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Effects of the nuclear equation of state on the r-mode instability and evolution of neutron stars
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I study the effect of nuclear equation of state on the r-mode instability of a rotating neutron star. I consider
the case where the crust of the neutron star is perfectly rigid and I employ the related theory introduced by
Lindblom et al. [Phys. Rev. D 62, 084030 (2000)]. The gravitational and the viscous time scales, the critical
angular velocity, and the critical temperature are evaluated by employing a phenomenological nuclear model for
the neutron-star matter. The predicted equations of state for the β-stable nuclear matter are parameterized by
varying the slope L of the symmetry energy at saturation density on the interval 72.5 MeV � L � 110 MeV.
The effects of the density dependence of the nuclear symmetry energy on r-mode instability properties and the
time evolution of the angular velocity are presented and analyzed. A comparison of theoretical predictions with
observed neutron stars in low-mass x-ray binaries and millisecond radio pulsars is also performed and analyzed.
I estimate that it may be possible to impose constraints on the nuclear equation of state by a suitable treatment
of observations and theoretical predictions of the rotational frequency and spin-down rate evolution of known
neutron stars.
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I. INTRODUCTION

The oscillations and instabilities of relativistic stars [1–3]
gained a lot of interest in the past decades because of the
possible detection of their gravitational waves [4–13]. Espe-
cially neutron stars may suffer a number of instabilities, which
come in different flavors but they have a general feature in
common: They can be directly associated with unstable modes
of oscillation. In the present work I concentrate my study on
the so called r-mode instability. The r modes are oscillations of
rotating stars whose restoring force is the Coriolis force. The
gravitational radiation-driven instability of these modes has
been proposed as an explanation for the observed relatively
low spin frequencies of young neutron stars and of accreting
neutron stars in low-mass x-ray binaries as well [14]. This
instability can only occur when the gravitational-radiation
driving time scale of the r mode is shorter than the time scales
of the various dissipation mechanisms that may occur in the
interior of the neutron star.

A very interesting problem is the consideration of the effect
on r-mode instability owing to the presence of a solid crust
in an old neutron star. It is proved that the presence of a
viscous boundary layer under the solid crust of a neutron star
increases the viscous damping rate of the fluid r modes [14,15].
Actually, the presence of a solid crust has a crucial effect on the
r-mode motion and following the discussion of Andersson and
Kokkotas [7] this effect can be understood as follows: Based
on the perfect fluid mode calculations, it is anticipated that the
transverse motion associated with the mode at the crust-core
boundary is large. However, if the crust is assumed to be rigid,
the fluid motion must essentially fall off to zero at the base of
the crust to satisfy a nonslip condition (in the rotating frame
of reference).

First, Bildsten and Ushomirsky [15] found that the shear
dissipation in the viscous boundary layer between the solid
crust and the fluid core decreases dramatically the viscous
damping time in cold old neutron stars as well as in hot young

neutron stars. They concluded that the r-mode instability
is unlikely to play a role in old, accreting neutron stars,
where in hot young neutron stars the boundary-layer damping
mechanism limits the ability of the r-mode instability to reduce
the angular momentum of the star and consequently to produce
detectable amounts of gravitational radiation.

Anderson et al. [16] used various neutron-star parameters to
obtain significantly different results for the critical frequency
of the onset of r-mode instability. They found the critical
velocity to be about 40% lower than the estimate of Bildsten
and Ushomirsky and inferred that the r-mode instability is
likely to be the mechanism that limits the low-mass x-ray
binary (LMXB) spin periods and those of other millisecond
pulsars as well [16].

Rieutord [17] improved the model of the boundary layer and
found that the critical velocity agrees rather closely with the
original estimates of Bildsten and Ushomirsky. Lindblom [14]
improved previous estimates of the damping rate by includ-
ing the effect of the Coriolis force on the boundary-layer
eigenfunction, using more realistic neutron-star models. They
concluded that if the crust is assumed to be perfectly rigid,
the gravitational-radiation-driven instability in the r modes
is completely suppressed in neutron stars colder than about
1.5 × 108 K and also found that the r-mode instability is
responsible for limiting the spin periods of the LMXBs.

Wen et al. [18] studied the sensitivity of the neutron star
r-mode instability window to the density dependence of the
nuclear symmetry energy. Employing a simple model of a
neutron star with a perfectly rigid crust constructed with a
set of crust and core equations of state that span the range
of nuclear experimental uncertainty in the symmetry energy,
they concluded that smaller values of the slope parameter L
of the symmetry energy help stabilize neutron stars against
runaway r-mode oscillations. Vidaña [19] analyzed also the
role of the symmetry energy slope parameter L on the r-mode
instability by using both microscopic and phenomenological
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approaches of the nuclear equation of state. He showed that
the r-mode instability region is smaller for those models which
give larger values of L. Alford et al. [20] studied the viscous
damping of r modes of compact stars and analyzed the regions
where small amplitude modes are unstable to the emission of
gravitational radiation. They showed that many aspects, such
as the physically important minima of the instability boundary,
are surprisingly insensitive to detailed microscopic properties
of the considered form of matter.

Recently, Haskell et al. [21] illustrated how current x-ray
and ultraviolet observations can constrain the physics of
the r-mode instability. They discussed various mechanisms
active in the interior of a neutron star and showed how these
mechanisms can modify the instability window to be consistent
with the observations.

The motivation of the present work, in view of the above
studies, is to study extensively the nuclear equation of state
(EOS) effect on the r-mode instability and evolution of neutron
stars with a perfectly rigid crust [14,18,22,23]. Actually, the
EOS affects the time scales associated with the r mode in two
different ways. First, the EOS defines the radial dependence
of the mass density distribution ρ(r), which is the basic
ingredient of the relevant integrals (see Sec. II). Second, it
defines the core-crust transition density ρc and also the core
radius Rc, which is the upper limit of the mentioned integrals.
I employ a phenomenological model for the energy per baryon
of the asymmetric nuclear matter having the advantage of an
analytical form. By suitably choosing the parametrization of
the model I obtain various forms for the density dependence of
the nuclear symmetry energy by varying the slope parameter
L in the interval 65 MeV � L � 110 MeV. The calculated
EOS concerns the neutron-star core (from the center of the
star up to the crust-core interface). For the neutron-star crust I
employed the EOS taken from the previous work of Feynman,
Metropolis, and Teller [24] and also from Baym, Pethick, and
Sutherland [25]. The transition pressure at the edge of the core
is calculated by employing the thermodynamic method. It is
found that in a good approximation the quantities connected
with the r-mode instability are related directly with the slope
parameter. The effects of the stiffness of EOS are studied on
the gravitational and viscous time scales, as well as on the
critical angular velocity and critical temperature. I investigate
the case whether the observed properties of the LMXBs and
millisecond radio pulsars (MSRPs) should constrain the slope
parameter L.

