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From asymmetric nuclear matter to neutron stars: A functional renormalization group study
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A previous study of nuclear matter in a chiral nucleon-meson model is extended to isospin-asymmetric matter.
Fluctuations beyond mean-field approximation are treated in the framework of the functional renormalization
group. The nuclear liquid-gas phase transition is investigated in detail as a function of the proton fraction in
asymmetric matter. The equations of state at zero temperature of both symmetric nuclear matter and pure neutron
matter are found to be in good agreement with realistic many-body computations. We also study the density
dependence of the pion mass in the medium. The question of chiral symmetry restoration in neutron matter is
addressed; we find a stabilization of the phase with spontaneously broken chiral symmetry once fluctuations are
included. Finally, neutron-star matter including β equilibrium is discussed. The model satisfies the constraints
imposed by the existence of two-solar mass neutron stars.
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I. INTRODUCTION

Recent high-quality observational data of neutron stars set
new stringent constraints for the equation of state (EoS) of
cold and dense matter, otherwise inaccessible by experiment.
The masses of two heavy pulsars were determined with
high precision: J1614-2230 with M = (1.97 ± 0.04)M� [1]
and J0348 + 0432 with M = (2.01 ± 0.04)M� [2]. Only a
sufficiently stiff EoS can support such neutron stars against
gravitational collapse. While neutron star radii are much less
accurately known, the combination of available data makes
these objects nonetheless an indispensable tool to constrain
possible equations of state [3–5].

Theoretical investigations of neutron-rich matter have
converged quite well in recent years. Different approaches,
such as chiral effective field theory (ChEFT [6–8]), chiral
Fermi liquid theory [9], as well as quantum Monte Carlo
(QMC) methods, using either phenomenological interactions
[10,11] or ChEFT potentials [12–14], agree well in their
common overlap region of applicability at lower densities.

At higher densities, effects of three-body forces and
higher-order pion-exchange processes become increasingly
important [15,16], and it is crucial that any realistic model
takes into account fluctuations and correlations generated by
those mechanisms. A powerful method to study the effects of
fluctuations in a consistent and fully nonperturbative way is
the functional renormalization group (FRG [17–21]).

In recent studies [22–24] we have applied FRG methods
to a chiral nucleon-meson model [25,26] for symmetric
nuclear matter and pure neutron matter. The present paper
extends these calculations to asymmetric nuclear matter,
systematically varying the relative proportion of neutron and
proton densities. In Sec. II we review the setup of the model
and explain how the parameters are adjusted in a mean-
field calculation. Section III demonstrates how to include
fluctuations using FRG framework. We then study in Sec. IV
the nuclear liquid-gas phase transition and the EoS for varying
proton fractions. Section V deals with the in-medium pion
mass as a useful test observable for pionic fluctuations. In
Sec. VI we discuss the issue of chiral symmetry restoration

with emphasis on neutron matter. Finally, in Sec. VII neutron-
star matter under the condition of β equilibrium is examined
and discussed in view of the new observational constraints.

II. EXTENDED CHIRAL NUCLEON-MESON MODEL

In the hadronic phase of QCD with spontaneously broken
chiral symmetry, the active degrees of freedom are baryons
and mesons (predominantly nucleons and pions). Given that
the EoS of cold and dense baryonic matter must be sufficiently
stiff to support 2M� neutron stars, this constraint implies
limitations on the baryon densities that can be reached in the
center of the star. Several studies utilizing the observational
constraints typically find central densities not exceeding about
five times nuclear saturation density, n0 = 0.16 fm−3 [4,5,10].
Under such conditions, exotic compositions with substantial
portions of quark matter or kaon condensates are unlikely.
Also, the appearance of hyperons would make the EoS too soft
unless strongly repulsive correlations are introduced to sustain
sufficiently large pressure gradients at high densities [27–29].
In this work we do not consider such effects and restrict
ourselves to “conventional” nucleon and meson degrees of
freedom.

The present approach uses a chiral nucleon-meson (ChNM)
model [25,26,30], which has been demonstrated to be suitable
for studying the thermodynamics of baryonic matter. It is
based on a SU(2)L × SU(2)R linear sigma model. Protons
and neutrons are combined in an isospin doublet field ψ =
(ψp,ψn)T and coupled to isoscalar-scalar (σ ) and pion (π)
fields transforming as a four-component field (σ,π )T under
the chiral group. Long- and intermediate-range interactions of
the nucleons are generated by π and σ exchange mechanisms.
The nucleon-nucleon forces at short distance are conveniently
described in terms of four-fermion isoscalar- and isovector-
vector current interactions, (ψ̄γμψ) (ψ̄γ μψ) and (ψ̄γμτψ) ·
(ψ̄γ μτψ), respectively, where τ are the isospin Pauli
matrices. A Hubbard-Stratonovich transformation bosonizes
these interactions, introducing effective vector-isoscalar and
vector-isovector fields, ωμ and ρμ, respectively. In the present

0556-2813/2015/91(3)/035802(12) 035802-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.91.035802


MATTHIAS DREWS AND WOLFRAM WEISE PHYSICAL REVIEW C 91, 035802 (2015)

study, while fluctuations of the π and σ fields will be included
nonperturbatively, ωμ and ρμ are treated as mean fields.
These vector bosons conveniently parametrize unresolved
short-distance physics. They are not to be identified with
the physical omega and rho mesons. The Lagrangian (in
Minkowski space-time) of this extended ChNM model reads

LChNM = ψ̄iγμ∂μψ + 1
2∂μσ ∂μσ + 1

2∂μπ · ∂μπ

− ψ̄[g(σ + iγ5 τ · π) + γμ(gω ωμ + gρτ · ρμ)]ψ

− 1
4F (ω)

μν F (ω)μν − 1
4 F(ρ)

μν · F(ρ)μν

+ 1
2m2

v(ωμ ωμ + ρμ · ρμ) − U(σ,π). (1)

The field strength tensors of the vector bosons ωμ and
ρμ are generally given as F (ω)

μν = ∂μων − ∂νωμ and F(ρ)
μν =

∂μρν − ∂νρμ − gρ ρμ × ρν , respectively. Treated as back-
ground fields, only ω0 and ρ3

0 are nonvanishing and the
non-Abelian part of F(ρ)

μν does not contribute in practice.
The mass parameter mv associated with the vector fields
encodes the characteristic scale of unresolved short-distance
dynamics. Phenomenological boson-exchange models often
use mv � 0.8 GeV. In the present approach only the effective
coupling strengths of dimension (length)2,

Gω = g2
ω

m2
v

, Gρ = g2
ρ

m2
v

,

are relevant. If the vector fields are integrated out, these
couplings correspond to the respective local four-fermion
nearest-neighbor (NN) interactions.

