
known, but it has been frequently conjectured that they are
larger than the surface field. The conjectured maximal B field,
which is consistent with the virial theorem for self-gravitating
magnetic equilibria, is of the order Bmax � 1018 G. Because
Bmax > Hc2 and because these fields may vary over the star’s
core, we may anticipate an intimate interplay between the
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magnetism and superconductivity in the interiors of magnetars
depending on whether the local field is above or below Hc2.
Some observational arguments where put forward in recent
years in favor of type-I superconductivity [2,3]. However,
our choice of the equations of state of dense matter and
microscopic parameters of the proton superconductor predict
type-II superconductivity throughout most of the core of a
neutron star, as we show below.

The purpose of this work is to show that large enough
magnetic fields in the interiors of magnetars unpair proton
superconductor in a strongly density-dependent manner. We
then go on to study the consequences of this magnetically
induced unpairing effect on the neutrino emissivity of mag-
netars. Neutrino emissivities are the key ingredients for the
simulations of thermal evolution of magnetars and can be
confronted with the measured x-ray fluxes from the surfaces
of magnetars.

This paper is structured as follows. In Sec. II we discuss the
input physics, i.e., the underlying equation of state (EoS) and
composition of matter which sets the stage for the following
discussion. In Sec. III, starting from the Ginzburg-Landau
(GL) functional for proton superconductor coupled to neutron
superfluid, we derive an expression Hc2, which accounts for
the density-density coupling between the proton and neutron
condensates. In Sec. IV we compute the neutrino emissivities
of the Urca process and pair-breaking processes in magnetars
including the unpairing effect. Our conclusions and an outlook
are given in Sec. V.

II. MICROPHYSICAL INPUT

Consider a magnetar with a nonstrange baryonic core con-
sisting of neutrons (n), protons (p), electrons (e), and muons
(μ) in β equilibrium. We choose to work with a relativistic
density functional (DF) with density-dependent couplings
derived in Ref. [4] to obtain the equation of state (EoS)
and composition of matter in the star’s core and inner crust.
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FIG. 1. Zero-temperature equation of state of dense matter
composed of neutrons, protons, electrons, and muons in β equilibrium
derived from the relativistic DF with the parametrization of Ref. [4].

The latter parametrization is in excellent agreement with the
nuclear phenomenology as it predicts saturation density n0 =
0.152 fm−3, binding energy per nucleon E/A = −16.14 MeV,
incompressibility K0 = 250.90 MeV, symmetry energy J =
32.30 MeV, symmetry energy slope L = 51.24 MeV, and
symmetry incompressibility Ksym = −87.19 MeV all taken
at saturation density [5]. For completeness we show the EoS
of baryonic matter in Fig. 1 derived from this DF. Compact star
models based on this DF were constructed elsewhere [6] where
it has been shown that the resulting maximum mass predicted
by this EoS is well above the current observational lower limit
2M� on the maximum mass of any compact star. Strangeness
in form of hyperons or deconfined two- or three-flavor quark
matter may appear in the centers of magnetars, but we neglect
this possibility in the following.

The composition of dense matter corresponding to our EoS
is shown in Fig. 2, where we show the abundances of species
ni/nb, where i ∈ n,p,e,μ as a function of baryon density nb

normalized by the nuclear saturation density of the DF. The
abundances of protons and electrons are equal up to the point
where muons set in. The threshold value of Urca process in
nonmagnetized matter np/nb ∼ 0.11 is reached at the density
n � 3n0. The composition of matter itself will be affected by
a strong B field, when electromagnetic interactions become
of the order of the nuclear scale set by the Fermi energies of
the constituents. However, below the field values 1018 G the
abundances of baryons for nonzero B are indistinguishable
from those in the B = 0 case (see Ref. [7] and references
therein).

The pairing channels in neutron star matter correspond to
the attractive most dominant phase-shifts at given density or
energy of nucleons (for a review see, e.g., Ref. [8]). Low
density neutron matter in the crust of compact stars pairs
in the 1S0 channel; above the saturation density the neutron
fraction is large enough (and energies are high enough) to
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FIG. 2. (Color online) Dependence of particle abundances ni/nb,
i ∈ n,p,e,μ on the net baryon density nb in units of saturation
density n0 = 0.152 fm−3. The vertical line shows the approximate
Urca threshold YUrca = 0.11 for proton fraction.

render the S-wave interaction repulsive. The dominant pairing
at these densities is in the 3P2-3F2 channel. Protons are in
the continuum in the fluid core of the star and are much
less abundant than neutrons, therefore their energies are low
enough to favor the 1S0 pairing. The pairing gaps in these
dominant channels adopted from Refs. [9] are shown in
Fig. 3. The formulas which fit these gaps are listed in the
Appendix. At asymptotically high densities pairing of protons
in the 3P2-3F2 channel may occur. In the exceptional models

0 0.5 1 1.5 2 2.5 3

k [fm
-3

]

0

0.2

0.4

0.6

0.8

1

Δ 
[M

eV
]

1
S

0
(n)

3
P

2
(n)

1
S

0
(p)

FIG. 3. (Color online) Dependence of S- and P -wave pairing
gaps of neutrons (dash-dotted and solid lines) and of S-wave protons
(dashed line) on their respective Fermi momenta.

