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Massive hybrid stars with a first-order phase transition
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We develop our previous study of the transition to deconfined quark phase in neutron stars, including the
interaction in the quark equation of state to the leading order in the perturbative expansion within the confinement
density-dependent mass model. Using the Gibbs conditions the hadron-quark mixed phase is constructed matching
the latter with the hadron equation of state derived from the microscopic Brueckner-Hartree-Fock approximation.
The influence of quark interaction parameters on threshold properties and phase diagram of dense neutron star
matter are discussed in detail. We find that the leading-order quark interaction expands the density range of the
mixed phase, pushing forward the disappearance of the hadron phase. Moreover, since the equation of state could
turn out to be stiffer, a high-mass hybrid star is possible with mixed-phase core with typical parameter sets.
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I. INTRODUCTION

With the complementary investigations on heavy-ion col-
lective flows and two precise measurements of heavy mass
pulsars [1], the study of neutron stars (NSs) has become a more
active field of research. Ab initio lattice QCD simulations and
planned missions The Large Observatory for X-ray Timing
(LOFT) [2] and The Neutron star Interior Composition Ex-
ploreR (NICER) will certainly further our current understand-
ing of the underlying baryonic forces, high-density equation
of state (EoS), and NSs’ core properties [3]. There might be
three kinds of non-nucleonic components in the NS interior:
free quarks [4], mesons [5], and hyperons [6,7]. However, no
ab initio calculations are available so far for their relevance and
abundance in NS, because such calculations are unachievable
due to the complicated nonlinear and nonperturbative nature
of QCD.

In the previous article [4] we have investigated the NS struc-
ture within the Brueckner-Hartree-Fock (BHF) approximation,
which is currently one of the most advanced microscopic
approaches to the EoS of nuclear matter [8]. In that paper BHF
was combined with the confinement density-dependent mass
model (CDDM) [9] for the quark phase to model hybrid stars
(HSs), limiting us to include only the confinement potential
in the quark mass scaling. In this work we further extend
our calculations by including also short-range leading-order
perturbative interactions in the employed quark matter EoS
model (i.e., a new version of CDDM model [10]), and we
explore the consequences for HS structure.

Although in the high-temperature region hadron-quark
phase transition is crossover as explored by lattice QCD sim-
ulations [11], the order of phase transition at zero temperature
is still an open problem, as well as the existence of a critical
end point (CEP) in the QCD phase diagram. We assume in
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the present work that the hadron-quark phase transition in
cold NSs is a first-order one, and use the Gibbs construction
to match the hadron EoS and the quark EoS for obtaining
the mixed phase (see Refs. [12,13] for more discussions on
its dependencies on physical situations). That is, the pressure
is taken to be the same in the hadron-quark mixed phase to
ensure mechanical stability, and would increase monotonically
with baryon chemical potential. In the mean time, a global
charge neutrality is assumed. Other authors used a smooth
crossover [14,15] to obtain the transition.

We provide a short overview of the theoretical framework
and discussions of our results in Sec. II, before drawing
conclusions in Sec. III.

II. FORMALISM AND DISCUSSION

A. The hadron phase

Let us first address the hadron phase, that is nuclear matter
consisting of nucleons in β equilibrium with electrons

n � p + e− + ν̄e· (1)

We omit muons in the following calculations since they are
irrelevant to the purpose of the present work. Under the
condition of neutrino escape, this equilibrium can be expressed
as

μn − μp = μe, (2)

and the requirement of charge neutrality implies

np = ne− , (3)

where μi (ni) is the chemical potential (the number density)
of component i.

The chemical potentials of the noninteracting electrons are
obtained by solving numerically the free Fermi gas model. The
nucleonic chemical potentials required in Eq. (2) are derived
from the energy density of nuclear matter, based on the BHF
nuclear many-body approach described elsewhere [16]. Here
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the input bare nucleon force we employed is the Argonne
V18 two-body interaction [17], accompanied by a microscopic
three-body force constructed from the meson-exchange current
approach [18]. The corresponding nuclear EoS reproduces
correctly the nuclear matter saturation point and fulfills several
requirements from the nuclear phenomenology [19]. We
mention here that the model developed in this article misses
some important aspects, such as the inclusion of hyperons. The
interplay between hyperons and free quarks is quite important
and deserves additional investigation, especially when more
reliable empirical inputs will be available, especially on the
hyperon-nucleon and hyperon-hyperon interaction.

Once the nuclear EoS and the nucleonic chemical potentials
of nuclear matter are known, one can then proceed to calculate
the composition of the hot β-equilibrium matter by solving
Eqs. (2) and (3), together with the conservation of the baryon
number, nn + np = nB. Finally the total energy density εN and
the total pressure pN of the system are obtained after adding
the standard contribution of electrons.