The microscopic potential,U(σ,π ), can be decomposed into
a chirally invariant piece, U0(χ ), which depends only on the
chirally invariant square,

χ = 1
2 (σ 2 + π2),

and an explicit symmetry-breaking term,

U(σ,π) = U0(χ ) − m2
πfπ (σ − fπ ), (2)

where mπ and fπ are the physical mass and decay constant
of the pion (in practice, we use mπ = 135 MeV and fπ =
93 MeV as in Ref. [30]).

Finite temperatures and chemical potentials are treated
within the Matsubara formalism. The time component is Wick-
rotated, t → −iτ , and the imaginary time τ is compactified
on a circle with radius β = 1/T , where T is the temperature.
Chemical potentials μn,p for neutrons and protons are intro-
duced by adding a term SE = −∑

i=n,p
μi

T

∫
d3xψ

†
i ψi to the

Euclidean action.
As a first step the model is studied in the mean-field

approximation. The nucleons contribute only quadratically
and are integrated out in the path-integral formalism, which
leaves us with a determinant. Next, the bosonic fields are
replaced with space-time-independent background fields. A
possible pion condensate is not considered; hence, the pion
mean field vanishes. Rotational invariance implies that the
mean-field values of the spatial components ωi and ρi vanish.
The only nonvanishing mean fields are σ , ω0, and ρ3

0 . By
a slight abuse of notation, their mean-field values are in the
following denoted by the same symbols. The effect of the mean

fields is to generate an in-medium nucleon mass, MN , as well
as shifted effective chemical potentials for the nucleons:

MN = gσ, μeff
n,p = μn,p − gωω0 ± gρρ

3
0 . (3)

The ρ3
0 component introduces an isospin asymmetry. For

symmetric nuclear matter, ρ3
0 = 0.

The full mean-field potential,

UMF = UF

(
T ,μn,p,σ,ω0,ρ

3
0

) + UB

(
σ,ω0,ρ

3
0

)
, (4)

is split into a fermionic part (which stems from the fermion
determinant) and a bosonic potential (which is independent of
temperature and chemical potentials),

UF = −2
∑

i = n,p

∫
d3p

(2π )3

×
{
EN + p2

3EN

[
nF

(
μeff

i

) + nF

( − μeff
i

)]}
,

(5)

UB =
Nmax∑
i=1

an

n!
(χ − χ0)n − m2

πfπ (σ − fπ )

− 1

2
m2

v

[
ω2

0 + (
ρ3

0

)2]
,

where EN =
√

p2 + M2
N , and the Fermi distribution is given

by nF(μ) = (e(EN−μ)/T +1)−1. The χ -dependent part of the
bosonic potential UB is expanded around its vacuum value at
T = 0 and μ = 0, namely χ0 = 1

2f 2
π . The first term in the

fermionic potential UF proportional to the integral over EN

has a quartic divergence. This integral can be computed in
dimensional regularization, as demonstrated in Ref. [31],

UMF = −M4
N

8π2
ln

M2
N

λ2
, (6)

where λ is a renormalization scale. After making the re-
placement M2

N → 2g2χ , this term is added as a nonanalytic
contribution in χ to the bosonic potential UB. Because the
microscopic potential U(σ,π ) is not known a priori, it is
not possible to compute the bosonic contribution UB to the
mean-field potential completely from first principles. Instead,
the parameters an are fitted to reproduce empirical properties
of symmetric nuclear matter and pure neutron matter, as shown
in the following.

For given temperature T and chemical potentials μn,p,
the mean-field potential is minimized as a function of its
parameters σ , ω0, and ρ3

0 . The corresponding mean-field
equations are

∂UB

∂σ
= −g ns, gω ω0,min = Gω(np + nn),

gρ ρ3
0,min

= Gρ(np − nn), (7)
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with neutron-, proton-, and scalar-density functionals defined
as follows:

ni = 2
∫

d3p

(2π )3

[
nF

(
μeff

i

) + nF

( − μeff
i

)]
, i = n,p,

ns = 2
∑
i=n,p

∫
d3p

(2π )3

m

EN

[
nF

(
μeff

i

) + nF

( − μeff
i

)]
. (8)

The values of the fields at the minimum of the potential are
denoted as σ̄ (T ,μn,p), ω̄0(T ,μn,p), and ρ̄3

0 (T ,μn,p), respec-
tively. The potential UMF evaluated at the minimum equals the
grand-canonical partition function,

�(T ,μn,p) ≡ UMF
(
T ,μn,p,σ̄ , ω̄0, ρ̄

3
0

)
. (9)

Pressure p, proton and neutron number densities ni=n,p,
entropy density s, and energy density ε are determined from
the standard thermodynamical relations:

p = −�(T ,μn,p), ni = −∂�(T ,μn,p)

∂μi

,

(10)
s = −∂�(T ,μn,p)

∂T
, ε = −p + T s +

∑
i=n,p

μini .

