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Light vector meson masses in strange hadronic matter: A QCD sum rule approach
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In the present work, the properties of the light vector mesons (ρ, ω, and φ) in strange hadronic matter are
studied using the QCD sum rule approach. The in-medium masses of the vector mesons are calculated from the
modifications of the light quark condensates and the gluon condensates in the hadronic medium. The light quark
condensates in the hadronic matter are obtained from the values of the nonstrange and strange scalar fields of the
explicit chiral symmetry breaking term in a chiral SU(3) model. The in-medium gluon condensate is calculated
through the medium modification of a scalar dilaton field, which is introduced into the chiral SU(3) model to
simulate the scale symmetry breaking of QCD. The mass of the ω meson is observed to have initially a drop with
increase in density and then a rise due to the scattering with the baryons. The mass of the ρ meson is seen to drop
with density due to decrease of the light quark condensates in the medium. The effects of isospin asymmetry and
strangeness of the medium on the masses of the vector mesons are also studied in the present work. The φ meson
is observed to have marginal drop in its mass in the nuclear medium. However, the strangeness of the medium is
seen to lead to an appreciable increase in its mass arising due to scattering with the hyperons.
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I. INTRODUCTION

The study of the properties of hadrons in hot and dense
matter is an important topic of research in strong interaction
physics. The changes in the hadron properties in the medium
affect the experimental observables from the hot and/or dense
matter produced in the heavy ion collision experiments. The
medium modifications of the properties of the light vector
mesons [1] can affect the low mass dilepton spectra, the
properties of the kaons and antikaons can show in their
production as well as collective flow. The modifications of
the properties of the charm mesons D and D̄ as well as
the charmonium states can modify the yield of the open
charm meson as well as charmonium states in the high energy
nuclear collision experiments. The in-medium properties of
the hadrons have been studied using various methods, namely
the QCD sum rule (QSR) approach, the quark meson coupling
(QMC) model, the effective hadronic models like quantum
hadrodynamics (QHD) model [2] and chiral effective theories,
as well as using the coupled channel approach. The hadron
properties have also been studied in models like the Nambu-
Jona Lasinio model [3–7], which describes the spontaneous
chiral symmetry breaking of QCD leading to the properties of
the pions which emerge as Goldstone modes. The AdS/CFT
correspondence and the conjecture of gravity/gauge duality
[8] in the recent years have provided a powerful method
to study the strongly coupled gauge theories. Holography
relates the quantum field theory (QFT) in d dimensions to
quantum gravity in (d + 1) dimensions, with the gravitational
description becoming classical when the QFT is strongly
coupled. The method has been used extensively to investigate
the hadron physics as well as strongly coupled quark gluon
plasma. Using holography duality, many attempts have been
made to study the hadrons [9].
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In the present work, the medium modification of the masses
of the light vector mesons (ρ, ω, and φ) in the strange
hadronic matter, arising due to their interaction with the light
quark condensates and the gluon condensates, are investigated,
using the QCD sum rule approach [10–20]. The light quark
condensates are calculated from the expectation values of
the nonstrange and strange scalar fields of the explicit chiral
symmetry breaking term in a chiral SU(3) model [21,22]. The
gluon condensate in the hadronic medium is obtained from the
medium modification of a scalar dilaton field introduced within
the chiral SU(3) model through a scale symmetry breaking
term in the Lagrangian density leading to the QCD trace
anomaly. The chiral SU(3) model has been used to describe
the hadronic properties in the vacuum as well as in nuclear
matter [21], finite nuclei [22], and the bulk properties of (proto)
neutron stars [23]. The vector mesons have also been studied
within the model [24], arising due to their interactions with
the nucleons in the medium. Within the chiral SU(3) model,
the effects of the Dirac polarization effects on the in-medium
masses of the vector mesons were found to be appreciable [24],
similar to those observed within the quantum hadrodynamics
(QHD) model [25]. The model has been used to study the
medium modifications of kaons and antikaons in isospin
asymmetric nuclear matter in Ref. [26] and in hyperonic
matter in Ref. [27]. These studies have been done retaining
the leading and next to leading contributions in the chiral
perturbation expansion, with coefficients of the interactions
as compatible with nuclear matter saturation properties as
well as low energy kaon-nucleon scattering data [26,27]. The
chiral effective model has also been generalized to SU(4)
to derive the interactions of the charm mesons with the
light hadrons to study the D mesons in asymmetric nuclear
matter at zero temperature [28] and in the symmetric and
asymmetric nuclear (hyperonic) matter at finite temperatures
in Ref. [29] and Refs. [30,31]. Within the chiral effective
approach, the D and D̄ mesons were observed to have mass
drops of 77 and 27 MeV in symmetric nuclear matter at zero

0556-2813/2015/91(3)/035201(12) 035201-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.91.035201


AMRUTA MISHRA PHYSICAL REVIEW C 91, 035201 (2015)

temperature at the nuclear matter saturation density ρ0 [28].
The mass drop for the D meson in symmetric nuclear matter
at density ρ0 may be compared to the values of 60 MeV in
the quark meson coupling model [32] and 50 MeV in the
QCD sum rule approach [33]. The mass modifications of
the charmonium states have also been calculated within the
chiral effective model using QCD second-order Stark effect
due to the medium modification of the color electric field
squared, which can be expressed in terms of the scalar gluon
condensate. The medium modification of the scalar gluon
condensate is calculated from the modification of the dilaton
field, which mimics the scale symetry breaking of QCD in the
effective chiral model. The mass shifts for the charmonium
states J/ψ , ψ(3686) and ψ(3770) in cold symmetric matter at
the nuclear matter saturation density, were found to be −4.35,
−59, and −78.5 MeV respectively, when the effects of the
finite quark masses in the trace of energy momentum tensor
in QCD are taken into account while evaluating the medium
modification of the gluon condensate from the trace of the
energy momentum tensor. In the limit of massless quarks in
the trace of energy momentum tensor in QCD, these values turn
out to be −9.3, −126.4, and −167.5 MeV. These values of the
mass shifts may be compared with the values of −8, −100,
and −140 MeV respectively, using the QCD second-order
Stark effect in the linear density approximation [34]. In the
linear density approximation, the density dependence of the
quark and gluon condensates are calculated in the dilute gas
approximation of nucleons [1], with additional contributions
from the moments of the parton distribution functions in the
nucleon [10,15,16]. Using the scalar as well as twist 2 gluon
condensates as obtained from the dilaton field calculated in the
chiral effective model [35] used in the present investigation, the
mass shifts in the charmonium shifts have also been studied,
within the framework of the QCD sum rule approach with
operator product expansion up to mass dimension 4. The values
of mass shifts of J/ψ and ηc were evaluated to be −4.48
and −5.21 MeV at the nuclear matter density, in symmetric
nuclear matter at zero temperature [35]. These values may be
compared with the values of −7 and −5 MeV in Ref. [36],
calculated within the QCD sum rule approach, using the
medium modification of the gluon condensate calculated in the
linear density approximation. However, using the QCD sum
rules and operator product expansion up to mass dimension
6 [37], the mass shift for J/ψ is obtained as −4 MeV. From
the medium modified masses of the charmonium states as well
as the D and D̄ mesons calculated within the chiral effective
model, the partial decay widths of the charmonium states to
DD̄ pairs in the isospin asymmetric strange hadronic matter
have been calculated [31] using the 3P0 model [38]. In the
hadronic medium, the masses of the charmonium state and the
D and D̄ mesons can be such that the decay widths, which have
the form of a polynomial multiplied by a Gaussian function,
can vanish at certain densities. Such nodes have also been
discussed in the literature [38]. In the present investigation,
the properties of the light vector mesons are studied, using
QCD sum rule approach, due to their interactions with
the quark and gluon condensates in the isospin asymmetric
strange hadronic medium, calculated in the chiral SU(3)
model.

