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Effects of viscosity on the mapping of initial to final state in heavy ion collisions
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We investigate the correlation between various aspects of the initial geometry of heavy ion collisions at
the BNL Relativistic Heavy Ion Collider energies and the final anisotropic flow, using v-USPhydro, a 2 + 1
event-by-event viscous relativistic hydrodynamical model. We test the extent of which shear and bulk viscosity
affect the prediction of the final flow harmonics, vn, from the initial eccentricities, εn. We investigate in detail the
flow harmonics v1 through v5 where we find that v1, v4, and v5 are dependent on more complicated aspects of the
initial geometry that are especially important for the description of peripheral collisions, including a nonlinear
dependence on eccentricities as well as a dependence on shorter-scale features of the initial density. Furthermore,
we compare our results to previous results from NeXSPheRIO, a 3 + 1 relativistic ideal hydrodynamical model
that has a nonzero initial flow contribution, and find that the combined contribution from 3 + 1 dynamics and
nonzero, fluctuating initial flow decreases the predictive ability of the initial eccentricities, in particular for very
peripheral collisions, but also disproportionately in central collisions.
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I. INTRODUCTION

Ultrarelativistic heavy ion collisions are essential in probing
strongly interacting matter at high-energy regimes. Relativistic
hydrodynamics has been able to accurately describe a large
amount of experimental data from these collisions [1]. Pre-
dictions from ideal hydrodynamics describe quite well some
observables, such as elliptic flow, higher flow harmonics [2–6],
and dihadron correlations [7], which suggest that the quark
gluon plasma is a nearly perfect fluid. However, shear viscosity
can improve the fit to the pT dependence of the flow harmonics
and higher-order flow harmonics [8,9]. Furthermore, it has
been recently shown that [10,11] bulk viscosity can compen-
sate the effect of shear viscosity and can further improve the
fit to experimental data in most central collisions [12], so it is
important to include both viscous effects. Thus, to improve
the predictions and take into account dissipative effects,
which are more important in smaller systems [13], viscous
hydrodynamics is used in this paper within the event-by-event
code, v-USPhydro [10,11]. However, only small shear and
bulk viscosities are considered due to the previous success of
ideal hydrodynamics.

The study of strongly coupled matter with hydrodynamics
requires that one supply a set of initial conditions, then
evolve them through ideal [14–18] or viscous [6,9–11,19,20]
hydrodynamics and, at the end, compute the particle emission.
The particle distribution of each individual event reflects
characteristics of the initial conditions, such as the energy
density profile and the initial flow. In a noncentral collision
the averaged initial density profile presents an almond shape,
which is commonly characterized by an elliptic eccentricity ε2.
Hydrodynamic evolution then converts this spatial asymmetry
into an asymmetry in the final particle distribution, given by the

elliptic flow v2. Dihadron azimuthal correlations data cannot
be theoretically understood as coming from smooth density
profiles, but rather in event-by-event hydrodynamics with
fluctuations in the initial conditions [14]. These fluctuations
generate nonzero odd Fourier harmonics at midrapidity;
for example, a triangular anisotropy v3 in the azimuthal
particle distribution, as a consequence of an average triangular
anisotropy in the initial density condition [21].

To construct more realistic models for early-time colli-
sion dynamics and to provide a more direct link between
experimental data and the properties of initial conditions,
it is necessary to understand the anisotropic flow response
to the initial state properties. Much effort has been made
in that direction [5,6,18,20–25], demonstrating that elliptic
flow comes mainly from the elliptic shape and triangular flow
comes from the initial triangularity ε3, but quadrangular and
pentagonal flow do not come only from quadrangularity and
pentagonality [24,26], but also from combinations of ε2 and
ε3, given by the cumulant expansion of the initial density
profile [26]. Directed flow v1 seems to come from dipole
asymmetry ε1 [27], but it has not been well studied.