035805-2



MAGNETAR SUPERCONDUCTIVITY VERSUS MAGNETISM: . . . PHYSICAL REVIEW C 91, 035805 (2015)

where matter is nearly isospin symmetrical at high densities,
spin-one, isospin-zero pairing in the 3D2 channel may become
the dominant one [10]. Examples of such models are those
which feature kaon condensates. Below we do not consider
proton P -wave pairing or neutron-proton D-wave pairing.

III. GINZBURG-LANDAU THEORY
OF Hc2 IN DENSE MATTER

Type-II superconductivity is characterized by the GL
parameter, κ = δL/ξp, where δL is the London penetration
depth of the B field in a superconductor, having the range

1√
2

< κ < ∞. (2)

The critical value κc = 1/
√

2 = 0.7071 separates the domains
of type-I and type-II superconductivity.

The magnetic field is confined to electromagnetic vortices
for field values between the lower Hc1 and upper Hc2 critical
fields. If the B field is lager than Hc2 it unpairs the Cooper
pairs and the material makes a transition to the normal state.
The phase transition from superconducting to the normal state
in the vicinity of Hc2 can be described in terms of the GL
theory, because the superconducting order parameter is small.
Note that in the vicinity of Hc2 the superconducting order
parameter is small because of the large B field and the GL
expansion is valid not only near the critical temperature Tc,
but in the entire temperature range 0 � T � Tc.

We start by writing down the GL functional for a superfluid
neutron and superconducting proton mixture

F [φ,ψ] = Fn[φ] + ατ |ψ |2 + b

2
|ψ |4 + b′|ψ |2|φ|2

+ 1

4mp

∣∣∣∣
(

−i�∇ − 2e

c
A
)

ψ

∣∣∣∣
2

+ B2

8π
, (3)

where ψ and φ are the proton and neutron condensate
wave functions, mp is the proton mass, τ = (T − Tcp)/Tcp,
where Tcp is the critical temperature of superconducting phase
transition of protons. Here α and b are the coefficients of
the GL expansion for the proton condensate, b′ describes
the density-density coupling between the neutron and proton
condensates. This type of GL functional was analyzed initially
to study the current-current coupling between the neutron
and proton condensates [11] (the entrainment effect, see
Ref. [12]). More recent study of Ref. [3] discusses the
density-density coupling between the neutron and proton
condensates and provides the relevant microscopic expressions
for the coefficient of the GL functional. The effective vector
potential can be decomposed as A = Aem + Aent, where the
first term is the ordinary vector potential of electromagnetism
with B = ∇ × A. The second term is the “entrainment” vector
potential Aent = (�c/e)[(m∗

p − mp)/mp]∇φ, where m∗
p is the

proton effective mass, see Ref. [11]. The entrainment effect
describes the current-current coupling between the neutron
and proton condensates. The explicit form of the contribution
of the neutron condensate to the GL functional, Fn[φ], is not
required in the following.

The minimization of the GL functional with respect to ψ∗,
i.e., δF [φ,ψ]/δψ∗ = 0 gives

1

4mp

(
−i�∇ − 2e

c
A
)2

ψ + ατψ+b|ψ |2ψ + b′|φ|2ψ = 0.

(4)
The equilibrium value of the condensate is given by the
solution of Eq. (4)

ψ(ατ + b|ψ |2 + b′|φ|2) = 0, (5)

from which we obtain the two possible equilibrium solutions

ψ = 0, T > Tc, (6)

|ψ |2 = −1

b
(ατ + b′|φ|2), T � Tc. (7)

The variation of the GL functional with respect to the
electromagnetic vector potential δF [φ,ψ]/δ A = 0 gives

c

4π
∇ × ∇ × A = j , (8)

where

j = − i�e

m
(ψ∗∇ψ − ψ∇ψ∗) − 4e2

mc
|ψ |2(Aem + 2Aent)

(9)

is the proton supercurrent. It contains the conventional elec-
tromagnetic current ∝∇ψ as well as the entrainment current
∝Aent ∝ ∇φ.