Next, the parameters of the model are determined, following
Ref. [30]. First, the scalar-pseudoscalar coupling g is fixed to
reproduce the correct nucleon mass in vacuum at T = 0 and
μ = 0, which gives g = 939 MeV/fπ = 10.1. At vanishing
temperature and chemical potential, the minimum must be
located at σ = fπ with vanishing pressure pvac, and therefore
the mean-field potential must satisfy

UMF|σ=fπ
= −pvac = 0,

∂UMF

∂σ

∣∣∣∣
σ=fπ

= 0. (11)

The masses of the physical pion field and of the scalar field σ
are

∂UMF

∂χ

∣∣∣∣
χ0

= m2
π ,

(
∂UMF

∂χ
+ 2χ

∂2UMF

∂χ2

)∣∣∣∣
χ0

= m2
σ . (12)

The mass mσ is a free parameter so far. The ansatz (5) for the
mean-field potential obeying the necessary constraints is given
by

UMF = −2
∑

i = n,p

∫
d3p

(2π )3

p2

3EN

[
nF

(
μeff

i

) + nF

( − μeff
i

)]

+
[
m2

π + g4

4π2
f 2

π

(
1 + 2 ln

f 2
π

2χ

)]
(χ − χ0)

+ 1

2

[
m2

σ − m2
π

f 2
π

+ g4

2π2

(
3 + 2 ln

f 2
π

2χ

)]
(χ − χ0)2

+ g4

8π2
f 4

π ln
f 2

π

2χ
+

Nmax∑
n=3

an

n!
(χ − χ0)n

−m2
πfπ (σ − fπ ) − 1

2
m2

v

[
ω2

0 + (
ρ3

0

)2]
. (13)

We observe that the dependence on the renormalization scale
λ has dropped out, as it should [31]. Moreover, the mean-field
potential UMF is finite for χ → 0.

FIG. 1. Mean-field potential of symmetric nuclear matter as
function of σ at vanishing temperature for μ = μc = 923 MeV.

In the following, we choose Nmax = 4, which leaves us with
five free parameters: a3, a4, Gω = g2

ω/m2
v , Gρ = g2

ρ/m2
v , and

mσ . Some of these parameters are fixed by empirical properties
of symmetric nuclear matter. In the isospin-symmetric case
we have np = nn and ρ3

0 vanishes identically, as seen from
the mean-field equation (7). Hence, Gρ does not enter the
calculations in this case and there is only a single chemical
potential, μ ≡ μp = μn.

At vanishing temperature, the liquid-gas phase transition
sets in at a critical chemical potential equal to the difference
between nucleon mass and binding energy, μc = MN − B =
923 MeV with B = 16 MeV. As shown in Fig. 1, the potential
has two degenerate minima, where the one at σ = fπ corre-
sponds to the vacuum, while the minimum at σc = 69.8 MeV
corresponds to nuclear matter in its ground state. Let ω0,c be the
expectation value of ω0 for T = 0 and μ = μc at σ = σc. The
effective chemical potential at μc is given by μc − gω ω0,c. It
is equal to the Landau mass, mL, the effective mass associated
with a nucleon quasiparticle excitation at the Fermi surface,
i.e., mL =

√
p2

F
+ (gσc)2, where pF = 265 MeV is the Fermi

momentum at nuclear saturation density n0 and gσc is the
dynamical in-medium nucleon mass. For symmetric nuclear
matter at μ = μc, the neutron and proton densities are equal
and sum up to the nuclear saturation density n0. With Eq. (7)
we find

mL = μc − gω ω0,c = μc − Gωn0. (14)

Given the Landau mass, mL � 0.8MN fixes

Gω = g2
ω/m2

v = 5.71 fm2

at mean-field level. As already mentioned, this is the only
relevant combination of gω and mv as long as ω0 is kept as a
nonfluctuating background field. It is the coupling strength of
a corresponding nucleon contact interaction, Gω(ψ†ψ)2.

As mentioned, the condition of a first-order phase transition
at μ = μc implies two degenerate minima of the mean-field
potential UMF, located at σ = σc and σ = fπ . The mean-field
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potential must therefore satisfy the constraints

∂UMF

∂σ

∣∣∣∣
T =0,μc,σc, ω0,c

= 0,

(15)
UMF|T =0,μc,σc, ω0,c

= UMF|T =0,μc,fπ ,0.

These conditions allow us to solve for a3 and a4 as a function
of mσ , such that only mσ remains as a free parameter for
symmetric nuclear matter. At this point it is important to note
that the σ mass is not to be identified with the complex pole
which appears in pion-pion scattering in the I = 0 s-wave
channel at

√
s � (500 − i 300) MeV [32,33]. Instead, the σ

boson in our model parametrizes part of the short-distance
interaction. Its value is determined to achieve good agreement
with the compression modulus K = 9n(dn/dμ)−1 and the
nuclear surface tension � = ∫ fπ

σ0
dσ

√
2U [34]. A good choice

is1

mσ = 880 MeV, a3 = 6.87 × 10−2 MeV−2,
(16)

a4 = 2.05 × 10−4 MeV−4,

which gives K = 293 MeV and � = 1.1 MeV/fm2, as com-
pared to the empirical values K = 240 ± 30 MeV and � =
1.1 MeV/fm2, respectively. The behavior of the liquid-gas
transition and, in particular, its critical end point are sensitive
to K and �. It is therefore important to satisfy the empirical
constraints.

Only Gρ remains as a free parameter. Again, only the
combination Gρ = g2

ρ/m2
v enters the equations, corresponding

to the strength of an isovector-vector four-nucleon interaction
Gρ(ψ†τψ)2. The parameter Gρ is fitted to reproduce the
symmetry energy Esym at nuclear saturation density n0. The
symmetry energy S(n) is defined as the difference between
the energy per particle of pure neutron matter and symmetric
nuclear matter at a given density n,

E

A
(n,x) = E

A
(n,0.5) + S(n) (1 − 2x)2 + · · · ,

(17)
S(n) = Esym + L

3
(n − n0) + · · · ,

where the proton fraction x = Z/A = np/(np + nn) is a
measure of asymmetry. The L parameter is related to the slope
of the symmetry energy as a function of density n around
nuclear saturation density. The symmetry energy and the L
parameter can be inferred from measurements of neutron
skin thickness, heavy-ion collisions, dipole polarizabilities,
and giant and pygmy dipole resonance energies, as well as
from fitting nuclear masses. A combined analysis gives values
in the range 29 MeV � Esym � 33 MeV and 40 MeV � L �
62 MeV [35–37]. Reproducing the symmetry energy value
Esym = 32 MeV fixes Gρ = 1.07 fm2. All model parameters
are now determined. Next we go beyond the mean-field
analysis and study the influence of fluctuations.