The goal of this work is to improve our understanding of
the detailed relationship between the initial conditions and
the final measured observables. We do this by solving event-
by-event ideal and viscous hydrodynamics with v-USPhydro
for Monte Carlo Glauber initial conditions, using both shear
and bulk viscosity, as well as by comparing to previously
published results using more realistic initial conditions (which
include nonzero initial flow and longitudinal fluctuations),
NeXus, within the context of the 3 + 1 ideal hydrodynamical
code SPheRIO. Using this information, we quantitatively
investigate the role of shear and bulk viscosity in the mapping
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of the initial state to the final state, as well as various improved
estimators of anisotropic flow vn for n = 1 to 5.

II. MAPPING THE HYDRODYNAMIC RESPONSE

In a purely hydrodynamic calculation of a relativistic
heavy ion collision, particles are emitted independently from
a fluid element, and all information is thus contained in
the single-particle momentum distribution dN/d3p of each
particle species in each event. In principle, correlations are
present, but often they are negligible, and it has been shown that
a purely hydrodynamic description can successfully describe
a large range of experimental measurements.

The azimuthal dependence of the particle distribution is of
particular interest and can be usefully organized as a set of
Fourier coefficients in the azimuthal angle φp of the outgoing
particle momentum. Here it will be convenient to write it as a
complex Fourier series

dN

dyd2pT

= 1

2π

dN

dypT dpT

∞∑
n=−∞

e−inφpVn(pT ,y), (1)

where y is the particle rapidity and pT is the transverse
momentum. Note that, when written in this form, V0 = 1 and
V−n = V ∗

n . Thus, all information about a single collision event
is contained in a set of complex functions Vn(pT ,y) with n > 0
and the yield dN/dydpT (pT ,y) of each particle species. Due
to initial-state fluctuations, each event has a different particle
distribution, and measured observables can be calculated as
particular event-averaged functions of this distribution [23].

In this work we focus on momentum-integrated observ-
ables. Integrating over pT and y, Eq. (1) becomes

dN

dφp

= N

2π

∞∑
n=−∞

e−inφpVn, (2)

with complex coefficients Vn related to the common notation
for the flow coefficients vn and event planes �n as the
magnitude and phase, respectively,

Vn = vne
in�n ≡

∫
d3p dN

d3p
einφp

∫
d3p dN

d3p

. (3)

In such a hydrodynamic calculation, the particle distribution
is determined by the energy and momentum distribution
T μν(�x) of the system at some initial time τ0, which is evolved
forward in time and converted to a distribution of particles. In
principle, one can then further evolve the particle distribution
function f (�x, �p) with the Boltzmann equation. Ultimately,
each of these steps is completely deterministic, and so the
above flow coefficients are a deterministic functional of this
initial condition:

Vn = F[T μν(�x)]. (4)

Relativistic viscous hydrodynamics is a complicated set of
nonlinear partial differential equations, and the distribution of
particles emitted from a fluid element is also a complicated
nonlinear function of the fluid properties. Thus, it is not
possible to write a simple, exact, analytic expression for this
dependence on the initial condition. However, it has been

shown that, by using intuition and general arguments, one
can find simple relations that give a very good approximation
to these functionals [24]. With this information, we can in
principle understand in detail what properties of the medium
and initial condition are probed.

The resulting simple relations are then powerful tools
that can be used to gain much information without resorting
to extensive and costly hydrodynamic calculations of large
numbers of collision events. For example, by running only
enough hydrodynamic simulations to obtain a handful of
scaling coefficients, it has been shown that one can make
a good prediction for the results of a large number of
observables [28–31]. In fact, such relations can be useful
even in the absence of any information from hydrodynamic
simulations. For example, one can construct combined ob-
servables that are approximately independent of medium
properties and therefore directly access properties of the initial
state [32–34] or isolate medium properties [35]. Even when the
relation contains nonlinear contributions, it can still be used
to extract information directly from experimental data without
hydrodynamic calculations [36].