B. The quark phase

The quark phase is considered as a mixture of interacting
u, d, and s quarks in β equilibrium with electrons:

d � u + e− + ν̄e, (4)

s � u + e− + ν̄e, (5)

s + u � d + u. (6)

The crucial problem in studying the quark matter is to treat
the quark confinement in a proper way. In the framework of
the bag model, an extra constant, the famous bag constant B,
is introduced, which provides a negative pressure to confine
quarks within a finite volume. That is, the quark mass is
infinitely large outside the bag and finite and constant within
the bag. As is well known, however, particle masses vary from
the vacuum to a medium. Taking advantage of the density
dependence, one can describe quark confinement without
using the bag constant. Instead, the quark confinement is
achieved by the density dependence of the quark masses
derived from in-medium chiral condensates [9]. That is the
CDDM model we employed in the present study. A large
amount of investigation has been performed in the framework
of this model, and it has been developed greatly in recent years
(see Ref. [10] and references therein).

In the employed CDDM model, strong interactions between
quarks are mimicked by an equivalent mass to be determined:

HQCD = Hk +
∑

q=u,d,s

mq0q̄q + HI

≡ Hk +
∑

q=u,d,s

mqq̄q, (7)

where mq0 (q = u,d,s) are the quark current mass, Hk is the
kinetic term, and HI is the interacting part. The equivalent
mass mq embodies all the interaction effects between quarks.
That is, the contributions from both the scalar field and the
Lorentz vector field can be included in this way [20].

There are several ways to determine the equivalent mass in
the literature (see Ref. [21] and references therein). Here we
use a recently derived mass formula at zero temperature [10]:

mq ≡ mq0 + mI = mq0 + D

n
1/3
B

+ Cn
1/3
B , (8)

where mI is the interacting mass, parameterized as a function
of the baryon number density nB. D term is derived from
the nonperturbative linear confinement of quarks (see also
Ref. [9]), and the C term comes from the short-range leading
contribution of perturbative interactions. These two terms
correspond to the two leading terms in both directions when
expanding the equivalent mass to a Laurant series of the
holistic Fermi momentum, respectively [10]. The confinement
interaction dominates at lower densities, while the perturbative
interactions becomes more important at higher densities. This
model gives reasonable results for the sound velocity. Also,
strange quark matter in bulk still has the possibility of absolute
stability for a wide range of parameters. As to the quark
current mass, in our calculations we take mu0 = md0 = 0 and
ms0 = 95 MeV.

The parameter D has a lower bound D1/2 = 156 MeV,
and an upper bound D1/2 = 270 MeV [22]. The lower bound
comes from the nuclear physics constraint, demanding that at
P = 0, nonstrange nuclear matter should be stable against
decay to (ud) quark matter. This leads to the condition
E/A > M56Fec2/56 = 930 MeV for (ud) quark matter, which
gives the above mentioned lower bound. The upper bound can
be derived from a relation between D and the quark-condensate
and the known range of values for this condensate [22].
The upper boundary of 270 MeV is in fact a very conservative
one. According to the updated quark condensate determined
nowadays very precisely by lattice QCD [23], a range of
(161 MeV, 195 MeV) can be obtained. Therefore, in this work,
we take two typical values of the confinement parameter as
D1/2 = 170 MeV, 190 MeV as inferred by the newest lattice
QCD results [23].

The parameter C depends on how the strong coupling
runs are, and it is determined to have an upper bound of
C = 1.1676 [10]. Previous calculations [10] of pure quark
stars employing a CDDM EoS lead to a maximum mass as high
as 2M� with a parameter set (C,D1/2) = (0.7,129 MeV). We
will then employ C = 0.7 to perform calculations and change
its value in a certain range for comparison.

The relevant chemical potentials μu, μd , μs , and μe satisfy
the weak-equilibrium condition (we again assume neutrino
escape):

μu − μd = μe, μd = μs. (9)

The baryon number density and the charge density can be
written as

nB = 1
3 (nu + nd + ns), (10)

qQ = 2
3nu − 1

3nd − 1
3ns − ne. (11)

The charge neutrality condition requires qQ = 0.
Since the quark masses mi are density dependent, the quark

chemical potentials μi have an additional term μI with respect
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FIG. 1. (Color online) Extra chemical potential as a function of
the baryon density, for both C = 0 and C = 0.7 cases with D1/2 =
170 MeV.

to the free Fermi gas model (j = u,d,s):

μi = ∂εi

∂νi

dνi

dni

+
∑

j

∂ε

∂mj

∂mj

∂ni

=
√

ν2
i + m2

i − μI. (12)

The quark energy densities are

εi = 3

π2

∫ νi

0

√
p2 + m2

i p2 dp, (13)

ε =
∑

i

εi , (14)

where νi = (π2ni)1/3 are the Fermi momenta and ∂mj/∂ni

are derived from Eq. (8) by taking the derivative of the
baryon density. The quark pressure is calculated as p =
−ε + ∑

i μini . By solving Eqs. (9), (10), and (11), the total
energy density εq and pressure pq of the system can be obtained
after adding the contribution of the leptons.