Equations (4), (8), and (9) constitute the GL equations in
their most general form. To derive the value of the upper critical
field Hc2 it is sufficient to keep only the linear in ψ terms in
the GL equations above. To this order Eq. (9) reduces to

∇ × ∇ × A = 0 + O(|ψ |2). (10)

Furthermore, because ∇ × Aent = 0 identically (except at
the singular points where the neutron vortices are located),
we can make the replacement A → Aem in Eq. (10). The
small-scale (local) magnetic field is homogenous, therefore the
corresponding vector potential Aem is linear in coordinates. We
choose Aem along one of the directions of the Cartesian system
of coordinates, say z direction, without loss of generality.
Assume that the B field is in the y direction. Then, ψ = ψ(x)
only. To linear order in ψ the solution of Eq. (5) is Aem = Bx.
Substituting this into the first GL equation (4) one finds

− ψ ′′ + 4π2

�2
0

B2x2ψ = −4mp

�2
(ατ + b′|φ|2)ψ + O(|ψ |2).

(11)

The mathematical form of this equation is that of the harmonic
oscillator, therefore, its solutions is read off as

− 4mp

�2
(ατ + b′|φ|2) =

(
n + 1

2

)
4πB

�0
. (12)

We are interested in the strongest field for which solutions
with ψ �= 0 are still possible. This is the case n = 0 in Eq. (12)
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which identifies the critical field B = Hc2. Consequently

Hc2 = �0

2π

[
−4mp

�2
(ατ + b′|φ|2)

]

= �0

2πξ 2
p

[
1 + |b′||φ|2

α|τ |
]
, (13)

where we used the relation (mp|ατ |)1/2 = �/2ξp and the fact
that b′ < 0, see below. If b′ = 0 Eq. (13) reduces to the
standard result [13]. To evaluate the correction to the critical
field note that |ατ | = |ψ0|2b and, therefore, (b′|φ|2/ατ ) =
(nn/np)(|b′|/|b|).

The coefficient b′ which takes into account beyond mean-
field coupling between the neutron and proton condensates
was computed by Alford et al. [3] in β-equilibrated, charge-
neutral nuclear matter diagrammatically. They also provide the
mean-field expression for b. Using their results we find that

nn

np

|b′|
|b| = 27π2

4
Gnp

n2
n

μ2
pμ2

n

�2
p

mpkFp

, (14)

where we used the value of b′ valid in the regime �p  μp

and �n  μn and T → 0 and the value of parameter Gnp =
10−5 MeV−2 [3]. Note that close to the critical temperature
Tc alternative expressions provided by Alford et al. [3] should
be used. The correction in Eq. (13) owing to the coupling
between the neutron and proton condensates is �30%; it is
small because the coupling between the condensates arises
only via fluctuations which vanish in the ground state. The
main uncertainty in Eq. (14) is the contact pairing interaction
in the isosinglet channel Gnp; its value quoted above should
be viewed as an order of magnitude estimate. An additional
uncertainty arises from the not well-known value of the gap in
the proton spectrum �p which may vary by a factor of few.

The analogy between Eq. (11) and the one describing
harmonic oscillator in quantum mechanics can be exploited
further to write down the most-general “harmonic oscillator”
type solution of Eq. (11), which describes a vortex in the
x-y plane (with the field directed in the z direction). The
corresponding wave function can be written as

ψ(x,y) =
∞∑

n=−∞
Cn exp[−κB(x − k/κB)2/2 + iky], (15)

where the coefficient Cn and k depend on the type of the
proton vortex lattice. Assuming triangular lattice one finds k =
κ(π

√
3)1/2 and the set of conditions Cn+4 = Cn, C0 = C1 =

C, C2 = C3 = −C, where C is given by the normalization of
the wave function to the density of condensate.

Table I lists the key parameters of the proton superconductor
for a range of densities corresponding to the star’s fluid
core. The coherence length has a minimum, which reflects
the density dependence of the gap (ξp ∝ �−2). Because Hc2

scales inversely with ξ 2
p , the critical field has a maximum,

with max Hc2 = 7.37 × 1016 G at nb = 0.7n0 in our setup.
The London penetration depth scales as the root of inverse
proton density, therefore it decreases as the density increases.
This has the consequence that the GL parameter drops below
the critical value κc and the proton superconductor becomes

TABLE I. Microscopic parameters of proton superconductor and
the upper critical field for unpairing Hc2 for a range of matter densities.