The outline of the paper is as follows: In Sec. II, the chiral
SU(3) model used to calculate the quark and gluon condensates
in the hadronic medium is briefly discussed. In the present
work, the in-medium condensates as calculated in the chiral
SU(3) model are taken as inputs for studying the in-medium
masses of the light vector mesons using the QCD sum rule
approach. The medium modifications of the quark and gluon
condensates arise from the medium modification of the scalar
fields of the explicit symmetry breaking term and of the scalar
dilaton field introduced in the hadronic model to incorporate
broken scale invariance of QCD. In Sec. III, the results for the
medium modifications of the light vector mesons using a QCD
sum rule approach are presented. In Sec. IV, the findings of the
present investigation are summarized and compared with the
existing results in the literature for the in-medium properties
of the light vector mesons.

II. HADRONIC CHIRAL SU(3) × SU(3) MODEL

In the present investigation, the values of the quark and
gluon condensates in the hadronic medium are calculated
within an effective chiral SU(3) model [22], which is used
to study the in-medium properties of vector mesons. The
model is based on the nonlinear realization of chiral sym-
metry [39–41] and broken scale invariance [21,22,24]. This
model has been used successfully to describe nuclear matter,
finite nuclei, hypernuclei, and neutron stars. The effective
hadronic chiral Lagrangian density contains the following
terms:

L = Lkin +
∑

W=X,Y,V,A,u

LBW + Lvec + L0 + LSB. (1)

In Eq. (1), Lkin is the kinetic energy term, LBW is the
baryon-meson interaction term in which the baryon-spin-0
meson interaction term generates the vacuum baryon masses.
Lvec describes the dynamical mass generation of the vector
mesons via couplings to the scalar mesons and contains
additionally quartic self-interactions of the vector fields. L0

contains the meson-meson interaction terms inducing the
spontaneous breaking of chiral symmetry as well as a scale
invariance breaking logarithmic potential. LSB describes the
explicit chiral symmetry breaking.

To study the in-medium hadron properties using the chiral
SU(3) model, the mean field approximation is used, where
all the meson fields are treated as classical fields. In this
approximation, only the scalar and the vector fields contribute
to the baryon-meson interaction LBW since for all the other
mesons, the expectation values are zero. The baryon-scalar
meson coupling constants are fitted from the vacuum masses
of the baryons. The parameters in the model [22,26] are chosen
so as to decouple the strange vector field φμ ∼ s̄γμs from the
nucleon.

The concept of broken scale invariance leading to the
trace anomaly in QCD, θμ

μ = βQCD

2g
Ga

μνG
μνa , where Ga

μν is
the gluon field strength tensor of QCD, is simulated in the
effective Lagrangian at tree level through the introduction of
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the scale breaking terms [42,43]

Lscale breaking =−1

4
χ4ln

(
χ4

χ4
0

)
+ d

3
χ4ln

((
σ 2ζ

σ 2
0 ζ0

)(
χ

χ0

)3)
.

(2)

The Lagrangian density corresponding to the dilaton field χ
leads to the trace of the energy momentum tensor as [35,44]

θμ
μ = χ

∂L
∂χ

− 4L = −(1 − d)χ4. (3)

The comparison of the trace of the energy momentum tensor
arising from the trace anomaly of QCD with that of the present
chiral model given by Eq. (3) gives the relation of the dilaton
field to the scalar gluon condensate. In the limit of finite quark
masses [45], one has

T μ
μ =

∑
i=u,d,s

miq̄iqi +
〈
βQCD

2g
Ga

μνG
μνa

〉
≡ −(1 − d)χ4, (4)

where the first term of the energy-momentum tensor within
the chiral SU(3) model is the negative of the explicit chiral
symmetry breaking termLSB . In the mean field approximation,
this chiral symmetry breaking term is given as

LSB = Tr

[
diag

(
−1

2
m2

πfπ (σ + δ),−1

2
m2

πfπ (σ − δ),

(√
2m2

kfk − 1√
2
m2

πfπ

)
ζ

)]
. (5)

In the above, the matrix, whose trace gives the Lagrangian
density corresponding to the explicit chiral symmetry breaking
in the chiral SU(3) model, has been explicitly written down.
Comparing the above term with the explicit chiral symmetry
breaking term of the Lagrangian density in QCD given as

LQCD
SB = − Tr[diag

(
muūu,mdd̄d,mss̄s

)
], (6)

one obtains the nonstrange quark condensates (〈ūu〉 and 〈d̄d〉)
and the strange quark condensate (〈s̄s〉) to be related to the
scalar fields, σ , δ, and ζ as

mu〈ūu〉 = 1
2m2

πfπ (σ + δ), (7)

md〈d̄d〉 = 1
2m2

πfπ (σ − δ), (8)

and

ms〈s̄s〉 =
(√

2m2
kfk − 1√

2
m2

πfπ

)
ζ. (9)

The coupled equations of motion for the nonstrange scalar
isoscalar field σ , scalar isovector field δ, the strange scalar
field ζ , and the dilaton field χ , derived from the Lagrangian
density, are solved to obtain the values of these fields in the
strange hadronic medium.