The interesting issue is how much the EOS affects the time
evolution of the frequency and spin-down rate of a neutron
star. This is also under consideration in the present work [26].
In particular, I develop my study on the evolution of r mode by
employing the mentioned EOSs and probing the sensitivity of
the relevant quantities on the slope parameter L. A comparison
of the theoretical predictions with a few observed cases is also
presented and discussed.

It is worth pointing out that in the present study I do
not include other additional dissipation mechanisms owing,
for example, to bulk and shear viscosity, which take into
account the whole star and not only the boundary layer at
the crust-core transition. Actually, recently it was found that
bulk and shear viscosities increase with L and therefore the

damping of the mode is more efficient for the models with
larger L [19]. In the present work I concentrate my study on the
shear dissipation in the viscous boundary layer between crust
and core. The mentioned dissipation mechanism decreases
the viscous damping time scale by more than a factor of 105

in old, accreting neutron stars and more than 107 in hot,
young neutron stars and therefore becomes comparable to
the gravitational-radiation driving time scale [14,15]. These
cases efficiently limit the ability of the r-mode instability to
reduce the angular momentum of the star and hence to produce
detectable gravitational radiation [14].

The article is organized as follows. In Sec. II I review
briefly the stability and evolution of the r modes. Section III
contains the employed nuclear-physics model focusing on
the presentation of the nuclear symmetry energy and the
thermodynamic method applied for location of the core-crust
interface. The results are presented and discussed in Sec. IV
and Sec. V summarizes the present study.

II. STABILITY AND EVOLUTION OF THE r MODES

The r modes evolve with a time dependence eiωt−t/τ as a
consequence of ordinary hydrodynamics and the influence of
the various dissipative processes. The real part of the frequency
of these modes, ω, is given by [27]

ω = − (m − 1)(m + 2)

m + 1
�, (1)

where � is the angular velocity of the unperturbed star. The
imaginary part 1/τ is determined by the effects of gravitational
radiation, viscosity, etc. [14,26,27]. In the small-amplitude
limit, a mode is a driven, damped harmonic oscillator with an
exponential damping time scale

1

τ (�,T )
= 1

τGR(�)
+ 1

τbv(�,T )
+ 1

τv(�,T )
, (2)

where τGR, τbv, τv are gravitational radiation, bulk viscosity,
and shear viscosity times scales, respectively. Gravitational
radiation tends to drive the r modes unstable, while viscosity
suppresses the instability. More precisely, dissipative effects
cause the mode to decay exponentially as e−t/τ (i.e., the mode
is stable) as long as τ > 0 [27].

The damping time τi for the individual mechanisms is
defined, in general, by [14,19,20]

1

τi

≡ − 1

2E

(
dE

dt

)
i

. (3)

In Eq. (3) the total energy E of the r mode is given by

E = 1

2
α2R−2m+2�2

∫ R

0
ρ(r)r2m+2dr, (4)

where α is the dimensionless amplitude of the mode, R and
� are the radius and the angular velocity of the neutron star,
respectively, and ρ(r) is the radial dependence of the mass
density of the neutron star. Similar expressions hold for the
dissipation rate (dE/dt)i [27].

The damping time scale owing to viscous dissipation at the
boundary layer of the perfectly rigid crust and fluid core is
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given by [14]

τv = 1

2�

2m+3/2(m + 1)!

m(2m + 1)!!Im

√
2�R2

c ρc

ηc

×
∫ Rc

0

ρ(r)

ρc

(
r

Rc

)2m+2
dr

Rc

, (5)

where the quantities Rc, ρc, and ηc are the radius, density, and
viscosity of the fluid at the outer edge of the core, respectively.
In deriving expression (5) it is assumed that the crust is rigid
and hence static in the rotating frame. The motion of the
crust owing to the mechanical coupling to the core effectively
increases τv by a factor of (	v/v)−2, where 	v/v denotes the
difference between the velocities in the inner edge of the crust
and the outer edge of the core divided by the velocity of the
core [23].

In neutron stars colder than about 109 K the shear viscosity
is expected to be dominated by electron-electron scattering.
The viscosity associated with this process is given by [14]

ηee = 6.0 × 106ρ2T −2 (g cm−1 s−1), (6)

where all quantities are given in cgs units and T is measured
in K. For temperature above 109 K, neutron-neutron scattering
provides the dominant dissipation mechanism. In this range
the viscosity is given by [14]

ηnn = 347ρ9/4T −2 (g cm−1 s−1). (7)

In the present work I neglect the effects of bulk viscosity,
which are not important for T � 1010 K.

The fiducial viscous time scale τ̃v is defined as

τv = τ̃v

(
�0

�

)1/2 (
T

108 K

)
, (8)

where �0 = √
πGρ and ρ = 3M/4πR3 is the mean density

of the star.
The gravitational-radiation time scale is given by [14,27]

1

τGR
= −32πG�2m+2

c2m+3

(m − 1)2m

[(2m + 1)!!]2

(
m + 2

m + 1

)2m+2

×
∫ Rc

0
ρ(r)r2m+2dr, (9)

while the fiducial gravitational-radiation time scale τ̃GR is
defined as

τGR = τ̃GR

(
�0

�

)2m+2

. (10)

The critical angular velocity �c, above which the r mode is
unstable, is defined by the condition τGR = −τv and is given,
for m = 2, by [14,27]

�c

�0
=

(
− τ̃GR

τ̃v

)2/11(108 K

T

)2/11

. (11)

For a given temperature T and mode m, the equation for the
critical angular velocity, that is, 1/τ (�c) = 0, is a polynomial
of order m + 1 in �2

c , and thus each mode has its own critical
angular velocity [27]. However, only the smallest of these (the

m = 2 r mode here) represents the critical angular velocity of
the star and I concentrate my study on this r mode.

Moreover, the maximum angular velocity �K (Kepler
angular velocity) for any star occurs when the material at the
surface effectively orbits the star [27]. This velocity is nearly
�K = 2

3�0. Thus, there is a critical temperature below which
the gravitational-radiation instability is completely suppressed
by viscosity and is given by [14]

Tc

108 K
=

(
�0

�c

)11/2 (
− τ̃GR

τ̃v

)
=

(
3

2

)11/2 (
− τ̃GR

τ̃v

)
. (12)

Employing Eqs. (11) and (12), the critical angular velocity is
expressed in terms of Tc, that is,

�c

�0
= �K

�0

(
Tc

T

)2/11

= 2

3

(
Tc

T

)2/11

. (13)

Once the EOS for the neutron-star core and crust is fixed,
then all the ingredients of the r-mode instability, that is, the
transition density ρc, the radial dependence of the mass density
ρ(r), and the bulk properties of the neutron star (mass, radius,
and core radius), are determined in a self-consistent way.