1Note that these parameters differ from those of our earlier study
[22], where the term, Eq. (6), was not explicitly included in the
mean-field potential.

III. INCLUSION OF FLUCTUATIONS: FUNCTIONAL
RENORMALIZATION GROUP

Fluctuations beyond the mean-field approximation in the
ChNM model are included using the FRG framework [22].
A proper treatment of fluctuations was shown to improve
the agreement with calculations performed within in-medium
chiral effective field theory [7]. The FRG is a method to
compute the full quantum effective action �eff from a given
initial action defined at an ultraviolet cutoff scale � [17–21].
To this end, an effective action �k is introduced, which depends
on a renormalization scale k. The flow of the effective action
is determined in such a way that it interpolates between the
ultraviolet action at the scale � and the full quantum effective
action �eff = �k=0 in the infrared limit k → 0. The flow of �k

as a function of k is given by a functional differential equation,
Wetterich’s flow equation [38],

k
∂�k

∂k
= = 1

2
Tr

k ∂Rk

∂k

�
(2)
k + Rk

, (18)

where �
(2)
k is the second functional derivative of the effective

action with respect to the fields, and Tr stands for Dirac and
isospin traces as well as integration over loop momentum.
Pictorially, the line with the dot represents the full propagator
of the fluctuating degrees of freedom (pions, σ field, and
nucleons), while the cross symbolizes the insertion of a
regulator function k∂Rk/∂k. The regulator Rk ensures that
the flow equation is IR-finite. The fluctuations contributing to
the flow equation at a scale k have momenta peaked around k.
The optimized Litim cutoff [39,40] is chosen, namely,

Rk( p2) = (k2 − p2) θ (k2 − p2), (19)

where p is the three-momentum.
The mass mv associated with the ω and ρ bosons correspond

to the inverse range of isoscalar and isovector short-distance
NN interactions. This mass is large compared to the relevant
low-energy scales. Therefore, ω and ρ fluctuations are sup-
pressed and these “frozen” degrees of freedom are treated as
background fields in the mean-field approximation as before.
In contrast, the fluctuations of the pions and (to maintain chiral
symmetry) also of the σ are included, as well as important
particle-hole excitations of the nucleons around the Fermi
surface.

For the treatment of the thermodynamics with inclusion of
fluctuations it is useful to compute the flow of the difference
between the effective action at given values of temperature
and chemical potential, �k(T ,μ), as compared to the potential
at the liquid-gas phase transition point at zero temperature,
�k(0,μc), at which nuclear matter is in equilibrium. In analogy
to Ref. [39], we study the flow of the difference

�̄k = �k(T ,μ) − �k(0,μc). (20)

The k dependence of �k is given by

k ∂�̄k

∂k
(T ,μ) =

∣∣∣∣
T ,μ

−
∣∣∣∣ T = 0
μ = μc

. (21)
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The effective action is treated in leading order of the derivative
expansion; i.e., operators with higher powers in derivatives are
not included. We work in the local potential approximation,
which means that a possible anomalous dimension (a Z
factor) or the so-called Y term, which includes a derivative
coupling together with higher powers in the fields, Y (φ)(∂φ)2,
are not considered. Moreover, the running of the Yukawa
couplings is ignored. With these simplifications, the effective
action is written as

�k =
∫

d4x

{
ψ̄i∂/ψ + 1

2
∂μσ ∂μσ + 1

2
∂μπ · ∂μπ

− ψ̄
[
g(σ+ iγ5τ · π ) + γ0

(
gω ω0 + gρ ρ3

0τ 3
)]

ψ− Uk

}
.

(22)

As mentioned, the vector fields ω0 and ρ3
0 appear here only

as mean fields. The complete k dependence is in the effective
potential Uk . In analogy to the mean-field potential (13), the
effective potential has a chirally symmetric piece, U (χ), the
explicit chiral symmetry-breaking term and the mass terms of
the vector bosons:

Uk = U
(χ )
k − m2

πfπ (σ − fπ ) − 1
2m2

v

[
ω2

0 + (
ρ3

0

)2]
. (23)

The second derivative �(2) is computed and the Dirac and
isospin trace is performed. Owing to the choice of the
optimized regulator (19), the only momentum dependence
comes in through a step function, and the momentum integral
can be performed trivially. The remaining flow equations
depend only on the chirally invariant field χ .

The flow of the subtracted chirally symmetric potential
Ū

(χ)
k = U

(χ )
k (T ,μ) − U

(χ)
k (0,μc) is computed from the

equation

∂Ū
(χ )
k (T ,μ)

∂k
= fk(T ,μ) − fk(0,μc), (24)

with

fk(T ,μ) = k4

12π2

⎧⎨
⎩3 × 1 + 2nB(Eπ )

Eπ

+ 1 + 2nB(Eσ )

Eσ

− 4
∑
i=n,p

1 − nF

(
EN,μeff

i

) − nF

(
EN, − μeff

i

)
EN

⎫⎬
⎭ .

(25)

Here

E2
N = k2 + 2g2χ,

E2
π = k2 + ∂Uk

∂χ
, E2

σ = k2 + ∂Uk

∂χ
+ 2χ

∂2Uk

∂χ2
, (26)

nB(E) = 1

eE/T − 1
, and nF(E,μ) = 1

e(E−μ)/T + 1
.

So far ω0 and ρ3
0 are constant background fields, to be

determined self-consistently in such a way that the effective
potential at k = 0 is minimized as a function of ω0 and ρ3

0 .
Instead, it is possible to introduce a k and χ dependence for

these fields, such that the effective potential Uk is minimized
at each scale k for each χ . From Eq. (23) follow the two gap
equations for ω0(k,χ ) and ρ3

0 (k,χ ):

∂

∂y

[
U

(χ)
k

(
y,ρ3

0 (k,χ )
) − 1

2
m2

vy
2

]∣∣∣∣
y=ω0(k,χ )

= 0,

(27)
∂

∂y

[
U

(χ)
k

(
ω0(k,χ ),y

) − 1

2
m2

vy
2

]∣∣∣∣
y=ρ3

0 (k,χ )

= 0.