The QCD β function occurring in the right hand side of
Eq. (4), at one loop level, for Nc colors and Nf flavors, is
given as

βQCD (g) = −11Ncg
3

48π2

(
1 − 2Nf

11Nc

)
+ O(g5). (10)

Using the one loop β function given by Eq. (10), for Nc = 3
and Nf = 3, the trace of the energy-momentum tensor in QCD
is obtained as

θμ
μ = −9

8

αs

π
Ga

μνG
μνa

+
(

m2
πfπσ +

(√
2m2

kfk − 1√
2
m2

πfπ

)
ζ

)
, (11)

where αs = g2

4π
. Using Eqs. (4) and (11), one obtains

〈
αs

π
Ga

μνG
aμν

〉

= 8

9

{
(1 − d)χ4 +

[
m2

πfπσ +
(√

2m2
kfk − 1√

2
m2

πfπ

)
ζ

]}
.

(12)

Hence the scalar gluon condensate of QCD (〈Ga
μνG

μνa〉) is
simulated by a scalar dilaton field in the present hadronic
model. For the case of massless quarks, the scalar gluon
condensate is proportional to the fourth power of the dilaton
field, whereas for the case of finite masses of quarks, there are
modifications arising from the scalar fields σ and ζ .

In the present work, the light quark condensates 〈ūu〉, 〈d̄d〉,
and 〈s̄s〉 and the scalar gluon condensate 〈αs

π
Ga

μνG
aμν〉 in

the hadronic medium are calculated, using Eqs. (7)–(9), and
(12) respectively, from the medium modifications of the scalar
fields, σ , δ, ζ , and χ . These values of the quark and gluon
condensates are then taken as inputs for studying the masses
of the light vector mesons (ω, ρ, φ) in the strange hadronic
matter using the QCD sum rule approach. In the next section,
the QCD sum rule approach is described, which is used to
study these in-medium vector meson masses in the isospin
asymmetric strange hadronic medium.

III. QCD SUM RULE APPROACH

In the present section, the properties of the light vector
mesons (ω, ρ, φ) in the nuclear medium are investigated, using
the method of QCD sum rules. The in-medium masses of the
vector mesons are computed from the medium modifications
of the light quark condensates and the scalar gluon condensate
calculated in the chiral effective model as described in the
previous section. The current current correlation function for
the vector meson V (= ω,ρ,φ) is written as

�μν = i

∫
d4xd4y〈0|TjV

μ (x)jV
ν (0)|0〉, (13)
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where T is the time ordered product and JV
μ is the current

for the vector meson, V = ρ,ω,φ, given as jρ
μ = 1

2 (ūγμu −
d̄γμd), jω

μ = 1
6 (ūγμu + d̄γμd), and jφ

μ = − 1
3 (s̄γμs). Current

conservation gives the transverse tensor structure for the
correlation function as

�V
μν(q) =

(
gμν − qμqν

q2

)
�V (q2), (14)

where

�V (q2) = 1
3gμν�V

μν(q). (15)

The correlation function �V (q2) in the large spacelike region
Q2 = −q2 � 1 GeV2 for the light vector mesons (ω, ρ, and
φ) can be written in terms of the operator product expansion
(OPE) as [15,16]

12π2�̃V (q2 = −Q2)

= dV

[
−cV

0 ln

(
Q2

μ2

)
+ cV

1

Q2
+ cV

2

Q4
+ cV

3

Q6
+ · · ·

]
, (16)

where �̃V (q2 = −Q2) = �V (q2=−Q2)
Q2 , dV = 3/2, 1/6, and 1/3

for ρ, ω, and φ mesons respectively, and μ is a scale which
we shall take as 1 GeV in the present investigation. The
first term in the OPE given by Eq. (16) is the leading term
calculated in the perturbative QCD. The subsequent terms in
the OPE are suppressed as powers of 1/Q2. The coefficients
cV
i (i = 1,2,3) of these terms contain the information of the

nonperturbative effects of QCD in terms of the quark and gluon
condensates, as well as of the Wilson coefficients [12,14]. This
form of the OPE has been arrived at by treating the Wilson
coefficients as medium independent, with all the medium
effects incorporated into the quark and gluon condensates
[12,14–17]. In an earlier work [18], accounting for the effect of
temperature for calculating the short distance properties of the
hadronic correlators was observed to lead to erroneous mixture
of the short and long distance dynamics and temperature
dependent Wilson coefficients. In Ref. [12], the QCD sum rule
approach at finite temperatures was reformulated in a consis-
tent manner, which separates the hard dynamics from the soft
dynamics.

For the vector mesons, ρ and ω, containing the u
and d quarks (antiquarks), these coefficients are given as
[15]

c
(ρ,ω)
0 = 1 + αs(Q2)

π
, c

(ρ,ω)
1 = −3

(
m2

u + m2
d

)
, (17)

c
(ρ,ω)
2 = π2

3

〈
αs

π
GμνGμν

〉
+ 4π2〈muūu + mdd̄d〉, (18)

c3
(ρ,ω) = −4π3

[
〈αs(ūγμγ5λ

au ∓ d̄γμγ5λ
ad)2〉 + 2

9

×
〈
αs(ūγμλau + d̄γμλad)

( ∑
q=u,d,s

q̄γ μλaq

)〉]
.

(19)

In the above, αS = 4π/[b ln(Q2/�QCD
2)] is the running

coupling constant, with �QCD = 140 MeV and b = 11 −

(2/3)Nf = 9. In Eq. (19), the “∓” sign in the first term
corresponds to the ρ(ω) meson.

For the φ meson, these coefficients are given as [15,46]

c
φ
0 = 1 + αs(Q2)

π
, c

φ
1 = −6ms

2 (20)

c
φ
2 = π2

3

〈αs

π
GμνGμν

〉
+ 8π2〈mss̄s〉, (21)

c3
φ = −8π3

[
2〈αs(s̄γμγ5λ

as)2〉

+4

9

〈
αs(s̄γμλas)

( ∑
q=u,d,s

q̄γ μλaq

)〉]
. (22)

After Borel transformation, the correlator for the vector meson
given by Eq. (16) can be written as

12π2�̃V (M2) = dV

[
cV

0 M2 + cV
1 + cV

2

M2
+ cV

3

2M4

]
. (23)

On the phenomenological side, the correlator function �̃V (Q2)
can be written as

12π2�̃V
phen(Q2) =

∫ ∞

0
ds

RV
phen(s)

s + Q2
, (24)

where RV
phen(s) is the spectral density proportional to the

imaginary part of the correlator

RV
phen(s) = 12π Im�V

phen(s). (25)

On Borel transformation, Eq. (24) reduces to

12π2�̃V (M2) =
∫ ∞

0
dse−s/M2

RV
phen(s). (26)

Equating the correlation functions from the phenomenological
side given by Eq. (26) to that from the operator product
expansion given by Eq. (23), one obtains

∫ ∞

0
dse−s/M2

RV
phen(s) = dV

[
cV

0 M2 + cV
1 + cV

2

M2
+ cV

3

2M4

]
.