nb/n0 kFp �p m∗
p/mp ξp δL κ Hc2

0.140 0.12 0.02 0.93 76.1 929.2 12.2 0.06
0.300 0.20 0.24 0.89 11.9 425.0 35.6 3.15
0.500 0.28 0.55 0.85 8.0 238.6 29.8 7.37
0.700 0.36 0.76 0.81 7.8 161.1 20.6 7.08
0.900 0.44 0.85 0.78 8.7 119.5 13.7 5.15
1.100 0.51 0.86 0.76 10.4 93.9 9.1 3.39
1.300 0.58 0.81 0.74 13.0 75.2 5.8 2.06
1.500 0.67 0.73 0.71 17.0 61.0 3.6 1.18
1.700 0.74 0.62 0.70 22.8 51.2 2.2 0.64
1.900 0.81 0.45 0.68 35.0 44.3 1.3 0.27
2.100 0.88 0.16 0.67 106.4 39.2 0.4 0.03

type-I. However, this occurs only in the high-density end of
the proton superconductivity domain and should be relevant
only for compact stars with central densities exceeding this
value.

Figure 4 (upper panel) displays the dependence of pair-
ing gaps on baryon density for the composition of matter
implied by our chosen EoS. (Note that gaps displayed in
Fig. 3 as functions of Fermi momenta of particles are EoS
independent, whereas those in Fig. 4 are specific to our EoS.)
The dependence of the Hc2 field on density is shown in
Fig. 4 (lower panel). It is seen that magnetars with interior
fields with B � maxHc2 � 7.37 × 1016 G will be partially
superconducting, which means that regions where B < Hc2

will be superconducting whereas the regions where B > Hc2
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FIG. 4. (Color online) Upper panel: Dependence of pairing gaps
for neutrons (1S0 and 3P2 channels) and for protons (1S0 channel)
on baryonic density in units of nuclear saturation density. Lower
panel: Dependence of the critical unpairing field Hc2 on baryonic
density with account for the coupling between the neutron and proton
condensates (full line) and without (dashed line).
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are not. Clearly, magnetars with B > maxHc2 will be fully
non-superconducting. The maximum of Hc2 is attained close
to the crust-core interface (corresponding to nb = 0.5n0). This
implies that for partially superconducting magnetars with
B < maxHc2 the unpairing by the magnetic field will remove
proton superconductivity in the inner core, whereas the outer
core could be still superconducting provided the B field is
approximately homogeneous and constant in the fluid core of
the star. This is a reasonable assumption, because the density
gradients are small in the fluid core.

IV. NEUTRINO EMISSIVITY OF MAGNETAR CORES

This section studies the implications of the unpairing
effect, discussed in the previous section, on the neutrino
emission processes from dense matter in magnetars. We focus
below on the neutrino emission processes which are dominant
below the critical temperature Tcp of proton superconductivity,
specifically the B-field assisted Urca and the pair-breaking
processes. The implications of the unpairing effect for pro-
cesses such as the modified Urca process and the modified
bremsstrahlung process are analogous to those for the direct
Urca process and the implementations in numerical codes
should be straightforward.

A. Direct Urca process

The direct Urca process is kinematically allowed only
above the threshold YUrca = np/nb > 11% in ordinary low-
field compact stars, because for low proton concentrations
the energy and momentum conservation cannot be fulfilled
simultaneously [14]. Strong B fields change the phase-space of
baryons. As a consequence, the direct Urca process is allowed
even below the threshold YUrca [15,16]. To characterize the
kinematics of the Urca process in a B field it is convenient to
introduce the parameter [16]

x = k2
Fn − (

kFe + kFp

)2

k2
Fn

N
2/3
Fp , (16)

where NFp = k2
Fp/2|e|B is the number of Landau levels

populated by protons. Thus, for x > 0 the Urca process is
forbidden in the low-field limit, but can become operative in
strong magnetic fields.

If, under such conditions, the Urca process operates at a
fraction of its strength, it can still be an important factor in
cooling the star’s core, because other processes are by orders
of magnitude weaker. For x < 0 the Urca process is allowed
and the role of the magnetic field is to induce “de Haas–van
Alfven” type oscillations in the emissivity of this process as a
function of B field.

The second effect of the strong magnetic field on the Urca
process (not discussed so far) is the effect of unpairing of
the proton superconductor by the field. Proton and neutron
pairings restrict the phase space available for the process
and, as a consequence, the rate of the direct Urca process
is suppressed. This suppression at asymptotically low tem-
peratures is given simply by an exponential quenching factor
exp(−�/T ) for each participating nucleon, where � is the
relevant pairing gap, T is the temperature (more accurate

treatments are given, e.g., in Ref. [17]). As outlined in Sec. III,
large B fields unpair the proton superconductor, therefore the
suppression of the Urca neutrino emission due to the gap in
proton quasiparticle spectrum will be absent, i.e., only neutron
pairing will contribute to the suppression. Because the gap
for neutrons in the P -wave channel is smaller than the one
in the S-wave channel for protons (see Fig. 4), the onset of
suppression will strongly deviate from the one expected in the
case of superconducting protons.