With the help of the flow equation (24) it is possible to rewrite
these gap equations in the form

gω ω0(k,χ ) = Gω

3π2

∫ �

k

dp
p4

EN

∑
r=±1

∂

∂μ

× [
nF

(
EN,rμeff

p (k,χ )
) + nF

(
EN,rμeff

n (k,χ )
)]

,

gρ ρ3
0 (k,χ ) = Gρ

3π2

∫ �

k

dp
p4

EN

∑
r=±1

∂

∂μ

× [
nF

(
EN,rμeff

p (k,χ )
) − nF

(
EN,rμeff

n (k,χ )
)]

,

(28)

where the effective chemical potentials now depend on k and
χ according to

μeff
n,p(k,χ ) = μn,p − gωω0(k,χ ) ± gρ ρ3

0 (k,χ ). (29)

These equations can be considered as generalizations of the
mean-field equations (7) in the context of the FRG framework.
After an integration by parts, the gap equations can be brought
into a form similar to Eq. (8), where the momenta of the
nucleons contributing to the mean fields ω0(k,χ ) and ρ3

0 (k,χ )
at a certain step are restricted to the range k � p � �, as is
clear from the integral boundaries of Eq. (28). In addition,
boundary terms from the integration by parts appear, which,
however, vanish in the limit k → 0 and for large cutoffs �.
In this way, it is possible to show that the flow equations
reproduce the mean-field results if bosonic loops are ignored.

Finally, the ultraviolet potential is fixed in such a way
that for T = 0 and μ = μc the mean-field potential (5) is
reproduced. This guarantees that nuclear matter is described
accurately. Moreover, the pion mass and pion decay constant,
both determined from the behavior of the potential at its
minimum, are correctly kept.

As explained in Ref. [22], the input parameters have to be
readjusted to reproduce the correct nuclear saturation density,
because the dependence of the minimum of the effective
potential on the chemical potentials is influenced by the
fluctuations. Again, the coupling Gρ is fixed to reproduce a
symmetry energy of Esym = 32 Mev. The updated parameters
of the model with the inclusion of fluctuations are

Gω = g2
ω

m2
v

= 4.04 fm2, Gρ = g2
ρ

m2
v

= 1.12 fm2,

mσ = 770 MeV, a3 = 5.55 × 10−3 MeV−2, (30)

a4 = 8.38 × 10−5 MeV−4.

We choose an ultraviolet cutoff � = 1.4 GeV, slightly above
the chiral scale 4πfπ , below which the hadronic effective
Lagrangian LChNM is applicable. For given temperature T
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FIG. 2. Energy per particle of symmetric nuclear matter at T = 0
as a function of baryon density (in units of n0 = 0.16 fm−3) computed
in the FRG-ChNM model (solid line), as compared to the Akmal-
Pandharipande-Ravenhall EoS (dotted line, Ref. [27]), and a QMC
computation (dashed line, Ref. [42]).

and chemical potentials μn and μp, the full set of flow
equations (24) and (28) is solved self-consistently using the
grid method [41]. The potential is expanded as a function of χ
around grid points and then matched continuously between
any two adjacent grid points. In this way, the potential is
not Taylor expanded but kept as a general function of χ .
Upon expansion of the effective potential around its absolute
minimum, n-point interactions involving pions and σ fields are
generated in the effective action. In the context of a generalized
linear sigma model, multipion and σ exchange interactions
are thus incorporated to all orders. In contrast to (perturbative)
in-medium chiral effective field theory based on a nonlinear
sigma model, the n-point correlators in the effective action are
now computed in a fully nonperturbative fashion.

The grand-canonical potential � is finally obtained by
evaluating the effective potential as a function of σ at its
absolute minimum. From this grand-canonical potential all
thermodynamic properties, such as pressure, energy density,
and entropy, can be derived as in Eq. (10).

IV. FROM ASYMMETRIC NUCLEAR MATTER
TO NEUTRON MATTER

Consider first symmetric nuclear matter at small temper-
atures, which exhibits a first-order transition between a gas
phase and a nuclear-liquid phase. The absolute minimum of
the energy per particle is located at saturation density n0 and
equals the binding energy, E/A = −B = −16 MeV. In Fig. 2,
the energy per particle at vanishing temperature T is shown as
a function of density in the region of stability.2 For comparison,
the EoS by Akmal, Pandharipande, and Ravenhall (APR) [27]

2Continuations of curves often extended into the unstable region
n < n0 are omitted here.

FIG. 3. The EoS for different proton fractions x = Z/A at van-
ishing temperature. The dashed curve denotes the absolute minimum
of the energy per particle for each asymmetry x. Matter in the region
to the left of the dashed curve is unstable. The dotted line results from
a Maxwell construction.

based on phenomenological two- and three-body potentials is
shown, as well as a QMC computation [42]. All results are in
very good mutual agreement, even up to densities as high as
three times nuclear saturation density.

In Fig. 3 the energy per particle at T = 0 as a function of
density is shown for different proton fractions, x = Z/A, from
symmetric nuclear matter (x = 0.5) to pure neutron matter
(x = 0). As the proton fraction x is lowered, the energy per
particle increases, until for x � 0.11 the energy per particle
vanishes at the minimum (the upper end point of the dashed
curve in Fig. 3). For even smaller values of x the absolute
minimum occurs at zero density and nuclear matter is no longer
self-bound. There is still a remnant of the first-order phase
transition, and the density is still discontinuous as a function
of the chemical potential. However, the coexistence region
extends no longer down to vanishing density n = 0. In Fig. 4
the coexistence regions in a temperature/density plot are shown
for different proton fractions. For instance, for x = 0.1, the
coexistence region starts at nonvanishing density determined
by a Maxwell construction from the energy per particle and
depicted as the dotted line in Fig. 3 for x = 0.1. Finally, for
x smaller than a critical value of x = 0.045 the energy per
particle rises monotonously as a function of density. There
is no longer a second minimum and the coexistence region
vanishes altogether, as is seen in Fig. 4.