(27)

The finite energy sum rules (FESR) for the vector mesons are
derived from Eq. (27) by assuming that the spectral density
separates to a resonance part RV (res)

phen(s) with s � sV
0 and a

perturbative continuum as

RV
phen(s) = RV (res)

phen(s)θ
(
sV

0 − s
) + dV cV

0 θ
(
s − sV

0

)
. (28)

For M >
√

sV
0 , the exponential function in the integral of

the left hand side of Eq. (27) can be expanded in powers
of s/M2 for s < sV

0 . The left hand side of Eq. (27) is then
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obtained as∫ ∞

0
e−s/M2

RV
phen(s)

=
∫ sV

0

0
dsRV (res)

phen(s) − 1

M2

∫ sV
0

0
dssRV (res)

phen(s)

+ 1

2M4

∫ sV
0

0
dss2RV (res)

phen(s)

+ dV c0M
2

(
1 − sV

0

M2
+

(
sV

0

)2

2M4
+

(
sV

0

)3

6M6
− · · ·

)
. (29)

Equating the powers in 1/M2 in the Borel transformations of
the spectral functions, given by Eqs. (28) and (29), the finite
energy sum rules (FESR) are obtained as∫ sV

0

0
dsRV (res)

phen = dV

(
cV

0 sV
0 + cV

1

)
, (30)

∫ sV
0

0
dssRV (res)

phen = dV

((
sV

0

)2
cV

0

2
− cV

2

)
, (31)

∫ sV
0

0
dss2RV (res)

phen = dV

((
sV

0

)3

3
cV

0 + cV
3

)
, (32)

To evaluate cV
3 for the vector mesons ρ, ω, and φ, given by

Eqs. (19) and (22), the factorization method [47]

〈(q̄iγμγ5λ
aqj )2〉 = −〈(q̄iγμλaqj )2〉 = δij

16
9 κi〈q̄iqi〉2 (33)

is used. In the above, qi = u,d,s for i = 1,2,3 and κi is in-
troduced to parametrize the deviation from exact factorization
(κi = 1). Using Eq. (33), the four quark condensate for the
ω(ρ) meson given by Eq. (19) becomes

c3
(ρ,ω) = −αsπ

3 × 448
81 κq(〈ūu〉2 + 〈d̄d〉2), (34)

where κu 
 κd = κq has been assumed.
For the φ meson, using Eqs. (22) and (33), one obtains the

four quark condensate c3
φ as given by [46]

c3
φ = −8π3 × 224

81 αsκs〈s̄s〉2. (35)

Using a simple ansatz for the spectral function RV
phen(s) as

[15,16]

RV
phen(s) = FV δ

(
s − mV

2
) + dV cV

0 θ
(
s − sV

0

)
, (36)

the finite energy sum rules for vacuum given by Eqs. (30)–(32),
can be written as

FV = dV

(
cV

0 sV
0 + cV

1

)
, (37)

FV m2
V = dV

((
sV

0

)2
cV

0

2
− cV

2

)
, (38)

FV m4
V = dV

((
sV

0

)3

3
cV

0 + cV
3

)
. (39)

Using Eqs. (37) and (38), the values of FV and sV
0 are

determined by assuming the values of cV
0 , with Q2 = s0

(αs(Q2 
 1 GeV2) = 0.5) and cV
1 as calculated in the chiral

SU(3) model. These values are assumed in Eq. (39) to find the

vacuum value of the four quark condensate cV
3 and hence the

value of κi .
At finite densities, there is contribution to the spectral

function for the vector mesons, due to scattering from the
baryons, and Eq. (27) is modified to∫ ∞

0
dse−s/M2

RV
phen(s) + 12π2�V (0)

= dV

[
cV

0 M2 + cV
1 + c∗V

2

M2
+ c∗V

3

2M4

]
, (40)

where, in the nuclear medium, �V (0) = ρB

4MN
for V = ω,ρ

and vanishes for the φ meson [11,15,48,49]. However, in the
presence of hyperons in the hadronic medium, the contribution
due to the scattering of the ω and ρ vector mesons from the
baryons is modified to

�V (0) = 1

4

∑
i

(
gV i

gV N

)2
ρi

Mi

, (41)

where gV i is the coupling strength of the vector meson V
with the ith baryon (i = N,�,�±,0,�−,0); ρi and Mi are the
number density and mass of the ith baryon. For the ω meson,
gωi

gωN
= (1, 2

3 , 2
3 , 1

3 ) for i = N,�,�±,0,�−,0 respectively. For the

ρ meson, the ratio gρi

gρN
= (1,0,2,1) for i = (N,�,�±,0,�−,0).

In the nuclear medium, the contribution for the φ meson due to
scattering from nucleons vanishes, since the φ meson-nucleon
coupling strength is zero. In the strange hadronic matter, the
contribution is, however, nonzero due to the presence of the
hyperons in the medium. For the φ meson, gφi

gφ�
= (1,1,2)

for i = (�,�±,0,�−,0). In Eq. (40), the coefficients cV
0 and

cV
1 , given by Eqs. (17) and (20), are medium independent.

However, the coefficients c∗V
2 and c∗V

3 , given by Eqs. (18),
(19), (21), and (22), are expressed in terms of the in-medium
quark and gluon condensates.

At finite densities, the finite energy sum rules (FESR) for
vacuum given by Eqs. (37)–(39) are modified to

F ∗
V = dV

(
cV

0 s∗V
0 + cV

1

) − 12π2�V (0), (42)

F ∗
V m∗

V
2 = dV

((
s∗V

0

)2
cV

0

2
− c∗V

2

)
, (43)

F ∗
V m∗

V
4 = dV

((
s∗V

0

)3

3
cV

0 + c∗V
3

)
. (44)

These equations are solved to obtain the medium dependent
mass m∗

V , the scale s∗V
0 , and F ∗

V , by using the coefficient κ of
the four quark condensate for the vector mesons, as determined
from the FESRs in vacuum.