We now illustrate these qualitative arguments by numerical
examples. In our setup the proton fraction remains below YUrca

in the density range where proton S-wave superconductivity
exists, i.e., densities n � 3n0, therefore we explore first the
domain x > 0, where Urca process is forbidden in the zero-
field limit. The Urca emissivity for B �= 0 is written as [16]

εUrca = 457πG2
F

10080

(
1 + 3g2

A

)
m∗

nm
∗
pμeT

6RSnSp. (17)

where GF is the Fermi coupling constant, gA is the axial-
vector coupling, m∗

n/p are the effective masses of neutron
and proton, μe is the chemical potential of electrons, R
function encodes modifications due to the field and Sn/p =
exp(−�n/p/T ) are the suppression factors arising owing to
the pairing of neutrons (n) and protons (p). The quenching
of proton superconductivity implies Sp = 1 in Eq. (17).
To model the function R in the forbidden region we use
an approximate polynomial fit to the functions shown in
Fig. 1 of Ref. [16], which is given by log10 R = −0.35942 −
0.506418x + 0.0130305x2 − 0.00140399x3. In the allowed
domain we use the fit formula [16]

R = 1 − cos φ

0.5816 + |x|1.192
, (18)

where φ ≡ (1.211 + 0.4823|x| + 0.8453|x|2.533)/(1 +
1.438|x|1.209) which is valid in the range −20 � x � 0
and NFp → ∞. Figure 5 displays the neutrino emissivity
via the Urca process in the forbidden region as a function
of the B field at fixed density (n = n0) and two values of
temperature. The unpaired case coincides with the results
of Refs. [15,16]. Magnetic field allows the Urca process to
operate with emissivity comparable with the emissivities
of competing processes in the asymptotically large field
region B → Bmax, as seen in Fig. 5. The pairing of neutrons
and protons requires an additional multiplicative factor
SnSp = exp[−(�n + �p)/T ] in the neutrino emissivity.
We show the cases �p = 0 and �p �= 0 assuming that the
neutron pairing gap �n �= 0 and corresponds to its value
at B = 0. Because for all B-field values B > max Hc2

(log10[maxHc2] = 16.87) the unpairing effect requires
�p = 0; thus the case �p �= 0 is not realized physically, but
provides a measure of the error of neglecting the unpairing
effect. It is evident from Fig. 5 that this error is substantial
and is the consequence of the fact that �p � �n in our
example. This condition holds except at the edge of the density
domain of interest, see Fig. 4. Thus, the proton pairing, if
allowed, would suppress the emissivity stronger than the
neutron pairing, but because of the unpairing effect the Urca
emissivity is suppressed by the neutron superfluidity only.
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FIG. 5. (Color online) The emissivity of the Urca process in the
forbidden region (x > 0) in units of the zero-field emissivity ε0 at
fixed density n = n0 for temperatures T = 0.01 and 0.1 MeV. The
Urca emissivity is shown for the cases of (a) normal matter (dotted
line), (b) paired neutrons and normal protons (dashed lines), and (c)
paired neutrons and protons (dashed-dotted lines). However the case
(c) cannot be realized because of the unpairing effect for all the plotted
values of B > Hc2 = 16.57. Note that for fixed density the scaling
of the kinematical factor x along the B axis is given through its
dependence on the number of Landau levels, i.e., x ∝ N

2/3
Fp ∝ B−2/3.

As a consequence the Urca emissivity would be enhanced
from its value which neglects the unpairing effect. To explore
the allowed region x � 0 of kinematics for the Urca process
in a strong magnetic field we have artificially increased the
Fermi momenta of protons and electrons by factor of two. (In
our models the proton fraction exceeds the Urca threshold at
density which is larger than the maximal density at which
proton S-wave superconductivity exists.) We also choose to
work at density 1.5 n0 because the Urca process becomes
operative in the high density domain. Figure 6 displays
the neutrino emissivity of the Urca process in the allowed
region as a function of the B field for unpaired matter and
for cases B < Hc2 (superconducting protons) and B > Hc2