The logic of finding the relevant initial-state quantities is
as follows: We must find quantities derived from the initial
condition that have the same general properties as the desired
momentum-space observable and can therefore serve as an
estimator of the final value after hydrodynamic evolution and
freeze-out. For example, Vn is a dimensionless quantity that
behaves under azimuthal rotation of angle δ as

Vn → Vne
inδ. (5)

In addition, it should not depend on where one places the
origin of the coordinate system �x—that is, a spatial translation
of the initial energy distribution does not affect the momentum
distribution of outgoing particles.

Any such “estimator” for Vn is necessarily an approxima-
tion. Thus, once a potential estimator Vest,n is established, it
is judged by how accurately it can predict Vn on an event-by-
event basis. A given estimator may be an accurate estimation
in a particular specially chosen event, but a poor estimation in
other events. It is therefore useful to define a measure of the
quality of a proposed estimator that is preferably tested over a
large and diverse set of realistic collision events. The natural
choice is the linear correlation coefficient between the flow
vector Vn and the estimator Vest,n [24]:

Qn = Re〈VnV
∗

est,n〉√〈|Vn|2〉〈|Vest,n|2〉
, (6)

with angular brackets defined throughout this work as

〈· · · 〉 = 1

Nevents

∑
events

· · · . (7)

Note that the numerator is an average of the scalar product
of the two vectors, and Qn therefore represents the vector
analog of the Pearson correlation coefficient r between the
vectors. (We choose the notation Qn to avoid confusion with
the quantity rn introduced in Ref. [37].) It is bounded by ±1,
with a value of 1 obtained if and only if the estimator gives a
perfect prediction of Vn in every event. In general, larger values
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(i.e., values closer to 1) indicate a better linear correlation and
therefore a better estimator.

One can also understand Qn in a different way. In each
event, one can define a two-dimensional (2D) error vector En,
defined by the difference between Vn and the estimator Vest,n:

En ≡ Vn − Vest,n. (8)

We can define the best estimator out of a set of candidates as
the one that minimizes the average length of the error vector
over a large set of events 〈|En|2〉.

Most often, a proposed estimator is defined only up to an
unknown overall (real) scaling coefficient k,

Vest,n = k Vest,n, (9)

where Vest,n is an unscaled estimator. (As an explicit example,
the most familiar relation is Vest,n = εne

in	n , with k = vn/εn

the hydrodynamic response coefficient, to be discussed below.)
In this case, the choice that minimizes 〈|En|2〉 and gives the

“best estimator” is [24]

k = Re〈VnV∗
est,n〉

〈|Vest,n|2〉 , (10)

and the following relation holds:

〈|En|2〉 = 〈|Vn|2〉 − 〈|Vest,n|2〉. (11)

The quality Qn of the best estimator as defined in Eq. (6) can
then also be written in terms of the error 〈|En|2〉 as

Q2
n ≡ 1 − 〈|En|2〉

〈|Vn|2〉 = 〈|Vest,n|2〉
〈|Vn|2〉 . (12)

If a proposed estimator has multiple free parameters, one
should choose their values to maximize Qn. For example, if
we consider a linear sum of terms with coefficients ki ,

Vest,n =
N∑

i=1

kiVn,i , (13)

the best estimator is given by choosing coefficients ki to satisfy
the set of linear equations

N∑
j=1

kj Re〈Vn,iV∗
n,j 〉 = Re〈VnV∗

n,i〉. (14)

Characterizing the initial state

The next step is to develop a system for choosing estimators
and finding systematic improvements.

In hydrodynamics, rather than the components of the
energy-momentum tensor T μν in a fixed frame, one typically
describes the same information in terms of a fluid velocity uμ,
the energy density in the fluid rest frame ε, and the viscous
tensor �μν , which is a small correction for a system in a fluid
regime.

If the system has an approximate boost invariance near
midrapidity, and if the initial transverse flow and initial
viscous tensor are negligible, the final momentum distribution
depends only on the spatial distribution of energy density in
the transverse plane ε(x,y). It has been demonstrated that
this is a good approximation [24] and is therefore a good

starting point from which corrections can be added. Instead of
energy density, one can equivalently consider entropy or
enthalpy density. In the following, we use the notation ρ(x)
for a generic density in the transverse plane, x = (x,y).