As the temperature increases, the phase coexistence region
melts until it disappears at a certain x-dependent critical
temperature characterized by a second-order critical end point.
From the behavior of the coexistence regions one can read off
the critical end point for symmetric matter, which is located at
a temperature T = 18.3 MeV and a density n = 0.053 fm−3.
These values are in excellent agreement with analyses of com-
pound nuclear reactions and multifragmentation experiments,
which give critical temperatures of T = 17.9 ± 0.4 MeV and
critical densities n = 0.06 ± 0.01 fm−3 [43,44]. The trajectory
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FIG. 4. The liquid-gas coexistence regions for different proton
fractions x = Z/A. The trajectory of the critical point is shown as
the dotted line.

of the critical end point as the proton fraction x is varied
is indicated by the dotted curve. We note that our idealized
model ignores surface effects as well as Coulomb repulsion.
In more realistic scenarios at low densities the effects of light
clusters have to be taken into account. However, a study in the
framework of relativistic mean-field and microscopic quantum
statistical models showed an only moderate influence of such
effects on the position of the critical end point [45].

Next we study in more detail the EoS for pure neutron
matter in comparison with results of many-body computations
reported in the literature. The coupling Gρ is fixed to
reproduce Esym = 32 MeV. The L parameter corresponding
to the slope of the symmetry energy as defined in Eq. (17) is
L = 66.3 MeV, close to the empirical range 40 MeV � L �
62 MeV [36]. At this point it is instructive to examine the
relationship between L and the symmetry energy Esym itself.
As demonstrated in Fig. 5, this dependence is approximately
linear.

In Fig. 6 the energy per particle for neutron matter
calculated in the FRG-ChNM model is shown as a function
of density (black line). In comparison, results obtained in a
QMC study with realistic two- and three-nucleon interactions
[11] are shown. Note that in contrast to the mean-field
approximation, the FRG treatment improves significantly the
comparison with realistic ab initio many-body calculations of
E/A.

Figure 7 displays a band of calculated FRG-ChNM
equations of state covering a range of symmetry ener-
gies, 29 MeV � Esym � 33 MeV, corresponding to an inter-
val 0.91 fm2 � Gρ � 1.2 fm2 of short-range isovector-vector
couplings. Also shown for comparison are the APR EoS
based on phenomenological potentials [27], results from chiral
effective field theory [5], and different QMC computations
using phenomenological [42] and chiral potentials [13]. The
equations of state obtained in the FRG-extended ChNM model
agree quite well with all these results up to densities as high
as n = 3n0.

FIG. 5. The L parameter as a function of the symmetry energy
corresponding to a parameter interval 0.91 fm2 � Gρ � 1.2 fm2.

V. PION MASS IN THE NUCLEAR MEDIUM

The pion mass can be extracted from Eq. (26) as m2
π =

∂Uk=0
∂χ

, where the right-hand side is evaluated at the minimum
of the full effective potential at k = 0. The density dependence
of the pion mass plays an important role in low-energy
pion-nuclear interactions [46], e.g., in the analysis of deeply
bound pionic atoms based on the s-wave pion-nucleus optical
potential [47–49]. This is an interesting test case for the role of
pionic fluctuations. The threshold s-wave π− optical potential
for isospin-symmetric nuclei is of the form

Vopt = − 2π

mπ

beff
0 n, (31)

FIG. 6. The EoS for pure neutron matter with Esym = 32 MeV
in the mean-field approximation (MF) and with fluctuation (FRG).
The gray band shows QMC results [11] with different spatial and
spin structures of the three-neutron interaction and with 32.0 MeV �
Esym � 33.7 MeV.
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FIG. 7. The EoS for pure neutron matter. The gray band are
the FRG results with 29 MeV � Esym � 33 MeV. For reference,
predictions from ChEFT (solid line, Ref. [5]), QMC based on realistic
potentials (dashed line, Ref. [42]), QMC based on chiral potentials
(dotted line, Ref. [13]), as well as the APR EoS (dash-dotted line,
Ref. [27]) are shown.

where the effective scattering length,

beff
0 = b0 − (

b2
0 + 2b2

1

)〈1/r〉, (32)

is dominated by the double scattering contribution involving
the isospin-dependent s-wave parameter b1, while the isospin-
even parameter b0 is small (in fact it vanishes in the chiral
limit). The inverse correlation length associated with the
propagating pion in the double scattering process is 〈1/r〉 =
3pF /2π for a gas of nucleons with Fermi momentum pF .
Thus, the change of the pion mass in medium, mπ (n) �
Vopt(n), is governed almost entirely by what the FRG scheme
characterizes as pionic fluctuations, rather than being driven
by the mean-field (Hartree) term linear in the density n and
proportional to b0. Empirically, Vopt � 0.1 mπ at n � n0 =
0.16 fm−3 from the analysis of pionic atoms.

The importance of the double-scattering contribution of or-
der n4/3 to the in-medium pion mass is, of course, realized also
in the chiral effective field theory approach [50–52]. In Fig. 8
we plot the FRG-ChNM model result for the pion mass as a
function of density for symmetric nuclear matter at vanishing
temperature. The nontrivial part of the corresponding curve
starts at n = n0 because of the first-order liquid-gas transition.
For comparison, the first-order (mean-field) approximation
in the density expansion is shown, together with a recent
in-medium chiral perturbation theory computation [50]. In
agreement with ChEFT and phenomenology, we find an
enhancement of the pion mass by about 10% at nuclear
saturation density.

As already noted in Ref. [24], we have not explicitly
included an isospin chemical potential. Thus, a potential source
of isospin breaking is absent. The effect on the EoS is expected
to be negligible, as was deduced from explicit calculations
in chiral effective field theory [53]. In contrast, this effect
cannot be ignored when computing the in-medium pion mass

FIG. 8. The in-medium pion mass (normalized to the vacuum
mass) as a functions of density for symmetric nuclear matter at T = 0.
Solid line, FRG-ChNM calculation; dashed line, in-medium chiral
perturbation theory (ChEFT) [50]; dash-dotted line, leading (linear)
order in the density expansion.

for asymmetric nuclear matter. The masses of π+, π−, and
π0 split in such a medium [54]. For example, the mass
change for a π− at leading order in the density (neglecting
the small b0 term) is now driven by the isospin-dependent
parameter b1: m−

π (nn,np) � −(2π/mπ ) b1 (nn − np), with
b1 � −0.1 m−1

π . In neutron matter, the mass shift is repulsive
for π− and attractive for π+.