Following the discussion of Owen et al. [26], during the
phase where the angular momentum is radiated away to infinity
by gravitational radiation, the angular velocity evolves as

d�

dt
= 2�

τGR

α2Q

1 − α2Q
, (14)

where α is the dimensionless r-mode amplitude parameter.
In general, α which strongly affects the r-mode evolution is
treated as a free parameter and usually varied on the large
interval α = 1–10−8. The quantity Q related with the EOS is
defined as Q = 3J̃ /2Ĩ , where

J̃ = 1

MR4

∫ R

0
ρ(r)r6dr, Ĩ = 8π

2MR2

∫ R

0
ρ(r)r4dr.

(15)

To complete the model for the evolution of the r mode,
one may take into account the thermal evolution, because
temperature strongly influences the dissipation mechanisms.
The mentioned thermal evolution can be studied with an energy
balance between the relevant radiative and viscous process,
that is [1],

dT

dt
= 1

Cv

(−Lν + Hs) . (16)

In Eq. (16) Lν is the neutrino luminosity, Hs is the heating rate
generated by shear viscosity, and Cv is the total heat capacity.
In the present work, I consider the approximate case where
the heating process balances the cooling one, that is, Lν = Hs

(for a more detailed analysis, see Ref. [28]). In this simplified
case the solution of Eq. (14) gives

�(t) =
(

1

�−6
in − Ct

)1/6

, (17)

where

C = 2α2Q

τ̃GR(1 − α2Q)

1

�6
0

. (18)
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�in is a free parameter which corresponds to the initial angular
velocity. The spin-down rate of the angular velocity can be
easily derived from Eq. (17) and is given by

d�

dt
= C

6

(
1

�−6
in − Ct

)7/6

. (19)

A neutron-star spin decreases until it approaches its critical
angular velocity �c. The time tc needed for �in to evolve to
its minimum value �c is

tc = 1

C
(
�−6

in − �−6
c

)
. (20)

III. THE NUCLEAR MODEL

The model used here, which has already been presented and analyzed in previous papers [29–34], is designed to reproduce
the results of the microscopic calculations of both nuclear and neutron-rich matter at zero temperature and can be extended to
finite temperature [29,31–34]. The energy per baryon at T = 0, is given by

Eb(n,I ) = 3

10
E0

F u2/3[(1 + I )5/3 + (1 − I )5/3] + 1

3
A

[
3

2
−

(
1

2
+ x0

)
I 2

]
u +

2
3B

[
3
2 − (

1
2 + x3

)
I 2

]
uσ

1 + 2
3B ′ [ 3

2 − (
1
2 + x3

)
I 2

]
uσ−1

+ 3

2

∑
i=1,2

[
Ci + Ci − 8Zi

5
I

] (
i

k0
F

)3
⎧⎨
⎩ [(1 + I )u]1/3

i

k0
F

− tan−1 [(1 + I )u]1/3

i

k0
F

⎫⎬
⎭

+ 3

2

∑
i=1,2

[
Ci − Ci − 8Zi

5
I

] (
i

k0
F

)3
⎧⎨
⎩ [(1 − I )u]1/3

i

k0
F

− tan−1 [(1 − I )u]1/3

i

k0
F

⎫⎬
⎭ . (21)

In Eq. (21), I is the asymmetry parameter [I = (nn − np)/n]
and u = n/n0, with n0 denoting the equilibrium symmetric
nuclear-matter density, n0 = 0.16 fm−3. The parameters A, B,
σ , C1, C2, and B ′, which appear in the description of symmetric
nuclear matter are determined so that Eb(n = n0,I = 0) =
−16 MeV, n0 = 0.16 fm−3, and the incompressibility is K =
240 MeV and have the values A = −46.65, B = 39.45, σ =
1.663, C1 = −83.84, C2 = 23, and B ′ = 0.3. The finite range
parameters are 1 = 1.5k0

F and 2 = 3k0
F and k0

F is the Fermi
momentum at the saturation point n0. The baryon energy is
written also as a function of the baryon density n and the
proton fraction x (x = np/n), that is, Eb(n,x), by replacing
I = 1 − 2x.

The additional parameters x0, x3, Z1, and Z2 employed
to determine the properties of asymmetric nuclear matter
are treated as parameters constrained by empirical knowl-
edge [29]. The parametrizations used in the present model have
only a modest microscopic foundation. Nonetheless, they have
the merit of being able to closely approximate more physically
motivated calculations as presented in Fig. 1. More precisely,
in Fig. 1 I compare the energy per baryon (for symmetric
nuclear matter [Fig. 1(a)] and pure neutron matter [Fig. 1(b)]
calculated by the present schematic model referred to as
momentum-dependent interaction model (MDIM), with those
of existing, state-of-the-art calculations by Wiringa et al. [35]
and Pandharipande et al. [36].

A. Symmetry energy

The energy Eb(n,I ) can be expanded around I = 0 as

Eb(n,I ) = Eb(n,I = 0) + Esym,2(n)I 2 + Esym,4(n)I 4 + · · ·
+Esym,2k(n)I 2k + · · · , (22)

where the coefficients of the expansion are given by the
expression

Esym,2k(n) = 1

(2k)!

∂2kEb(n,I )

∂I 2k

∣∣∣∣
I=0

. (23)

In Eq. (22), only even powers of I appear owing to the fact that
the strong interaction must be symmetric under the exchange
of neutrons with protons; i.e., the contribution to the energy
must be independent of the sign of the difference nn − np. The
nuclear symmetry energy Esym(n) is defined as the coefficient
of the quadratic term, that is,

Esym(n) = Esym,2(n) = 1

2!

∂2Eb(n,I )

∂I 2

∣∣∣∣
I=0

. (24)

The slope of the symmetry energy L at nuclear saturation
density n0, which is correlated with the crust-core transition
density nt in a neutron star, is defined as

L = 3n0
dEsym(n)

dn

∣∣∣∣
n=n0

. (25)

By suitably choosing the parameters x0, x3, Z1, and Z2, it is
possible to obtain different forms for the density dependence
of the symmetry energy Esym(n), as well as on the value
of the slope parameter L. I take as a range L 65 MeV �
L � 110 MeV, where the value of the symmetry energy
at saturation density is fixed to be Esym(n0) = 30 MeV.
Actually, for each value of L the density dependence of the
symmetry energy is adjusted so that the energy of pure neutron
matter is comparable with those of existing state-of-the-art
calculations [35,36].

Figure 2(a) displays the behavior of the nuclear symmetry
energy as a function of the ratio u = n/n0 for various values
of the slope parameter L. The aim of the above simple
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FIG. 1. The energy per baryon of symmetric nuclear matter (a) and pure neutron matter (b), as a function of the baryon density n,
of the present model (MDIM) in comparison with those originating from realistic calculations. More details for the models UV14 + TNI,
UV14 + UVII, and AV14 + UVII can be found in Ref. [35] and for the models A18 + UIX and A18 + du + UIX∗ in Ref. [36].

parametrization is to reproduce the nuclear symmetry energy
originating from more realistic microscopic calculations and
also covers the possible range of the nuclear symmetry energy
dependence on the density.