(non-superconducting protons). In the case of unpaired
neutrons and protons [Fig. 6(a)], the B field induces de
Haas–van Alfven type oscillations in the emissivity around its
value in the zero B-field limit, as expected [15,16]. For fields
B < Hc2 the emissivity is suppressed by neutron and proton
pairing simultaneously; for B > Hc2 protons are unpaired
and the suppression is only due to paired neutrons. The
transition from one regime to the other is seen as a jump in the
emissivity in (b) and (c) of Fig. 6 at B = Hc2. The oscillations
in (b) are around a value of emissivity which is about an order
of magnitude smaller than the emissivity in the normal state,
which reflects the suppression via neutron pairing only. If
the unpairing effect was neglected the emissivity would have
remained about 4–5 orders of magnitude below B = 0 case.
Strong magnetic fields will influence the neutron superfluidity
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FIG. 6. The emissivity of the Urca process in the allowed region
(x < 0) in units of the zero-field emissivity ε0 at fixed density
n = 1.5 n0 for temperature T = 0.1 MeV. The magnitude of proton
and neutron gaps are �p = 0.73 MeV and �n = 0.28 MeV. The
emissivity is shown in the cases of (a) unpaired matter, (b) paired
neutrons and for B > Hc2 (unpaired protons), and (c) paired neutrons
and for B < Hc2 (paired protons).

in the curst (S wave) and in the core (P wave) differently.
The S-wave condensate forms spin-zero Cooper pairs
and the Pauli paramagnetic alignment of neutron spins along
the B field will act to quench their pairing. Generally, this
quenching is effective for fields larger than those discussed
here (B > 1017 G), but the value of the critical field depends
on the gap in the zero field limit, which has an uncertainty
of an order of magnitude. The P -wave condensate forms
spin-one Cooper pairs and the magnetic field will align the
spins of Cooper pairs without affecting their internal structure.
Initial studies of P -wave pairing in strong fields show that
there is no suppression of the pairing induced by the field
[18]. Therefore, as far as the Urca process is concerned, we
do not expect additional suppression of pairing due to the B
field in the P -wave paired core.

Thus we conclude that the unpairing effect which destroys
the proton condensate can strongly influence the neutrino
emissivity via the Urca process in the cores of magnetars.
These modifications may have important consequences on the
modeling of thermal transients and cooling in magnetars.

There exists an additional channel of neutrino losses, which
arises once the interaction energy of the B field with the spin
of a nucleon becomes of the order of temperature—the direct
bremsstrahlung process N → N + ν + ν̄, where N refers to a
nucleon. This process is strictly forbidden in the nonmagnetic
case, but becomes operative in a strong enough B field, because
of the paramagnetic splitting of the energies of nucleons in a
strong B field. Spin-flip neutrino emission is effective within
the window of splitting energies of the order of the temperature
of ambient matter [19]. By the same argument as in the case
of the Urca process above, the bremsstrahlung process p →
p + ν + ν̄ will remain intact in magnetars, in contrast to the
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case of ordinary neutron stars, where it would be suppressed
by the proton pairing at low enough temperatures.

B. Pair-breaking processes

The formation of nucleonic BCS condensates leads to
the pair-breaking neutrino emission from each nucleonic
condensate [20–24]. In this subsection we study how the
unpairing effect changes the neutrino emissivity if the B field
exceeds the critical value Hc2 locally. To quantify the pair-
breaking neutrino emission, consider their neutrino emissivity,
which is given by (� = c = 1, our notations follow Ref. [25])

εn = 4G2
F m∗

nkFn

15π5
T 7aS/P

n

(
�

S/P
n

T

)2

I, (19)

εp = 4G2
F m∗

pkFp

15π5
T 7aS

p

(
�p

T

)2

I, (20)

where the subscripts n and p refer to neutrons and protons
and the superscripts S and P refer to 1S0 and 3P2 pairing of
neutrons. �P

n in Eq. (19) stands for the angle averaged value
of the spin-triplet neutron gap, in which case it can be factored
out of the integral I. (The explicit form of the integral I is not
needed here and can be found, for example, in Ref. [25]). The
a coefficients are defined as

an(1S0) = 4

81
c2
nV v4

Fn + 11

42
c2
nAv2

Fnχn, (21)

ap(1S0) = 4

81
c2
pV v4

Fp + 11

42
c2
pAv2

Fpχp, (22)

an(3P2) = c2
nA

2
, (23)

where χn/p = 1 + (42/11)(m∗
n/p/mn/p)2, cnV = 1, CnA =

gA, CpV = 4 sin2
W −1, and CpA = gA, with gA � 1.26 and

sin2 θW = 0.23.
Figure 7 displays the functions

Qn/p(B)[fm−1] = m∗
n/pkFn/Fp

mn/p

a
S/P
n/p

(
�

S/P
n

T

)2

, (24)