VI. CHIRAL SYMMETRY RESTORATION

At low temperatures and small chemical potentials, chiral
symmetry is spontaneously broken. At vanishing chemical
potential, it is known from lattice calculations that chiral
symmetry is restored in its Wigner-Weyl realization in a rapid
crossover at temperatures above Tc � 155 MeV [55,56]. It
remains an open question whether this crossover turns into a
first-order chiral phase transition for some positive chemical
potential. If this were the case, there would exist a second-order
critical end point. Some model calculations based on effective
quark degrees of freedom—such as chiral quark-meson models
or Nambu–Jona-Lasinio (NJL) type models—predict a first-
order transition at vanishing temperature for quark chemical
potentials, μq , around 300 MeV (see, e.g., [57–61]). Translated
into baryonic chemical potentials, μB � 3μq , chiral symmetry
would be restored very close to the equilibrium point of
normal nuclear matter, μB = 923 MeV. Nuclear physics, with
its well-established empirical phenomenology, teaches us that
this can obviously not be the case. In this hadronic sector of the
QCD phase diagram, nucleons and mesons are the predomi-
nantly active degrees of freedom, and chiral symmetry remains
spontaneously broken in its Nambu-Goldstone realization.

We now explore chiral restoration in the ChNM model. The
chiral order parameter in this model is the σ field normalized
to the pion decay constant fπ in the vacuum. Its behavior in
symmetric nuclear matter as a function of baryon density and
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temperature has been studied previously in Refs. [22,30]. In
mean-field approximation [30], chiral symmetry gets restored
in a first-order transition at a density as low as n � 1.6n0. Once
fluctuations are taken into account [22], the chiral restoration
transition is shifted to chemical potentials well beyond μ ∼
1 GeV or densities exceeding 3n0. Similar trends are found in
ChEFT calculations of the in-medium chiral condensate,

〈ψ̄ψ〉(n,T )

〈ψ̄ψ〉0
= 1 − 1

f 2
π

∂F(n,T )

∂m2
π

, (33)

by computing the pion-mass dependence of the free-energy
density, F(n,T ) [7,62].

The chiral condensate in pure neutron matter has been
calculated previously within (perturbative) chiral effective
field theory [63,64]. Chiral nuclear forces treated up to
four-body interactions at N3LO [64] were shown to work
moderately against the leading linear fall of the condensate
with increasing density around n � n0, with a rate of stabi-
lization less pronounced than in symmetric nuclear matter. It
is instructive at this point to investigate the density dependence
of the chiral order parameter σ in neutron matter within
the FRG-ChNM model. The nonperturbative FRG approach
permits extrapolating to higher densities. Results are presented
in Fig. 9. In mean-field approximation the order parameter
σ/fπ shows a first-order chiral phase transition at a density
of about 3n0. However, the situation changes qualitatively
when fluctuations are included using the FRG framework. The
chiral order parameter now turns into a continuous function of
density, with no indication of a phase transition. Even at five
to six times nuclear saturation density the order parameter still
remains at about 40% of its vacuum value. Only at densities as
large as n ∼ 7n0 does the expectation value of σ show a more
rapid tendency towards a crossover to restoration of chiral
symmetry in its Wigner-Weyl mode. We thus observe a huge
influence of higher order fluctuations involving Pauli blocking
effects in multiple pion-exchange processes and multinucleon

FIG. 9. Density dependence of the chiral order parameter at
vanishing temperature for pure neutron matter. Solid line, FRG-
ChNM model calculation; dashed line, mean-field result.

correlations at high densities. With neutron matter remaining
in a phase with spontaneously broken chiral symmetry even
up to very high densities, this encourages a further-reaching
application and test of the FRG-ChNM model by constructing
an EoS for the interior of neutron stars.

VII. NEUTRON STARS

Neutron stars are electrically neutral objects. To provide
negative charges, the nucleon-meson model has to be extended
by inclusion of electrons and muons. The condition of charge
neutrality is

np = ne + nμ. (34)

Moreover, matter in the interior of a neutron star is subject
to chemical β equilibrium. Neutron, proton, and electron
chemical potentials are related by

μp + μe = μn. (35)

Electrons and muons are assumed to contribute as free Fermi
gases to the energy density and pressure of the model. Charge
neutrality and β equilibrium leave only one single chemical
potential as a free parameter. With these conditions an EoS
applicable to the interior of a neutron star is readily calculated
within the FRG-improved ChNM model. In Fig. 10, the
pressure is shown as a function of the energy density.

Given an EoS p(ε), the mass and radii of neutron stars can
be computed from the Tolman-Oppenheimer-Volkoff (TOV)
equations [65–67],

dp(r)

dr
= −G

r2
[ε(r) + p(r)]

M(r) + 4πr3p(r)

1 − 2GM(r)/r
,

(36)

dM(r)

dr
= 4πr2ε(r).

Here G is the gravitational constant and r is a radial parameter.
The boundary conditions at r = 0 are M(0) = 0 and ε(0) = εc,

100 1000500200 300150 15007000.1

1
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1000

MeV fm3

p
M
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3

FIG. 10. The EoS (pressure versus energy density) of neutron
matter calculated within the FRG-ChNM model, taking beta equilib-
rium into account and using Esym = 32 MeV.
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FIG. 11. Mass-radius relation for neutron-star matter. The mass-
radius constraints from Ref. [3] (rhomboidal area), the radius
constraints [37] (vertical band), and the 2M� neutron stars [1,2]
(horizontal bands) are shown for comparison.

where the central energy density εc is varied to generate a
mass-radius curve.