IV. RESULTS AND DISCUSSIONS

In this section, the effects of density on the scalar gluon
condensate and the light quark condensates, arising due
to the modifications of the dilaton field χ and the scalar
isoscalar fields σ and ζ calculated in the chiral SU(3) model,
are first investigated. The values of the scalar and dilaton
fields in the isospin asymmetric strange hadronic matter are
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FIG. 1. (Color online) The quark condensates (−mq〈q̄q〉)1/4

(q = u,d) and (−ms〈s̄s〉)1/4, in units of MeV, are plotted as functions
of density for isospin asymmetric hadronic matter (for fs = 0, 0.3
and 0.5) in (b) and (d), and compared with the isospin symmetric
case, shown in (a) and (c).

obtained by solving the coupled equations of these fields in
the mean field approximation. The nonstrange and strange
quark condensates, 〈q̄q〉 (q = u,d) and 〈s̄s〉, as well as the
scalar gluon condensate, 〈αs

π
Ga

μνG
aμν〉, are calculated from

the in-medium values of the fields σ , ζ , and χ , by using
Eqs. (7), (8), (9), and (12), respectively. The values of the
current quark masses are taken as mu = 4 MeV, md = 7 MeV
and ms = 150 MeV in the present investigation. In Fig. 1, the
density dependence of the quantities (−mq〈q̄q〉)1/4 (q = u,d),
(−ms〈s̄s〉)1/4 are shown for given isospin asymmetry and
strangeness of the hadronic medium. For the isospin symmetric
situation (η = 0), the quantity (−mq〈q̄q〉)1/4 is identical for u
and d quarks, for a given value of fs . It is also seen that
the effect from the strangeness fraction is very small. For the
isospin asymmetric situation, the quantities (−mu〈ūu〉)1/4 and
(−md〈d̄d〉)1/4 are no longer identical, and their difference is
due to the nonzero value of the isoscalar scalar field δ, as can
be seen from Eqs. (7) and (8). For the u quark, there is seen to
be smaller drop with density as compared to the d quark due to
the negative value of the isoscalar scalar field δ in the medium.
For the isospin symmetric nuclear matter, the value of the
quantity (−mq〈q̄q〉)1/4 for q = u,d changes from the vacuum
value of 95.8 MeV to 85.7 MeV at the nuclear matter saturation
density. This corresponds to a drop of the quantity (−mq〈q̄q〉)
for q = u,d by about 36% at the nuclear matter saturation
density from its vacuum value. At densities of 3ρ0 and 4ρ0,
this quantity is modified to (74.7 MeV)4 and (72 MeV)4

respectively, which correspond to a drop of about 63% and
69% from its vacuum value. As can be seen from Eqs. (7)
and (8), in the isospin symmetric matter, mu〈ūu〉 = md〈ūu〉.

In addition, if mu = md , one has 〈ūu〉 = 〈d̄d〉 in isospin
symmetric matter. For the case of mu �= md , the vacuum
value of the quantity (−mq〈q̄q〉)1/4 for q = u,d corresponds
to the mass averaged nonstrange quark condensate, 〈ψ̄qψq〉 =
(mu〈ūu〉 + md〈d̄d〉)/m̄q with m̄q = (mu + md )/2. For mu =
4 MeV, md = 7 MeV, and fπ = 93 MeV, as chosen in the
present investigation, the value of 〈ψ̄qψq〉 turns out to be
(−mπ

2fπ
2)/m̄q = (−248 MeV)3. One might note that for the

case of mu = md , 〈ψ̄qψq〉 = 〈ūu〉 = 〈d̄d〉. In Refs. [15,16],
the value of the chiral condensates for the u as well as d quarks
were taken to be (−245 MeV)3. The Nambu-Jona-Lasinio
model [3] describes the feature of the spontaneous chiral
symmetry breaking of QCD leading to nonzero values of
the quark-antiquark condensates. The value of the nonstrange
quark condensate in vacuum in the chiral effective model as
used in the present investigation may be compared with the
values in the Nambu-Jona-Lasinio model of (−248 MeV)3 in
Ref. [3] and (−264 MeV)3 in Ref. [7]. The density dependence
of this light nonstrange quark condensate was studied in the
linear density approximation and the value at ρ0 was observed
to be (−216 MeV)3, assuming the value of the nucleon σ term
as 45 MeV. This may be compared to the value in the present
investigation of (−214 MeV)3. The drop in the nonstrange
quark condensate from its vacuum value was calculated to be
25−50% [45] at the nuclear matter saturation density, taking
the nucleon σ term to be lying within the range 30–60 MeV. In
Ref. [10], the nonstrange light quark condensate was observed
to have a drop of about 20−30% from its vacuum value, at
the normal nuclear matter density. The drop of the nonstrange
condensate in the medium is the dominant contribution to
the modification of the ω and ρ mesons in the medium. The
quantity (−ms〈s̄s〉)1/4 for given isospin symmetric (η = 0)
and isospin asymmetric (with η = 0.5) situations are shown
in subplots (c) and (d) respectively. The vacuum value of
(−ms〈s̄s〉)1/4 is about 258 MeV, which may be compared
with the value of 210 MeV in Ref. [10]. With the current
quark mass of the s quark ms as 150 MeV as chosen in
the present investigation, the vacuum value of the strange
quark condensate turns out to be 〈s̄s〉 = (−309 MeV)3, which
may be compared to the value of (−311 MeV)3 [7] and
(−258 MeV)3 [3] in the Nambu-Jona-Lasinio model. In the
present investigation, for the symmetric nuclear matter, the
quantity (−ms〈s̄s〉)1/4 changes from the vacuum value of
258 MeV to 252, 249.1, and 248.7 MeV at densities of ρ0, 3ρ0,
and 4ρ0 respectively, which correspond to about 9%, 13.1%,
and 13.7% drop in the quantity, 8π2〈mss̄s〉 occurring in c

φ
2 in

the finite energy sum rule for the φ meson given by Eq. (21).
Figure 2 shows the quartic root of the scalar gluon condensate,
〈 αs

π
Ga

μνG
aμν〉1/4, as a function of the baryon density in

units of the nuclear matter saturation density, for isospin
symmetric (η = 0) as well as asymmetric hadronic medium
(with η = 0.5) for typical values of the strangeness fraction.
The value of the scalar gluon condensate 〈αs