B. Proton fraction

I examine the proton fraction x (as a function of the
baryon density n) in β-stable matter. In this case the following

processes take place simultaneously:

n −→ p + e− + ν̄e, p + e− −→ n + νe. (26)

I assume that neutrinos generated in these reactions have left
the system. This implies that

μ̂ = μn − μp = μe. (27)
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FIG. 2. The nuclear symmetry energy (a) the proton fraction (b) and the fourth-order term Esym,4(u) of the symmetry energy (c) as a
function of the ratio u = n/n0 for various values of the slope parameter L.
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The demand for equilibrium leads to the equation

∂

∂x
[Eb(n,x) + Ee(n,x)] = 0 (28)

or (
∂Eb

∂x

)
n

= −
(

∂Ee

∂x

)
n

= −μe. (29)

Finally, considering that the chemical potential of the electron
is given by the relation (relativistic electrons)

μe =
√

k2
Fe

c2 + m2
ec

4 � kFe
c = �c(3π2nx)1/3, (30)

then Eq. (29) is written(
∂Eb

∂x

)
n

= −�c(3π2nx)1/3. (31)

Equation (31) determines the proton fraction of β-stable
matter. In Fig. 2(b) I plot the proton fraction calculated from
Eq. (31) as a function of the ratio u = n/n0 for various values
of the slope parameter L. According to Fig. 2(b) for low values
of L, the neutron-star matter consists mainly of neutrons and
only a very small fraction of protons. However, the increase of
L (and consequently the increase of the stiffness of EOS) leads
to an increase of the proton fraction. The values of the proton
fraction define the kind of cooling process of a hot neutron
star. More precisely, it is well known that the direct Urca
process can occur in neutron stars if the proton concentration
exceeds the critical value xcrit = 0.11 for neutron-star matter
with electrons and xcrit = 0.148 when electrons and muons
coexist in neutron-star matter [37].

C. Nuclear equation of state for β-stable matter

The total pressure P (n,x), in the core of a neutron star, is
decomposed into baryon and electron contributions

P (n,x) = Pb(n,x) + Pe(n,x), (32)

where

Pb(n,x) = n2 ∂Eb(n,x)

∂n
. (33)

The electrons are considered as a noninteracting relativistic
Fermi gas and their contribution to the total energy density
εe(n,x) and pressure Pe(n,x) reads

εe(n,x) = �c

4π2
(3π2xn)4/3, (34)

Pe(n,x) = �c

12π2
(3π2xn)4/3. (35)

Now the total energy density εtot and pressure Ptot of charge
neutral and chemically equilibrium nuclear matter is

εtot = εb + εe, (36)

Ptot = Pb + Pe. (37)

From Eqs. (36) and (37) I construct the EOS in the form
ε = ε(P ). When the electron energy is large enough (i.e.,

greater than the muon mass), it is energetically favorable for
the electrons to convert to muons,

e− −→ μ− + ν̄μ + νe. (38)

However, in the present work I do not include the muon case
to the total EOS because the muon contribution does not alter
significantly the gross properties of the neutron stars.

D. The thermodynamical method

The core-crust interface corresponds to the phase transition
between nuclei and uniform nuclear matter. The uniform
matter is nearly pure neutron matter, with a proton fraction
of just a few percent determined by the condition of β
equilibrium. Weak interactions conserve both baryon number
and charge [38], and from the first law of thermodynamics, at
temperature T = 0 I have

dE = −Pdv − μ̂dq, (39)

where E is the internal energy per baryon, P is the total
pressure, v is the volume per baryon (v = 1/n, where n is
the baryon density), and q is the charge fraction (q = x − Ye,
where x and Ye are the proton and electron fractions in baryonic
matter, respectively). In β equilibrium the chemical potential
μ̂ is given by μ̂ = μn − μp = μe, where μp, μn, and μe are
the chemical potentials of the protons, neutrons, and electrons,
respectively. The stability of the uniform phase requires that
E(v,q) is a convex function [39]. This condition leads to the
following two constraints for the pressure and the chemical
potential:

−
(

∂P

∂v

)
q

−
(

∂P

∂q

)
v

(
∂q

∂v

)
μ̂

> 0, (40)

−
(

∂μ̂

∂q

)
v

> 0. (41)

It is assumed that the total internal energy per baryon E(v,q)
can be decomposed into baryon (EN ) and electron (Ee)
contributions,

E(v,q) = Eb(v,q) + Ee(v,q). (42)

The relative theory has been extensively presented in the
recent publication [40]. I consider the condition of charge
neutrality q = 0, which requires that x = Ye. This is the case
that will also be taken into account in the present study. Hence,
according to Ref. [40] the constraints (40) and (41), after some
algebra, lead to the following constraint:

C(n) = 2n
∂Eb(n,x)

∂n
+ n2 ∂2Eb(n,x)

∂n2

−
[
∂2Eb(n,x)

∂n∂x
n

]2 [
∂2Eb(n,x)

∂x2

]−1

> 0. (43)

For a given EOS, the quantity C(n) is plotted as a function of
the baryon density n and the equation C(n) = 0 defines the
transition density nt .
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FIG. 3. The transition baryon density nt (a) and the transition pressure Pt (b) as a function of the slope parameter L. For more details about
the linear fit, see text.

IV. RESULTS AND DISCUSSION

I employ a phenomenological model for the energy per
baryon of the asymmetric nuclear matter having the advantage
of an analytical form. By suitably choosing the parametrization
of the model I obtain various forms for the density dependence
of the energy per baryon of neutron matter [see Fig. 1(b)], the
nuclear symmetry energy [see Fig. 2(a)] and the proton fraction
[see Fig. 2(b)], and, in total, the neutron-star core EOS.

To clarify further the effect of the symmetry energy on the
proton fraction, I plot in Fig. 2(c) the density dependence of
the fourth-order term Esym,4(n) [see the expansion (22)] for
the various values of L. Considering, for example, a fourth-
order approximation on the symmetry energy and combining
Eqs. (31) and (22), I found that the density dependence of the
proton fraction is determined by the equation

4(1 − 2x)Esym,2(n) + 8(1 − 2x)3Esym,4(n) � �c(3π2nx)1/3.

Obviously, the second-order term Esym,2(n) mostly affects the
proton fraction density dependence. However, the contribution
of the fourth-order term Esym,4(n) is not negligible and in some
cases (see, for example, the case L = 65) has a significant
effect on x(n).

Additionally, the present model is applied for the determina-
tion of the transition density nt between the crust and the core.
To complete the EOS that describes the neutron-star matter
for densities lower than the transition density nt (EOS of the
crust), I employed the relative EOS of Feynman, Metropolis,
and Teller [24] and also of Baym, Pethick, and Sutherland
[25].