which are more convenient for our analysis than the emissiv-
ities as all common factors appearing in the emissivities (19)
and (20) are discarded (including the temperature, which is
assumed to be constant throughout the core and the inner crust
of the star). In the crust of the star (i.e., for densities n � 0.5n0)
the pair-breaking emission is due to the 1S0 paired neutron
Cooper pairs. This process is unaffected by the unpairing
effect and is shown for comparison. At larger densities, in
the core of the star, neutron and proton Cooper pair-breaking
processes contribute about equally to the neutrino energy loss
in the zero-field limit [Fig. 7(a)]. The influence of the unpairing
effect is seen in (b) and (c) where we assume constant value
of the field B16 = 5 × 1015 and B16 = 1016 G. The constant B
field removes the proton pair-breaking processes in the regions
where B > Hc2 locally, because the condensate vanishes in
that region. As a consequence the total emission rate is reduced
to its value corresponding to the emission by the P -wave
condensate.
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FIG. 7. (Color online) Neutrino emissivity via pair-breaking pro-
cesses as a function of baryon density in units of n0 for B16 = 0 (a),
B16 = 0.5 (b), and B16 = 1 (c). The full pair-breaking emissivity
is shown by solid lines and consists of 1S0 neutron pair emission
for nb/n0 > 0.5 and of the sum of 1S0 proton and 3P2 neutron pair
emission for larger densities. The separate contributions of 1S0 proton
and 3P2 neutron pairs are shown by dash-dotted and dashed lines,
respectively.

The unpairing effect will influence, apart from the emis-
sivities of the magnetars, also their thermal inertia, because
the absence of proton superconductivity will enhance the heat
capacity of the star. As a consequence the timescale needed for
the star’s temperature to reach a given value will be larger than
in the case of absence of unpairing. In superconducting stars
the main source of heat capacity are electrons; in magnetars
non-superconducting protons will approximately double the
heat capacity of the core of the star. Thus, we anticipate
that the proton and electron specific heats decrease linearly
with temperature as in normal Fermi liquids, whereas the
heat capacity of superfluid neutrons will be reduced by their
superfluidity (exponentially in the case of S-wave pairing and
as power-law in the case of P -wave pairing). The unpairing
induced reduction of the neutrino emissivity and the increase
of the specific heat of matter will both act to increase the
cooling time-scale of the star.

C. Relating the surface and crust-core boundary B fields

Because only the surface Bs � 1015 G fields are observed
in magnetars it appears to us useful to address the problem of
relating these observed surface fields to those in magnetar
interiors as predicted by theoretical models. Equilibria of
magnetized neutron stars with superconducting cores have
been constructed in Refs. [26,27]. Both poloidal and toroidal
fields, as well as their combinations have been considered.
These studies suggest a linear relation of the form

Bs � αBHb, (25)
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where Hb is the field intensity at the outer boundary of the core
and Bs is the surface field. For purely poloidal field Ref. [26]
finds αB = εb/3 where εbR is the thickness of the crust, R
being the radius of the star. This relation was derived for low
fields B ∼ Hc1, where the role of the lattice of flux tubes can be
neglected and these can be treated as isolated entities. Its valid-
ity for larger fields B ∼ Hc2, more relevant to our discussion
of the unpairing effect, is not known. Nevertheless, we ex-
tracted the values of εb using our EoS shown in Sec. II assum-
ing that the crust-core boundary is at n � 0.5n0. We find that
there is roughly two orders of magnitude drop in the field value
between the crust-core boundary and the surface of the star.
Specifically, for the 1.4 M� star model αB = 0.058 and for the
2.67 M� star model αB = 0.021 [28]. The study of Ref. [27],
which uses a different method, suggests that the drop of the
field from the magnetic pole to the base of the crust is smaller
and in the limit of large fields is of order of unity. Clearly, fur-
ther work is needed to establish the relation (25) in the strong-
field regime B ∼ Hc2. While the relation (25) is highly impor-
tant for relating the physics of the unpairing effect to the obser-
vations of magnetars, our discussion and results are indepen-
dent of the value of the coefficient αB appearing in that relation.

V. SUMMARY AND OUTLOOK

We have calculated the critical field Hc2 for unpairing for
the proton condensate, including its coupling to the density of
the background neutron condensate, using Ginzburg-Landau
theory in the vicinity of superconducting-normal phase tran-
sition. We find that this coupling enhances the value of the
critical field by �30% (Fig. 4).

The composition of dense matter and the dependence of
proton pairing gap on the Fermi momentum implies that the
coherence length has a minimum as a function of density which
translate into a maximum in the critical field (see Table I). The
maximum is at the crust-core boundary and the critical field
decreases towards the center of the star. Assuming the homoge-
neous constant B field across the core and the inner crust of the
star, implies that magnetars with interior fields B < maxHc2

are partially non-superconducting, whereas magnetars with
B > maxHc2 are void of proton superconductivity.