π
Ga

μνG
aμν〉 for

isospin symmetric nuclear matter is observed to be modified
from the vacuum value of (373 MeV)4 to (371.3 MeV)4,
(364.2 MeV)4, and (361.9 MeV)4 at densities of ρ0, 3ρ0, and
4ρ0 respectively, which correspond to about 1.8%, 9.1%, and
11.4% drop in the medium from its vacuum value. The vacuum
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FIG. 2. (Color online) The quantity 〈 αs

π
Ga

μνG
aμν〉1/4 in MeV

plotted as a function of the baryon density in units of the nuclear
matter saturation density. This is plotted for isospin asymmetric
hadronic matter (for strangeness fraction, fs = 0, 0.3, 0.5 and
isospin asymmetric parameter, η = 0.5) in (b) and compared with
the symmetric matter (η = 0) in (a).

value of the scalar gluon condensate of (373 MeV)4 may be
compared to the value of (350 MeV)4 [12] and (330 MeV)4

in vacuum [15,19,46,47]. In the linear density approximation
[15], the value of the scalar gluon condensate was observed to
be modified to (324 MeV)4 at ρ0, which is about 7% drop from
its vacuum value. The drop of this quantity was observed to be
similar (about 5% in Ref. [45] and about 8% in Ref. [10]). One
might note here that in the present investigation, the quark and
gluon condensates are calculated for a given baryon density,
strangeness fraction, and isospin asymmetry of the hadronic
medium. These condensates, for isospin symmetric nuclear
matter, in the limit of low densities, reduce to the values
estimated in the linear density approximation. The present
model thus is more general as the condensates are evaluated at
high densities as well, when the linear density approximation
is no longer valid, but the hadrons are still the relevant degrees
of freedom. However, at still higher densities, the model ceases
to be valid when the hadrons no longer exist as the degrees of
freedom, but the system undergoes a transition to quark matter.
In the present work, it is observed that the light nonstrange
quark condensate has a larger drop in the hadronic medium

as compared to the decrease in the strange quark condensate
as well as the scalar gluon condensate in the medium, similar
to that seen in the linear density approximation in Ref. [10].
This is observed as a much smaller drop of the mass of the φ
meson in the medium as compared to the mass shifts of the ω
and ρ mesons. Using the QCD sum rules, the effects of isospin
asymmetry as well as strangeness of the medium on the masses
of the vector mesons, arising from the in-medium quark and
gluon condensates, are investigated in the present work. As has
already been mentioned, using the vacuum values of the vector
meson mass and the quark and gluon condensates, the finite
energy sum rules (FESR) for the vector mesons in vacuum
given by Eqs. (37)–(39) are solved to obtain the values for sV

0 ,
FV , and the coefficient of the four quark condensate κq(s). The
vacuum value of the scale, sV

0 , which separates the resonance
part from the continuum part is obtained as 1.3, 1.27, and
1.6 GeV2 and the value of FV is obtained as 0.242, 0.258, and
0.55 GeV2 for the for ω, ρ, and φ mesons respectively. The
value of the coefficient of the four quark condensate is obtained
as 7.788, 7.236, and −1.21 for the ω, ρ, and φ mesons, which
are then used to obtain the medium dependent mass m∗

V , the
scale s∗V

0 , and F ∗
V for the vector mesons, by solving the FESRs

in the medium given by Eqs. (42)–(44).
In Fig. 3, the density dependence of the mass of the ω meson

is shown for the cases of isospin symmetric (η = 0) as well
as the asymmetric matter for given values of the strangeness
fraction fs . There is seen to be initially a drop in the ω-meson
mass with increase in density. However, as the density is further
increased, the mass of the ω meson is observed to increase with
density. This behavior can be understood from Eqs. (42) and
(43), which yield the expression for the mass squared of the
vector meson as

m∗
V

2 =
(

(s∗V
0 )2cV

0
2 − c∗V

2

)
(
cV

0 s∗V
0 + cV

1

) − 12π2[�V (0)/dV ]
. (45)

The contribution of cV
1 is negligible for the ρ and ω mesons,

due to the small values of the masses of the u and d quarks. At
low densities, the contribution from the scattering of the vector
mesons from baryons, given by the last term in the denominator
of (45), is negligible and the mass drop of the ω meson mainly
arises due to the drop of the light quark condensates in the
medium, given by the second term, c∗V

2 , in the numerator which
comes with a negative sign. As seen in Fig. 2, the modification
of the scalar gluon condensate of the term c∗V

2 is much smaller
than that of the light quark condensate. However, at higher
baryon densities, the last term in the denominator, the so-called
Landau scattering term, becomes important for the ω meson.
This leads to an increase in the mass of the ω vector meson
with density, as can be observed in Fig. 3. The denominator
becomes negative above a certain value of density, when there
does not exist any solution for the mass of the ω meson, since
m∗2

V becomes negative. For the case of nuclear matter, the mass
of the ω meson remains very similar in the isospin symmetric
as well as isospin asymmetric cases. This is because the mod-
ification of the ω meson at low densities is mainly due to the
quark condensates in the combination (muūu + mdd̄d), which
depends only on the value of σ [as seen from equations (7)
and (8)], and, σ is marginally different for the symmetric and
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FIG. 3. (Color online) The mass of ω meson plotted as a function
of the baryon density in units of nuclear saturation density, for the
isospin asymmetric strange hadronic matter (for strangeness fraction,
fs = 0, 0.3, 0.5, and isospin asymmetric parameter, η = 0.5) in (b)
and compared with the symmetric matter (η = 0) shown in (a).

asymmetric cases. At higher densities, the effect of the Landau
scattering term becomes important. However, there is still
observed to be a very small difference between the η = 0 and
η = 0.5 cases of nuclear matter, since the dependence of this
term on the proton and neutron densities is in the form (ρp +
ρn), which is the same for the two cases at a given density.
With the inclusion of hyperons in the medium, the contribution
of the scattering term in the denominator of Eq. (45) becomes
smaller in magnitude due to the smaller values of the baryon-ω
meson coupling strengths for the hyperons as compared to the
nucleons. However, the trend of the initial mass drop followed
by an increase at higher densities is still seen to be the case for
the mass of the ω meson. However, the density above which the
ω mass is observed to increase with density is seen to be higher
for the finite strangeness fraction in the hadronic medium, since
the contribution from the Landau scattering term is smaller for
the case of hyperonic matter as compared to nuclear matter.
For the ρ meson, the contribution from the Landau scattering
term remains small as compared to the contribution from the
light quark condensate in the medium, due to the factor (1/dV )
in this term, which makes the contribution of the Landau scat-
tering term to be nine times smaller than that of the ω meson, as
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FIG. 4. (Color online) The mass of ρ meson plotted as a function
of the baryon density in units of nuclear saturation density, for the
isospin asymmetric strange hadronic matter (for strangeness fraction,
fs = 0, 0.3, 0.5, and isospin asymmetric parameter, η = 0.5) in (b)
and compared with the symmetric matter (η = 0) shown in (a).