In Fig. 3(a), I plot the transition density nt , which is a
fundamental quantity in the present study, as a function of the
slope parameter L. A linear relation is found of the form

nt = 0.1253 − 0.0007 L (fm−3), (44)

where the slope parameter L is given in MeV. According
to relation (44), an increase of L (a stiffer EOS) leads to a
decrease of nt and the extension of both the total radius R
(because the mass is fixed) and the radius core Rc. In Fig. 3(b),
I plot also the dependence of the transition pressure Pt on L.
Actually, during the past years there is an extensive interest

for the study of the transition density and pressure in neutron
stars [40–43]. It was found that the transition density and
pressure decrease roughly linearly with the slope parameter L
using dynamical and thermodynamical methods [40,41]. The
authors in Refs. [42,43] used a large number of nuclear models
and evaluated the dispersion affecting the correlation between
the transition pressure Pt and L. From a detailed analysis it was
shown that this correlation is weak but Pt is mainly correlated
with the symmetry energy slope L and curvature Ksym defined
at ρ = 0.1 fm−3 [42,43].

The transition pressure does not affect directly the time
scales corresponding to the r-mode instability. However, it
influences significantly the crustal fraction of the moment of
inertia 	I/I [44]. The ratio 	I/I is particularly interesting
as it can be inferred from observations of pulsar glitches, that
is, occasional disruptions of the otherwise extremely regular
pulsations from magnetized, rotating neutron stars [41].

In Fig. 4 I display the energy density Ens of neutron-star
matter, including both the fluid core and the solid crust matter,
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0

100

200

300

400

500

600

700

E
ns

 (
M

eV
 fm

-3
)

P (MeV fm -3)

 L=65
 L=72.5
 L=80
 L=95
 L=110

FIG. 4. The energy density Ens, taking into account both the fluid
core and the solid crust matter, of neutron-star matter as a function
of the pressure P for various values of the slope parameter L. The
data used for densities lower than the transition density nt have been
taken from Refs. [24] and [25] (for more details, see text).
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as a function of the pressure P for various values of the slope
parameter L. The mentioned EOSs are employed to solve
the Tolman-Oppenheimer-Volkoff equations to calculate the
bulk neutron-star properties, that is, the mass, radius, density
distribution of the baryonic matter, etc., which are the basic
“ingredients” for the study of the r-mode instability and
evolution.

In Fig. 5 I display the mass-radius relation for neutron
stars for the selected EOSs. All of them predict maximum
mass for neutron stars even higher than 1.8M�. To further
illustrate the mass-radius relation I present in Tables I and II
the transition density nt , transition pressure Pt , the total radius
of the star R, the core radius Rc, the core mass Mc, as well as
the central pressure Pc for various values of the parameter L
for neutron-star masses 1.4M� and 1.8M�, respectively.

Considering that ε(r) is the energy density function defined
as ε(r) = ρ(r)/c2, then the integral

∫ Rc

0 ρ(r)r6dr , which is a
basic ingredient of the r-mode energy E given by Eq. (4) and
also of the time scales [Eqs. (5) and (9), respectively], can be
written in the dimensionless form

I (Rc) =
∫ Rc

0

[
ε(r)

MeV fm−3

] (
r

km

)6

d

(
r

km

)
.

The integral I (Rc) is plotted in Fig. 6 as a function of the
slope parameter L for the interval 72.5 MeV � L � 110 MeV.
It is obvious that the values of I (Rc) are correlated almost
linearly with L in the considered interval. The least-squares fit

TABLE I. The slope parameter L (in MeV), the transition density
nt (in fm−3), the transition pressure Pt (in MeV fm−3), the total radius
R (in km), the core radius Rc (in km), the core mass Mc in M�, and
the central pressure Pc (in MeV fm−3) correspond to a neutron star
with mass M = 1.4M�.

L nt Pt R Rc Mc Pc

65 0.0781 0.317 11.885 10.956 1.383 86.4
72.5 0.0730 0.319 12.725 11.631 1.379 63.2
80 0.0693 0.295 13.041 11.898 1.378 57.5
95 0.0587 0.155 13.490 12.385 1.386 49.2
110 0.0456 0.0188 13.646 12.805 1.397 43.5

TABLE II. The same as in Table I for M = 1.8M�.

L nt Pt R Rc Mc Pc

65 0.0781 0.317 10.757 10.287 1.793 331
72.5 0.0730 0.319 11.965 11.328 1.788 176
80 0.0693 0.295 12.253 11.584 1.788 159
95 0.0587 0.155 12.706 12.052 1.792 133.5
110 0.0456 0.0188 12.951 12.444 1.798 117

expressions are, respectively,

I (Rc) = (0.7 + 0.084L)108 (M = 1.4M�), (45)

I (Rc) = (1.24 + 0.0845L)108 (M = 1.8M�), (46)

where the slope parameter L is given in MeV.
The fiducial gravitational-radiation time scale τ̃GR combin-

ing Eqs. (9) and (10), after some algebra, takes the form

τ̃GR = −0.7429

(
R

km

)9 (
1M�
M

)3

[I (Rc)]−1 (s), (47)

where R,r are given in km and M in M�. I can proceed further
by putting Eq. (45) into (47). In this way the time scale τ̃GR

corresponds to a neutron star with mass 1.4M� given by the
simple expression

τ̃GR = −2.707 36

(
R

10 km

)9 1

0.7 + 0.084L
(s). (48)

It is worth pointing out that τ̃GR, according to Eq. (48), depends
directly on the slope parameter L, as well as indirectly on the
values of the radius R. In any case, Eq. (48) exhibits the EOS
dependence of the time scale τ̃GR in a quantitative way.

As a first approximation I can consider the case where
the mass density of the neutron star ρ(r) is uniform, that
is, ρ(r) = ρ ≡ 3M/4πR3. Actually, this case is unphysical
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FIG. 6. The values of the fundamental integral I (Rc) =∫ Rc

0 ε(r)r6dr as a function of the slope parameter L for the interval
72.5 MeV � L � 110 MeV. For more details about the linear fit, see
text.
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FIG. 7. The fiducial time scales τ̃GR, τ̃ee, τ̃nn, as well as τ̃
approx
GR , τ̃ approx

ee , τ̃ approx
nn , as a function of the slope parameter L for a neutron star with

mass M = 1.4M� (a) and M = 1.8M� (b). In the case M = 1.4M� the gravitational times scales are multiplied by a factor of 5, and in the
case M = 1.8M� they are multiplied by a factor of 20.

because the energy density does not vanish on the surface and
the speed of sound cs = √

∂P/∂ρ is infinite [45]. However,
I consider this case because it has been extensively applied
for r-mode instabilities studies. After some algebra τ̃

approx
GR is

written

τ̃
approx
GR = −1.95

(
R

10 km

)12 (
10 km

Rc

)7 (
1M�
M

)4

(s).