In our previous calculations [4] there is only the term
D in the quark mass scaling, which results in relatively
low quark thresholds and small HS masses, similar to the
calculations [24] within the color dielectric model and the
MIT bag model. As is shown later, inclusion of the C term
may bring strongly repulsive quark interactions, pushing the
quark matter to appear at appropriately high densities and
consequently making massive HSs in the model.

For a better understanding of this point, we present in Fig. 1
the modification of the extra chemical potentials μI induced
by the nonzero perturbative parameter C. The calculations
are done with fixed D1/2 = 170 MeV and two values of
C = 0,0.7. We see that with increasing density, μI always
decreases. A nonzero C makes it decrease faster with the
density. The decrease is even more pronounced at higher
densities, because the term Cn

1/3
B is an increasing function

of the density. Also, the extra chemical potential μI changes
from positive to negative values at high densities for C = 0.7,
indicating that the term C brings repulsions, and quarks in this
case are more strongly interacting with each other. This effect

FIG. 2. (Color online) Pressure of β-stable quark matter as a
function of baryon density for two values of C = 0,0.7, and two
values of D1/2 = 170 MeV, 190 MeV.

of C is opposite that of D, since the latter arises from the quark
confinement potential, and the increase of this parameter will
bring attractions and soften the EoSs of the matter. Figure 2
clearly demonstrates these effects, where the EoSs of β-stable
quark matter are shown for the two values of C = 0,0.7 and
the two values of D1/2 = 170 MeV, 190 MeV. The increase of
the confinement parameter D will soften the EoS, while the
perturbative parameter C will stiffen it. The repulsive nature
of the term C will have crucial consequences for the structure
of the resulting HSs, as seen later.

C. The mixed phase

Let us consider the mixed phase made of nucleon matter
in equilibrium with a gas of u,d,s quarks and electrons.
Assuming the global charge conservation, the conservation
laws can be imposed by introducing the quark fraction χ
defined as

χ ≡ Vq/V, (15)

where V is the total volume and Vq is the volume occupied
by quarks. In terms of χ the total baryon density, total electric
charge, and total energy density are written

nB = (1 − χ )nN + χnq, (16)

Qt = (1 − χ )QN + χQq, (17)

Et = (1 − χ )EN + χEq, (18)

respectively. The quantities nN(nq), QN( Qq), and EN (Eq) are
nucleonic (quark) number density, charge density, and energy
density, respectively.

Nucleonic chemical potentials are connected to quark
chemical potentials as follows:

μn = μu + 2μd, (19)

μp = 2μu + μd. (20)
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FIG. 3. (Color online) Quark fraction χ as a function of the
baryon density, for two values of C = 0,0.7 and two values of
D1/2 = 170 MeV, 190 MeV.

Therefore, there are only two independent chemical potentials.
For a given total density nB, the two independent chemical
potentials and the quark fraction χ can be determined by
solving the charge neutrality equation Qt = 0 and the pressure
balance equation pN = pq.

In Fig. 3, the quark fraction χ is plotted as a function
of the baryon density, for the two values of C = 0,0.7 and
the two values of D1/2 = 170 MeV, 190 MeV. As is already
known from our previous work, the larger D value pushes the
threshold of quark matter phase to higher densities in the case
of C = 0. This conclusion still holds when we adopt a nonzero
value of C in the quark mass scaling, increasing the critical
density from 0.57 to 0.64 fm−3 at (C,D1/2) = (0.7,190 MeV).
Also, a nonzero positive C is found to have the same effect,
when the C = 0.7 cases are compared with the corresponding
C = 0 cases. A critical density 0.16 fm−3 (0.33 fm−3) with
C = 0,D1/2 = 170 MeV (190 MeV) is increased to 0.57 fm−3