The outer crust of the neutron star consists of an iron lattice
and hence the energy density is that of iron, εFe = 4.4 ×
10−12 MeV/fm3. The neutron-star radius is then implicitly
defined by the relation ε(R) = εFe. Finally, the mass is obtained
from the TOV equations as

M = M(R) = 4π

∫ R

0
drr2ε(r). (37)

Moving inwards from the crust, the nuclei become more
neutron rich as the density increases and electrons are captured
[68]. The inner crust contains (possibly superfluid) neutrons.
The crust is frequently parametrized by the Skyrme-Lyon
(SLy) EoS [69,70]. This SLy EoS is matched to the FRG-
ChNM model at the point where the energy-density curves
intersect, which happens at a density n � 0.3n0. From there on
to higher densities the FRG-ChNM EoS is taken as a model for
the neutron-star core. We do not consider a possible transition
to quark matter, nor do we include other exotic types of matter
such as kaon condensates. Hyperons are also not included as
they would generally soften the EoS unless strong additional
repulsion is introduced for compensation [28,29].

In Fig. 11 the mass-radius relation of the FRG-ChNM
model obtained from the TOV equations is shown. The gray
band of mass-radius trajectories results from using symme-
try energies in an empirically acceptable range 29 MeV �
Esym � 37 MeV (or, correspondingly, a range of isovector-

vector couplings 0.91 fm2 � Gρ � 1.46 fm2). For not-too-
small symmetry energies the EoS is found to be in agreement
with the observed 2M� neutron stars.

Unlike the precise 2M� mass determinations, the radius
constraints for neutron stars are far less accurate. They are
subject to model-dependent assumptions. Nevertheless, limits
on minimal and maximal radii can be inferred from different
sources, such as x-ray burst oscillations, thermal emission,

FIG. 12. Density profile for a neutron star with mass M =
1.97M� and R = 12.2 km for Gρ = 1.46 fm−2.

and stars with largest spin frequency. The result of such a
detailed analysis [3] is a rhomboidal region (depicted in gray
in Fig. 11), which a realistic EoS must intersect. Our EoS is
in agreement with all these constraints. For comparison, the
acceptable radius interval according to Ref. [37] is also shown.

Figure 12 shows a typical calculated density profile of a
neutron star with mass M = 1.97M� using Gρ = 1.46 fm−2

(i.e., a symmetry energy of 37 MeV). It is noteworthy that even
in the center of the neutron star the density does not exceed
about five times nuclear saturation density. The required
stiffness of the EoS does not permit ultrahigh densities in
the inner core of the star. These findings are in agreement with
a corresponding ChEFT computation [5].

The question might nonetheless be raised whether ap-
proaches such as the ChNM model, based entirely on sponta-
neously broken chiral symmetry with pions and nucleons as
degrees of freedom, are still applicable at densities as high as
5n0. Clearly, the mean-field version of the ChNM model with
its first-order chiral phase transition at about 3n0 would not
qualify for such extrapolations. The FRG-improved version
of this model, on the other hand, with proper nonperturbative
treatment of fluctuations and many-body correlations, is pre-
pared to deal with dense baryonic matter. Even if the nucleon
mass at n ∼ 5n0 is reduced to less than half of its vacuum value,
chiral symmetry is still realized in the spontaneously broken
Nambu-Goldstone phase at such densities, with no trace of a
nearby chiral phase transition.

VIII. SUMMARY AND CONCLUSIONS

A ChNM model, previously designed to describe isospin-
symmetric nuclear matter, has been extended to asymmetric
nuclear matter and neutron matter. Fluctuations beyond the
mean-field approximation are treated using FRG methods. All
parameters have been fixed to properties of symmetric nuclear
matter together with the empirical symmetry energy.
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The behavior of the nuclear liquid-gas phase transition has
been studied in detail. The critical end point is in excellent
agreement with empirical data. The equations of state of
symmetric, asymmetric, and pure neutron matter have been
computed. With only one additional free parameter (fitted to
the symmetry energy), the EoS of neutron matter is in remark-
able agreement with advanced many-body computations for
densities up to several times nuclear saturation density. Like-
wise, the EoS of symmetric nuclear matter is well reproduced
in comparison with realistic many-body calculations.

The in-medium behavior of the pion mass has been analyzed
as a test example for the treatment of fluctuations, in this case
involving dominant double-scattering mechanisms of the pion
in nuclear matter. It is found that the pion mass is enhanced by
about 10% in isospin-symmetric matter at nuclear saturation
density, consistent with phenomenology and in-medium chiral
perturbation theory.

Moreover, it has been demonstrated that fluctuations be-
yond mean-field approximation play an extremely important
role in stabilizing the chiral order parameter as a function of
density, in both symmetric nuclear matter and neutron matter.
We find that chiral symmetry remains spontaneously broken
in neutron matter up to at least six times nuclear saturation
density. The resulting EoS in the FRG-ChNM model turns
out to be sufficiently stiff to satisfy the updated constraints
imposed by neutron-star observations.
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[3] J. E. Trümper, Prog. Part. Nucl. Phys. 66, 674 (2011).
[4] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[5] T. Hell and W. Weise, Phys. Rev. C 90, 045801 (2014).
[6] S. Fritsch, N. Kaiser, and W. Weise, Nucl. Phys. A 750, 259

(2005).
[7] S. Fiorilla, N. Kaiser, and W. Weise, Nucl. Phys. A 880, 65

(2012).
[8] J. Holt, N. Kaiser, and W. Weise, Prog. Part. Nucl. Phys. 73, 35

(2013).
[9] J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev. C 87, 014338

(2013).
[10] S. Gandolfi, J. Carlson, S. Reddy, A. W. Steiner, and R. B.

Wiringa, Eur. Phys. J. A 50, 10 (2014).
[11] S. Gandolfi, J. Carlson, and S. Reddy, Phys. Rev. C 85, 032801

(2012).
[12] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A.

Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013).
[13] A. Roggero, A. Mukherjee, and F. Pederiva, Phys. Rev. Lett.

112, 221103 (2014).
[14] G. Wlazlowski, J. W. Holt, S. Moroz, A. Bulgac, and K. J.

Roche, Phys. Rev. Lett. 113, 182503 (2014).
[15] K. Hebeler and A. Schwenk, Phys. Rev. C 82, 014314 (2010).
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