(49)

In Fig. 7, as well as in Table III, I compare the values of
τ̃GR and τ̃

approx
GR . Actually, both are increasing functions of

the slope parameter L, for low values of L, but for higher
values show a saturation trend. The approximated values for
gravitational time scales are lower between 8% and 16% (for
M = 1.4M�) and lower by 23%–28% (for M = 1.8M�). Con-
sequently, the mean density approximation, concerning the
gravitational time scales works better for low neutron-star mass
values.

The fiducial viscous time τ̃v which results from
Eqs. (5), (6), (7), and (8) after some algebra is written for
the case of viscosity owing to electron-electron and neutron-
neutron scattering, respectively,

τ̃ee = 0.1446 × 108

(
R

km

)3/4 (
1M�
M

)1/4 (
km

Rc

)6

×
(

g cm−3

ρc

)1/2 (
MeV fm−3

εc

)
I (Rc) (s), (50)

TABLE III. The fiducial time scales (in s) for a neutron star with
mass M = 1.4M�.

L τ̃GR τ̃
approx
GR τ̃vee τ̃ approx

vee
τ̃vnn τ̃ approx

vnn

72.5 −3.484 −3.176 32.254 35.380 73.526 80.656
80 −3.986 −3.637 33.833 37.076 77.637 85.076
95 −4.615 −4.123 41.125 46.035 96.377 107.882
110 −4.468 −3.748 56.977 67.936 137.840 164.353

τ̃nn = 19 × 108

(
R

km

)3/4 (
1M�
M

)1/4 (
km

Rc

)6

×
(

g cm−3

ρc

)5/8 (
MeV fm−3

εc

)
I (Rc) (s), (51)

where ρc and εc are the mass density (in g cm−3) and
the energy density (in MeV fm−3), respectively, at the core
edge. It is found that an almost linear relation holds between
the mass transition density ρc and the slope parameter
L (and consequently a similar relation between εc and
L), for the interval 72.5 MeV � L � 110 MeV, with the
form

ρc = (2.148 − 0.0125L) × 1014 (g cm−3), (52)

εc = (2.148 − 0.0125L) × 56.1837 (MeV fm−3). (53)

Combining Eqs. (50), (51), (52), and (53) I found for a neutron-
star mass with M = 1.4M� and for the interval (72.5 MeV �
L � 110 MeV) the simple expressions

τ̃ee = 13.3053

(
R

10 km

)3/4 (
10 km

Rc

)6

× 0.7 + 0.084L

(2.148 − 0.0125L)3/2
(s) (M = 1.4M�), (54)

τ̃nn = 31.09

(
R

10 km

)3/4 (
10 km

Rc

)6

× 0.7 + 0.084L

(2.148 − 0.0125L)13/8
(s) (M = 1.4M�). (55)

By employing the mean density approximation, the corre-
sponding expressions are

τ̃ approx
ee = 55.1657

(
10 km

R

)9/4 (
Rc

10 km

)

×
(

M

1M�

)3/4 (
g cm−3

ρc,14

)3/2

(s), (56)
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FIG. 8. Temperature dependence of the critical angular velocity ratio �c/�0 for a neutron star with mass M = 1.4M� (a) and M = 1.8M�
(b) constructed for the selected EOSs.

τ̃ approx
nn = 129

(
10 km

R

)9/4 (
Rc

10 km

) (
M

1M�

)3/4

×
(

g cm−3

ρc,14

)13/8

(s), (57)

where ρc,14 is given in 1014 g cm−3. In Fig. 7, as well as in
Table III, I compare the fiducial viscous time scales. Both
time scales are an increasing function of the slope parameter
L; that is, a stiffer EOS leads to smaller viscosity effects
on the r mode. The approximated values for the viscosity
time scales are between 9% and 16% (for M = 1.4M�) and
between 23% and 28% (for M = 1.8M�). Consequently, the
mean density approximation, concerning the viscosity time
scales, works better for low values of neutron stars.

In Fig. 8 are displayed the r-mode instability windows
(which specified by the �c/�0-T dependence) for neutron
stars with masses 1.4M� and 1.8M� for the selected EOSs as
a function of the temperature. For low values of temperature
(T � 109 K) I plot the ratio

�c

�0
=

(
− τ̃GR

τ̃ee

)2/11 (
108 K

T

)2/11

, (58)

while for T � 109 K I plot the ratio

�c

�0
=

(
− τ̃GR

τ̃nn

)2/11 (
108 K

T

)2/11

. (59)

The most striking feature is the location of the ratio �c/�0 in
a narrow interval (mainly in the case of neutron star with mass
1.4M�). Actually, the ratio �c/�0 increases around 7.7% (for
T � 109 K) and around 8.7% (for T � 109 K), with the lower
values corresponding to the case of L = 110 MeV and the
higher to the case L = 80 MeV. It is concluded that the values
of that ratio saturate for L close to the value 80 MeV. In the
case of a neutron star with mass M = 1.8M� the ratio �c/�0

increases around 5.5% (for T � 109 K) and around 6.5% (for
T � 109 K) with the lower values corresponding to the case
of L = 110 MeV and the higher to the case L = 80 MeV.

Moreover, I study the effect of the nuclear EOS on
�c. In particular, I examine the sensitivity of �c on the
density dependence of symmetry energy. Thus, by combining

Eqs. (47), (50), and (58), for a fixed neutron-star mass and
temperature, I found the relation

�c ∼ R
12/11
c

[I (Rc)]4/11
ρ3/11

c . (60)

It is obvious from Eq. (60) that �c is sensitive to the structure
[owing to the factor I (Rc)], size (owing to Rc), and interface
edge (owing to ρc) of the core of the neutron star. Consequently,
�c is sensitive both to the high-density dependence of the EOS
via the factors Rc and I (Rc), as well as to the low-density
dependence of the symmetry energy via the factor ρc. In
addition, and summing up, it is shown that �c is inversely
proportional to the core radius Rc (the higher value of L, the
lower is the value of �c) and proportional to ρ

3/11
c (a higher

value of L corresponds to a lower value of ρc). It is worthwhile
to notice here that the dependence of ρc on the slope parameter
L is model dependent. It has been found recently that the
error owing to the assumption that a priori the EOS is
parabolic may introduce a large error in the determination
of related properties of neutron stars as the crustal fraction of
the moment of inertia and the critical frequency of rotating
neutron stars [41,46].