(1/dρ)/(1/dω) = 9. This is observed as a monotonic decrease
of the mass of the ρ meson with density in Fig. 4. The value of
the in-medium ρ mass at the nuclear matter saturation density
of 622 MeV may be compared with the value of 670 MeV
obtained using QCD sum rule approach [16] with the linear
density approximation for the quark and gluon condensates. At
the nuclear matter saturation density, the drop in the ρ meson
mass of about 19% drop from its vacuum value of 770 MeV, as
calculated in the present investigation, may be compared with
a drop of about 18% using QCD sum rule approach using the
linear density approximation in Ref. [10], assuming the value
of the nucleon σ term as 45 MeV. The uncertainty in the value
of the nucleon σ term, however, could give an error of about
30% in the mass shift of the ρ meson [10]. A similar drop of the
ω meson mass as the ρ meson was also calculated as arising
from the drop in the nonstrange light quark condensate in the
medium [10]. In an improved QCD sum rule calculation [13],
the in-medium ρ meson mass was studied, by accounting for
the interaction of the ρ meson with the pions, with the pions as
modified due to �-hole polarization in the medium. This was
observed to give smaller values for the ρ meson mass in the nu-
clear medium, with a value of about 530 MeV at nuclear matter
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FIG. 5. (Color online) The mass of φ meson plotted as a function
of the baryon density in units of nuclear saturation density, for the
isospin asymmetric strange hadronic matter (for strangeness fraction,
fs = 0, 0.3, 0.5, and isospin asymmetric parameter, η = 0.5) in
subplot (b) and compared with the symmetric matter (η = 0) shown
in (a).

saturation density. In the present investigation, the effects of
the strangeness fraction as well as isospin asymmetry of the
medium are seen to be small on the ρ meson mass. In Fig. 5, the
mass of φ meson is plotted as a function of the baryon density in
units of nuclear matter saturation density for isospin symmetric
and asymmetric cases for typical values of the strangeness
fraction. Due to the larger value of the strange quark mass as
compared to the u(d) quark masses, the contribution from c

φ
1

is no longer negligible as was the case for the ω(ρ) meson.
The dominant contribution to the mass modification of the
φ meson is from the in-medium modification of the strange
quark condensate of the coefficient c

φ
2 in the nuclear medium.

This is because the φ meson has no contribution from the
scattering term in nuclear matter, since the nucleon-φ meson
coupling is zero. The strange quark condensate as well as the
scalar gluon condensate have very small effects from isospin
asymmetry, leading to the modifications of the φ meson mass
to be very similar in the isospin symmetric and asymmetric
nuclear matter. The values of the φ meson mass in isospin
symmetric (asymmetric) nuclear matter at densities of ρ0

and 4ρ0 are about 1001.5 (1001.8) and 999 (998.4) MeV

respectively, which correspond to about 1.8% and 2% of mass
shifts from the vacuum value, at these densities. For the φ
meson, a drop of about 1.5−3% was predicted at density ρ0 in
Ref. [10], however, with uncertainty of about 30% arising due
to the uncertainty in the value of the strangeness fraction of the
nucleon. For nonzero fs , due to the hyperons in the medium,
there are contributions from the Landau scattering term, which
leads to an increase in the mass of the φ meson at higher values
of the densities. For nuclear matter, the mass of the φ meson
does not have a contribution from the scattering term and
since the in-medium modifications of both the strange quark
condensate as well as the scalar gluon condensate are small
and occur with opposite signs in the coefficient c∗φ

2 , the mass
of φ meson is observed to have negligible change with density,
the value being modified from the vacuum value of 1020 MeV
to about 998 MeV (999 MeV) at densities of 3ρ0 (4ρ0). For
the case of isospin symmetric hyperonic matter, there is seen
to be an increase in the mass of the φ meson at low densities,
due to scattering from the �− and �0, whose number densities
are equal for this η = 0 case. The �+, �−, and �0 (with
equal number densities) start appearing at around 3ρ0, when
the number densities of the �− and �0 show a downward trend
with density. It is the overall contributions from the hyperons
to the scattering term which leads to the observed increase in
the mass of the φ meson in the strange hadronic medium with
fs = 0.3 and 0.5, shown in Fig. 5. For the isospin asymmetric
hyperonic matter, there is contribution from the �+ and �0

for η = 0.5 situation (but not from �0,− and �−), which is
seen as a smaller increase of the φ mass at high densities as
compared to the isospin symmetric hyperonic matter.

The density dependence of the scale s∗V
0 , which separates

the resonance part from the perturbative continuum, is shown
in Fig. 6 for the ω, ρ, and φ vector mesons. For isospin
symmetric nuclear matter, for the ω meson, the vacuum value
of 1.3 GeV2 is modified to about 1.086 GeV2 and 1.375 GeV2

at densities of ρ0 and 2ρ0 respectively. The dependence of
s∗V

0 on density as an initial drop followed by an increase is
similar to that of the density dependence of the mass of the ω
meson. This can be understood in the following way. From the
medium dependent FESRs, we obtain the expression for the
scale s∗V

0 as

s∗V
0 = m∗

V
2
(

1 + 2

m∗
V

4cV
0

× {
cV

1 m∗
V

2 + c∗V
2 − [12π2�(0)/dV ]

})1/2

. (46)

The value of the second term, within the square root, is found
to be small compared to 1. At higher densities, the second
term still remains small compared to 1, due to the canceling
effect of the contributions from the quark condensate and the
Landau scattering term. This is seen as the density dependence
of s∗ω

0 to have first a drop and then an increase with density
as found for the mass of the ω meson. The dependence of
the scale s∗V

0 for the ρ meson is observed to be a monotonic
drop with increase in density, due to the negligible contribution
from the Landau damping term compared to the contribution
from the light quark condensate. In the case of φ meson, the
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FIG. 6. (Color online) The density dependence of s∗V
0 for the

vector mesons (ω, ρ, and φ) in the strange hadronic matter is shown for
the isospin symmetric (η = 0) and isospin asymmetric (with η = 0.5)
cases for values of fs = 0, 0.3, and 0.5.