The unpairing effect implies that the emissivity of the direct
Urca process is only Boltzmann-suppressed due to neutron
gap and therefore is more efficient than its counterpart in
low-field matter, where there is an additional suppression
due to proton pairing (see Figs. 5 and 6, which illustrate the
argument in the allowed and forbidden kinematical domains,
respectively). Unpairing further implies that the Cooper pair-
breaking processes in protonic matter are absent; this reduces
the local net pair-breaking emissivity of matter by a factor of
a few (see Fig. 7). In addition unpairing increases the specific
heat of magnetar cores and, therefore, the thermal inertia of
the core by a factor of two. Combined, the decrease in pair-
breaking neutrino emissivity and the increase of the specific
heat will increase the cooling time-scale of the star. This would
be counterbalanced by enhancement in the direct Urca cooling
in the strong field limit. Detailed cooling simulations can reveal
the relative importance of these different factors in the cooling
of magnetars, which we have discussed separately.

It is not possible to state firmly whether the unpairing effect
is operative in magnetars with observed surface B fields 1015 G
or not, because the topology and the strength of the interior
fields are not known accurately. If there is an increase of the
field from the surface towards the center of the star (say by
a factor of 10 to 15), as suggested by a number of studies
and broadly conjectured in the literature, then the unpairing
effect implies that the observed magnetars are either partially
or completely non-superconducting.

A separate issue, to be studied further, is the influence of
the strong magnetic fields on the pairing in neutron matter. The
S-wave neutron pairing will be suppressed by strong magnetic
field due to the Pauli paramagnetic alignment of neutron spins
along the B field. The Chandrasekhar-Clogston limiting field
for the quenching of S-wave neutron superfluidity is close to
the limiting fields compatible with gravitational equilibrium.
On the other hand, the P -wave paired neutron fluid does not
experience suppression in the B field [18].
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APPENDIX: FITTING FORMULAS

The pairing gap for neutrons in the core and the crust and for
protons in the core of the star were fitted by suitable functions
(a sum of a polynomial and an exponential function) which
depend on the Fermi-momenta of respective particles at zero
temperature. These are given by

�n(1S0) = 2.76991 − 2.17347/ exp
(
k2
Fn

) − 5.91497kFn

+ 17.653k2
Fn − 19.1544k3

Fn + 6.14977k4
Fn, (A1)

for neutron superfluid in the crusts

�n(3P2) = 5.97989 − 2.45018/ exp
(
k2
Fn

) − 9.76221kFn

+ 6.24521k2
Fn − 1.73691k3

Fn + 0.173889k4
Fn,

(A2)

for the neutron superfluid in the core and using the CD Bonn
interaction with Bruckner-Hartree-Fock spectrum, and

�p(1S0) = −302.669 + 302.982/ exp
(
k2
Fp

) − 8.3717kFp

+ 369.944k2
Fp − 160.227k3

Fp − 11.3246k4
Fp,

(A3)

for the superconducting protons in the core. The effective
masses of neutron and protons were assumed to be qual and
given by the following fit formula:

m∗

m
= 1.00661 − 0.649838kF + 0.34416k2

F

− 0.0441441k3
F , (A4)
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where kF stands for neutron or proton Fermi momentum. More
accurate treatment would require different effective masses for

neutrons and protons, but the corrections to the emissivities are
expected to be small, in the range of a few percent.

[1] G. Baym, C. Pethick, and D. Pines, Nature (London) 224,
674 (1969); P. Muzikar and C. J. Pethick, Phys. Rev. B 24,
2533 (1981); G. Mendell, Astrophys. J. 380, 515 (1991); A. D.
Sedrakian and D. M. Sedrakian, ibid. 447, 305 (1995).

[2] B. Link, Phys. Rev. Lett. 91, 101101 (2003); K. B. W. Buckley,
M. A. Metlitski, and A. R. Zhitnitsky, ibid. 92, 151102 (2004);
,Phys. Rev. C 69, 055803 (2004); D. M. Sedrakian, A. D.
Sedrakian, and G. F. Zharkov, Mon. Not. R. Astron. Soc. 290,
203 (1997); A. Sedrakian, Phys. Rev. D 71, 083003 (2005);
J. Charbonneau and A. Zhitnitsky, Phys. Rev. C 76, 015801
(2007).

[3] M. Alford, G. Good, and S. Reddy, Phys. Rev. C 72, 055801
(2005).
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