The critical temperature Tc, defined by Eq. (12), is plotted
in Fig. 9 as a function of the slope parameter L for neutron
stars with masses 1.4M� and 1.8M�. Tc is in the range from
0.73 × 108 to 1.1 × 108 K (for 1.4M� neutron-star mass) and
from 0.18 × 108 to 0.24 × 108 (for 1.8M� neutron-star mass),
where the maximum values of Tc correspond to the EOS with
L = 80 MeV. In particular, Tc is a decreasing function of L
(for L � 80 MeV). The present finding is in contradiction
with the corresponding one presented in Ref. [18], where
Tc is a monotonously increasing function of L for a large
interval (25 � L � 105 MeV). The above disagreement may
be attributed with the use of two different models. More
precisely, Tc, according to Eq. (12), depends on the interplay
between τ̃GR and τ̃ee, and, consequently, for fixed neutron-star
mass, on the parameter L. Obviously, this interplay is model
dependent and related with the L dependence on the fiducial
times scales as exhibited in Fig. 7 of the present work and in
Fig. 3 of Ref. [18]. Although, in contrast to Tc-L dependence
the present results are quantitatively in very good agrement

035804-10



EFFECTS OF THE NUCLEAR EQUATION OF STATE ON . . . PHYSICAL REVIEW C 91, 035804 (2015)

70 80 90 100 110
0.1

1

M=1.8 M
o

M=1.4 M
o

T
cee

 (
10

8  K
)

L (MeV)

FIG. 9. The critical temperature as a function of the slope
parameter L for a neutron star with mass M = 1.4M� and M =
1.8M�.

with those in Ref. [18], at least for the 1.4M� neutron-star
mass and for the same range of L.

In Fig. 10 I compare the r-mode instability window for
the selected EOSs with those of the observed neutron stars
in LMXBs and MSRPs for M = 1.4M� and M = 1.8M�. I
find that the instability window drops by �20–40 Hz when the
mass is raised from M = 1.4M� to M = 1.8M�. In addition,
the stiffness EOS leads an increase of the instability window
(which is specified, in this case, by the νc-T dependence).
Following the study of Wen et al. [18] and Haskell et al. [21]
I include many cases of LMXBs and a few of MSRPs (for
more details, see [47,48] and Table 1 of Ref. [21]). The
masses of the mentioned stars are not measured accurately.
In addition, it is worth pointing out that the estimates of
the core temperature have large uncertainties. In the present
work, the core temperatures T are taken from Ref. [21] and
the uncertainties, in a few relevant cases, are derived by
employing the method suggested in Ref. [49]. In particular,
the core temperatures T are derived by combining their

observed accretion luminosity and considering that the cooling
is dominated by the modified Urca neutrino process for
normal nucleons (lower limit of T ) or by the modified Urca,
taking into account the effect of the superfluid neutrons and
superconductive protons on the neutron-star core (upper limit
of T ).

It is obvious from Fig. 10 that the majority of the stars
lie outside the instability windows predicted by the present
model. There are four exceptions, that is, the 4U 1608-52, the
SAX J1750.8-2900, the 4U-1636-536, and the MXB 1658-298.
Obviously, the above stars lie inside the instability window for
the case of neutron-star masses M = 1.4M� and M = 1.8M�.
The present results are comparable with, but not similar to,
those in Ref. [18] and in contradiction with those presented
in Refs. [19] and [21]. More precisely, in Ref. [18] the
authors employed a simple phenomenological model of a
neutron star with a perfectly rigid crust, as mentioned in the
Introduction, and they concluded that, at least for the case of
low neutron-star mass M = 1.4M�, a softer EOS increases
the lower frequency bound of the instability window and
therefore the EOSs characterized by L � 65 MeV are more
consistent with the observation of various LMXBs frequencies.
The model employed in the present work predicts an even
larger instability region, compared to Ref. [18] both for low
and high values of neutron-star mass. This is the reason that
even for the case M = 1.4M� four neutron stars lie inside the
instability window in contrast with the finding of Ref. [18]. In
any case, the main conclusion of the two models is summarized
as follows: The stiffness of the EOS has a strong effect on
the width of the instability window and this effect is more
pronounced for high values of the neutron-star mass.

However, the author in Ref. [19], using various microscopic
and phenomenological approaches, found that the r-mode
instability region is smaller for those models which give larger
values of L. The explanation is related to the L dependence
of the bulk and the shear viscosities. In particular, the author
found that both bulk and shear viscosities increase with L and,
consequently, damping of the r mode is more efficient for
models with larger L. In the present work, I consider that,
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FIG. 10. (Color online) The critical frequency temperature dependence for a neutron star with mass M = 1.4M� (a) and M = 1.8M� (b)
constructed for the selected EOSs. The observed cases of LMXBs and MSRPs from Haskell et al. [21] are also included for a comparison. The
horizontal vectors extending leftward exhibit the uncertainties of the core temperature. The cases IGR J00291 + 5934, XTE J1751-305, and
SAX J1808-3658 with well-known observation spin-down rate, are also indicated [see also Fig. 12(c)].
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TABLE IV. The fiducial time scales (in s) for a neutron star with
mass M = 1.8M�.

L τ̃GR τ̃
approx
GR τ̃vee τ̃ approx

vee
τ̃vnn τ̃ approx

vnn

72.5 −0.870 −0.668 36.686 47.792 83.629 108.946
80 −0.992 −0.760 38.415 50.145 88.150 115.068
95 −1.182 −0.890 46.613 61.889 109.238 145.036
110 −1.241 −0.895 64.628 89.664 156.349 216.920

in contradiction with the study of Ref. [19], the damping
mechanism is attributable only to viscous dissipation at the
boundary layer of perfectly rigid crust and fluid core (the study
in Ref. [18] is based in the same consideration). The relative
viscosity [given by Eqs. (6) and (7)] is fixed to the crust-core
interface region and is proportional to the transition density.
Thus, it is obvious by using relation (44) as well, that the
viscosity is a decreasing function of L. The L dependence of
the viscosity is well reflected on the values of the fiducial time
scales τ̃ee and τ̃nn [see Eq. (5)] and consequently on the values
of the critical angular momentum and frequency [according to
Eq. (11)], as exhibited in Fig. 10 and Table IV.

Moreover, in Ref. [21] the authors by employing the
“minimal model,” found that a significant number of systems
is well inside the instability window. A possible explanation
of the mentioned contradiction is the viscous dissipation at
the boundary layer between crust and core, which is taken
into account explicitly in the present work. Actually, when the
authors in Ref. [21] include the above dissipation mechanism
via the “slip” parameter S [50] (related with the rigidity of
the crust) the majority of the stars shifted to the stability area
in accordance with the observations, because the majority of
the LMXBs should be out of the instability window (see also
Refs. [51,52]).