effect of the scattering term is zero for the nuclear matter case,
when s∗φ

0 is observed to have a small drop due to the marginal
drop of the strange condensate and the gluon condensate in
the medium. For the hyperonic matter, there is observed to
be an increase in s∗φ

0 due to the scattering from the hyperons,
which is observed to be larger for the isospin symmetric case
as compared to the isospin asymmetric situation. In Fig. 7,
the value of F ∗

V is plotted as a function of density. From the
first finite energy sum rule given by Eq. (42), due to the small
masses of the u and d quarks, the term cV

1 is negligible for
the ω and ρ mesons. At low densities, the value of F ∗

V turns
out to be proportional to s∗V

0 , since the contribution from the
Landau scattering term is small. At higher densities, there is
contribution from the Landau scattering term, which modifies
the behavior of F ∗

V to a slower change with density for the ω
meson. For the ρ meson, this is approximately proportional to
s∗ρ

0 as the Landau term has negligible contribution. For the φ
meson, the scattering from the hyperons leads to an increase of
F ∗

φ at higher densities. In Fig. 8, the quartic quark condensates,
cV

3 for the ω, ρ, and φ mesons, given by Eqs. (34) and (35)
are plotted as functions of density, for the isospin symmetric
and asymmetric nuclear (hyperonic) matter. For the ρ and ω
mesons, the values of κ calculated from the vacuum FESRs
are found to be 7.236 and 7.788, which yield very similar
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FIG. 7. (Color online) The density dependence of F ∗
V for the

vector mesons (ω, ρ, and φ) in the strange hadronic matter is shown for
the isospin symmetric (η = 0) and isospin asymmetric (with η = 0.5)
cases for values of fs = 0, 0.3, and 0.5.

values for the four quark condensate for the ω and ρ mesons,
shown in Fig. 8. The vacuum FESRs for the φ meson yield the
four quark condensate to be negative, with the value of κ as
−1.21. There is seen to be a large effect from the strangeness
fraction of the medium on c

φ
3 , since the strange condensate has

appreciable effect from fs , as can be seen from Fig. 1.

V. SUMMARY

In the present investigation, using the QCD sum rules, the
effect of density on the masses of the light vector mesons
(ω, ρ, and φ) is studied from the light quark condensates and
gluon condensates in the medium calculated within a chiral
SU(3) model. The effects of the isospin asymmetry as well
as the strangeness of the medium on the modifications of
these masses have also been investigated. The light quark
condensates (〈ūu〉, 〈d̄d〉, 〈s̄s〉) in the isospin asymmetric
strange hadronic medium are calculated from the values of
the nonstrange and strange scalar mesons σ and ζ and the
isoscalar scalar meson δ of the explicit symmetry breaking
term of the chiral SU(3) model. The scalar gluon condensate
is calculated from a scalar dilaton field, which is introduced in
the chiral SU(3) model to mimic the scale symmetry breaking
of QCD. For low densities (ρB � ρ0), the drop in the light
quark condensates (nonstrange as well as strange) and the
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FIG. 8. (Color online) The density dependence of the four quark
condensate for the cases of the ω, ρ, and φ mesons is shown for the
isospin symmetric (η = 0) and asymmetric (with η = 0.5) hadronic
matter for the values of the strangeness fraction, fs = 0, 0.3, and 0.5.

scalar gluon condensate in the hadronic medium, as calculated
within the chiral SU(3) model, turn out to be similar to the
values estimated in the linear density approximation. Within
the chiral SU(3) model, one obtains the medium modification
of the quark and gluon condensates at higher densities as well.
However, the applicability of the model ceases to be valid
at still higher densities (ρB � 3−4ρ0), when the hadrons no
longer exist as the degrees of freedom and quarks become
the relevant degrees of freedom. The fact that the in-medium
modifications of the quark and gluon condensates calculated
within the chiral SU(3) model, in the limiting case of low
densities, are similar to those obtained in the linear density
approximation, the mass shifts of the vector mesons (ρ, ω, and
φ mesons) in the hadronic medium at low densities evaluated
in the present investigation also turn out to be similar to the
values calculated using QCD sum rules in the linear density
approximation. One might note here that using the in-medium
modifications of the gluon condensates obtained within the
chiral SU(3) model, the masses of the charmonium states J/ψ

and ηc have been calculated earlier using the QCD sum rule
approach [35], which, at low densities, are observed to be
similar to those evaluated in the linear density approximation
[36]. Also, within the model, the masses of the charmonium
states have been studied using the QCD Stark effect, from the
medium modification of the square of the color electric field,
which are related to the scalar gluon condensate [31] and the
results, at low densities, are observed to be similar to those
obtained in the linear density approximation [34].

The mass of the ω meson in the present investigation
is observed initially to drop with increase in density in the
hadronic matter. This is because the magnitudes of the light
nonstrange quark condensates become smaller in the hadronic
medium as compared to the values in vacuum. However, as the
density is further increased, there is seen to be a rise in its mass,
when the effect from the Landau term due to the scattering
of the ω meson from the baryons becomes important. In the
presence of hyperons, the increase in the mass of the ω meson
occurs at a higher value of the density compared to the case
of nuclear matter. This is because the contribution from the
Landau term becomes less with inclusion of hyperons due to
smaller values of the coupling strengths of the ω meson with
hyperons as compared to coupling strengths with the nucleons.
The ρ meson mass is observed to drop monotonically with
density dominantly from the drop in the light quark condensate
in the medium, with negligible contribution from the Landau
scattering term. The effect of isospin asymmetry is observed
to be small on the masses of the ω and ρ mesons, as the
dependence on the light quark condensates is through the
combination (muūu + mdd̄d), which has marginal effect from
the isospin asymmetry. For the φ meson, there is observed to
be a drop in the mass in nuclear matter due to the modification
of the strange quark condensate and scalar gluon condensate,
because the contribution from the Landau term for the φ meson
vanishes in the nuclear matter. The mass shift of the φ meson in
the nuclear medium is seen to be small, of the order of 20 MeV
at densities of 3−4ρ0. This is because the strange condensate
as well as gluon condensate have very small modifications in
the medium and occur with opposite signs in the coefficient
c∗φ

2 . In the presence of hyperons, however, there is seen to be
an increase in the mass of the φ meson with density due to the
contribution from the Landau term arising from the scattering
of the φ meson with the hyperons. The mass of the φ meson
is observed to have a larger effect from the Landau scattering
term for the isospin symmetric case as compared to the isospin
asymmetric hyperonic matter.
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