(0.64 fm−3) with C = 0.7,D1/2 = 170 MeV (190 MeV).
In turn, when the C value is chosen to be negative, that is

allowed by our model, quarks appear even earlier than in the
C = 0 case. This means that for typical model parameters free
quarks could be present below the nuclear saturation density
0.16 fm−3, which is unphysical, so that we have to exclude
negative C values in the present work. Actually, a previous
study showed that negative C values were allowed, for a simple
inclusion of one-gluon-exchange interaction between quarks
and degeneration 4 with respect to spin and flavor [25]. This
can be understood as follows: Since we start from the quark
potential, the spin and flavor degrees of freedom should be
very important, especially because the spin-spin interaction
between the quarks plays an important role in calculating
the effective repulsion [26]. A more realistic inclusion of
the quark potential as done in Ref. [27] could then lead
to a more reasonable result of the critical density around
0.5 fm−3. Furthermore, when the term C is included, together
with an upper quark threshold, the density range of the
mixed hadron-quark phase is expanded (around twice with

FIG. 4. (Color online) (Upper panel) Pressure of HS matter as
a function of energy density and (lower panel) energy density and
pressure of HS matter as a function of baryon density, for two values
of C = 0,0.7 and two values of D1/2 = 170 MeV, 190 MeV. The
results of pure nuclear matter are also shown for comparison.

the chosen parameters). This should be a general result when
the Gibbs construction is employed to achieve a first-order
phase transition.

The stable configurations of a NS can be obtained from
the well-known hydrostatic equilibrium equations of Tolman,
Oppenheimer, and Volkov [28]. At variance with pure nuclear
or quark stars, a HS may contain pure quark matter in the
core, pure nuclear matter near the outer part, and, in between,
a mixed phase of the quark and nuclear matter. We then
employ the corresponding EoS models described above. They
are shown in Fig. 4, where the pressures of HS matter as
a function of energy density are shown in the upper panel,
and the energy densities and pressures of HS matter as a
function of baryon density are shown in the lower panel, for
two values of C = 0,0.7 and two values of D1/2 = 170 MeV,
190 MeV. These plots show again that the term C can stiffen
the EoS, pushing the occurrence of free quark phase deeper
into the star core, as discussed above. For the description
of the NS’s crust, we have joined the hadronic EoSs above
described with the ones by Negele and Vautherin [29] in
the medium-density regime (0.001 fm−3 < ρ < 0.08 fm−3),
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FIG. 5. (Color online) (Upper panel) HSs’ masses as a function
of their central densities and (lower panel) HS mass-radius relations,
for two values of C = 0,0.7 and two values of D1/2 = 170 MeV,
190 MeV. The results of the nucleon star are also shown for
comparison, as well as the recent 2-solar-mass constraint from the
mass measurements of PSR J1614-2230 and PSR J0348+0432 [1].

and the ones by Feynman-Metropolis-Teller [30] and Baym-
Pethick-Sutherland [31] for the outer crust (ρ < 0.001 fm−3).

Figure 5 shows the corresponding HSs’ masses as a function
of their central densities (upper panel) and also the HS mass-
radius relations (lower panel) with the chosen parameters. The
results of the nucleon star are also shown for comparison.
We see that a higher mass is achieved when the term C is
included; for example, the value of 1.53M� (1.65M�) of
the maximum mass obtained with C = 0,D1/2 = 170 MeV

(190 MeV) is increased to 2.10M� (2.17M�) using C =
0.7,D1/2 = 170 MeV (190 MeV). Only in the case of C =
0,D1/2 = 170 MeV can a pure quark core be reached; in other
three cases, the most massive stars both have a mixed-phase
core. We have also checked that an even larger C value
will bring heavier HSs, but always with a mixed-phase core.
This means that no pure core is possible in the present HS
model and quarks only appear in a limited region of the
NS’s core. These results are consistent with a latest study
using the chiral effective field theory approach joined with the
Polyakov-Nambu-Jona-Lasinio (PNJL) model [32].

III. CONCLUSIONS

Summarizing, we have presented updated calculations of
the transition from hadron to quark deconfined phase in NS
matter, and also the HS structure based on our previous work.
This extension concerns mainly the quark matter EoS, where
we used a recent derivation of the quark mass scaling, including
the leading-order perturbative interactions, in addition to the
quark confinement. The derivation scheme allows us to modify
largely the high-density behavior of dense matter, resulting
from a more repulsive quark interaction.

We find that the quark thresholds are pushed to high
densities, together with large density jumps in the first-order
phase transition. Also, the EoSs are stiffened and the resulting
HS maximum mass are shifted to higher values. Massive HSs
as high as 2M� are possible, consistently with two recent
astrophysical observations of pulsars in binary systems.

In the near future we plan to include the color supercon-
ductivity because it is expected to play a role in dense quark
matter at the density range discussed in the present work. Also,
the appearance of hyperons, missing in our present version of
BHF model, could be studied in competition with free quarks,
since a previous study [33] combining the same nucleon model
with the Dyson-Schwinger quark model shows that no hybrid
star can exist if hyperons are introduced. Finally, we would
like to study how such high-mass NSs are formed in a binary
system.
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