I extend also my study on the effect of the isoscalar
part of the EOS to the critical rotational frequency νc. The
incompressibility K , which is one of the main quantities
related directly with the isoscalar behavior of the EOS, is
defined as

K = 9n2 d2(E/A)

d2n

∣∣∣∣
n=n0

(MeV), (61)

where E/A is the energy per particle of symmetric nuclear
matter and n0 the saturation density. The parametrization
of E/A is given in Table 2 of Ref. [29]. In particular, I
kept fixed the nuclear symmetry dependence and varied the
incompressibility in a large range of K = 180–240 MeV
according to the method presented in Ref. [29]. In this case,
the energy per particle of symmetric nuclear matter is given
by Eq. (21) and the symmetry energy by the simple analytical
formula

Esym(u) = 13u2/3 + 17u (MeV). (62)

The value of the slope parameter L, corresponding to the above
ansatz of the symmetry energy, is L = 77 MeV. The results
are presented in Fig. 11. A stiffer EOS (higher values of K)
leads to lower values of νc. The critical frequency decreases by
around 7% for K = 120 MeV to K = 240 MeV. Obviously,
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 K=180
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FIG. 11. The critical frequency temperature dependence for a
neutron star with mass M = 1.4M� for a fixed Esym(u), given by
Eq. (62) and for three values of the incompressibility K .

the effect of K on νc is moderate, compared to the effect of the
slope parameter L, but not negligible. However, because the
most experimental values of K are well constrained around
the value 240 MeV, the uncertainty related with the isoscalar
effects on the EOS and consequently on the critical frequency
is limited.

The EOS affects not only the conditions for the r-mode
instability but also the angular velocity evolution of a neutron
star according to Eq. (14). Actually, the quantities Q and τGR

depend mainly on the density distribution, as well as on the
bulk neutron-star properties as the mass and radius. I examine
the approximated case of the frequency evolution considering
thermal stability. More precisely, I consider a neutron star
with mass M = 1.4M�, temperature T = 8 × 108 K, initial
frequency νin = 700 Hz, and r-mode amplitude α = 2 × 10−7.
The results are presented in Fig. 12. It is worth pointing out
that the value of Q moderately depends on the use of a specific
EOS and varies in the interval Q = 0.0945–0.0977. The EOS
affects mainly the time scale τGR. In Fig. 12(a) is displayed
the time evolution of the frequency of a neutron star for the
five EOSs. The EOS effects are more pronounced in the case
of the rate of the frequency dν/dt , as indicated in Fig. 12(b).
A stiffer EOS leads to a higher value of the spin-down rate.
Only when the frequency approaches the critical value does
the spin-down rate appear to be model independent.

In Fig. 12(c) I plot the dependence of the spin-down rate
dν/dt on the frequency. For the same values of the frequency
a higher value of L leads to a larger value of the spin-down
rate (the neutron star approaches its critical frequency
faster). It is worthwhile to notice that the results presented
in Fig. 12(c) are sensitive both to the core temperature and
mainly to the values of the r-mode amplitude α. The most
interesting feature of this plot is related to the range covered
by the implied EOSs. Thus, in the same figure I include the
observed spin-down rate for three cases (IGR J00291 + 5934,
XTE J1751-305, and SAX J1808-3658) in comparison with
the theoretical predictions [53–58]. I estimate that it may be
possible, by a suitable treatment of observations and related
theoretical predictions of the spin frequency and spin-down
rate of known neutron star, to impose additional constraints
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FIG. 12. (Color online) (a) The time evolution of the spin frequency, (b) the spin-down rate evolution for a neutron star with mass
M = 1.4M� for the selected EOSs, and (c) the spin-down rate versus the spin frequency for the selected EOSs compared to three observed
pulsars data [53,55].

on the nuclear EOS. However, it is necessary to proceed with
a more detailed calculation concerning the r-mode instability
and evolution. To establish the above statement, it is necessary
to use more elaborate EOSs (with additional degrees of
freedom), to consider additional dissipation mechanisms and
treat more carefully the thermal evolution.

It should be noted that, in the present analysis, additional
degrees of freedom, like quark and hyperon matter, are not
considered for the construction of the EOS. It is known that,
in most cases, the presence of quark and hyperon matter affect
appreciably the EOS by softening the density dependence
mainly for high densities. This means that the bulk properties
of neutron stars will also be affected and, consequently, the
time scales of the r mode will be affected too. In addition,
the presence of quark and hyperons influences the dissipation
mechanisms because one has to take into account the shear
and also the bulk viscosities owing to the presence of this
kind of matter. Actually, there are several recent studies in this
direction [20,21,59–64]. In any case, when more degrees of
freedom are taken into account, the analysis becomes more
complete and consequently more reliable.

In view of the above discussion, I consider that another issue
worth examining is the connection between the observed neu-
tron stars in low-mass x-ray binaries and the nuclear-physics
input via the EOS [65–67]. It would be very interesting if it is
possible to constrain the nuclear-physics input (for example,
the slope parameter L) employing the related observation

data. In general, this is a very complex problem, because the
nuclear EOS affects in different ways the r-mode instability
and, consequently, additional work is needed as well, because
one has to illustrate further this point. However, additional
theoretical and observational work must be dedicated before
being able to impose strong constraints on the implemented
EOSs.

Finally, it is well known that for high temperatures, T >
1010 K, which characterize mainly a newborn neutron star,
the bulk viscosity is the dominant dissipation mechanism.
However, such a kind of dissipation is not considered in the
present work. Actually, at high temperature, in a self-consistent
treatment one has to consider also temperature effects on the
nuclear EOS. It is known [68] that temperature influences
not only the density dependence of the EOS but, in addition,
both the transition density and the proton fraction. Actually,
the present MDIM model can be extended to include also the
temperature effect on EOS [30–34]. Work along these lines is
in progress.

V. SUMMARY

In the present work I consider the effect, on r-mode
instability, owing to the presence of a solid crust in a neutron
star. By employing a phenomenological nuclear model I
calculated the EOS of β-stable matter which characterizes the
neutron-star core and is used for the location of the transition
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density at the inner edge between the liquid core and the
solid crust. The stiffness of the EOS parameterized via the
slope parameter L was varied on the interval 72.5 MeV �
L � 110 MeV. The gravitational and the viscous time scales
depend directly on the parameter L as well as indirectly
on the transition density nt . As a consequence, the critical
angular velocity, as well as the critical temperature, depend
on the EOS. I found also that the instability window drops
by �20–40 Hz when the mass of a neutron star is raised
from M = 1.4M� to M = 1.8M� and also that the use of a
stiffer EOS increases the instability window. I compared the
r-mode instability window for the five selected EOSs with
those of the observed neutron stars in LMXBs and MSRPs for
M = 1.4M� and M = 1.8M�. I found that the majority of the
stars lie outside of the instability windows. Finally, I estimated
the time evolution of the spin frequency and spin-down rate
for the selected EOSs for a M = 1.4M� neutron-star mass in

comparison with three observed cases. I conclude that it may
be possible to impose additional constraints on the nuclear
EOS by a suitable combination of observations and relative
theoretical predictions.
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