Generically, hydrodynamics can be thought of as a de-
scription of long-wavelength modes. Therefore, a reasonable
starting point is to characterize the initial density as a set
of modes that are ordered from large-scale to small-scale
structure. We do this by taking the (2D) Fourier transform

ρ(k) =
∫

d2xρ(x)eik·x (15)

and writing its logarithm as a Fourier series in azimuthal
angle φk and a power series in the magnitude k of the Fourier
transform momentum [26]:

W (k) ≡ ln ρ(k) =
∞∑

n=−∞

∑
m�|n|

Wn,mkme−inφk , (16)

noting that nonzero terms only exist with m � |n| and (m −
n) ∈ 2Z, and that W−n,m ∝ W ∗

n,m so that only values for n � 0
contain independent information.

If the function ρ(x) is sufficiently well behaved, the discrete
set of cumulants Wn,m encode all of the information in the
initial density, and any observable can be written as a function
of this (infinite) set of arguments,

Vn = f (Wn,m). (17)

The label n in the cumulant Wn,m specifies its rotational
symmetry, which makes it simple to determine what com-
binations have the same rotational symmetry as Vn. The label
m orders the modes in terms of the magnitude of k as a
Taylor series around k = 0. Modes with small m represent
small k and encode large-scale structure. Modes with large
m represent large k and encode small-scale structure. A
reasonable hypothesis is that hydrodynamics is insensitive to
very-small-scale structure in the initial conditions (especially
when damped by viscous effects), and the series can be
truncated at some finite mmax. That is, higher cumulants
are not necessarily small, but the hydrodynamic response
should nevertheless be insensitive to them. It is only after
this truncation that this cumulant expansion becomes useful,
rendering Eq. (17) a function of a finite set of variables.

For reference, we list the first few cumulants, neglecting
overall normalization:

W1,1 ∝ {reiφ},
W0,2 ∝ {r2} − {reiφ}{re−iφ},
W2,2 ∝ {r2ei2φ} − {reiφ}2,

W1,3 ∝ {r3eiφ} − 2{re−iφ}({r2ei2φ} − {reiφ}2)

−{reiφ}({r2} − {reiφ}{re−iφ}) − {reiφ}2{re−iφ},
W3,3 ∝ {r3ei3φ} + 3

2 {reiφ}({r2ei2φ} − {reiφ}2),

W4,4 ∝ {r4ei4φ} − 2{r3ei3φ}{reiφ} − 3{r2ei2φ}2

− 9{r2ei2φ}{reiφ}2 + 11{reiφ}4,
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where the curly brackets represent a spatial average weighted
by the density ρ:

{· · · } ≡
∫

d2xρ(x) · · ·∫
d2xρ(x)

. (18)

One should note that taking the logarithm in the definition
of cumulants was a key step. As a result, all cumulants
except W1,1 are translationally invariant, making them suitable
for predicting the final (translationally invariant) momentum
spectrum of particles. It is for this same reason we can say
that the index m generally designates large- and small-scale
structures in the initial density, rather than the structure at large
and small radius with respect to some origin of coordinates.

Note also that the expressions simplify enormously if
one shifts to a coordinate system such that W1,1 = 0, or
equivalently {x} = {y} = 0. Such a centering shift is often
done to simplify calculations and will be used in the following.
However, it should be understood that these still represent
translation-invariant quantities.

The next step is to notice that the azimuthally asymmetric
cumulants, Wn,m with n �= 0, are typically small compared to
the relevant scales in the problem in realistic events, such as the
system size. Therefore, we can write an estimator for Eq. (17)
as a perturbative series in powers of azimuthally asymmetric
cumulants. Explicitly, all possible terms to second order can
be written as

Vest,n =
mmax∑
m=n

kn,mWn,m

+
mmax∑
l=1

mmax∑
m=l

mmax∑
m′=|n−l|

Kl,m,m′Wl,mWn−l,m′

+O(W 3). (19)

It should be understood that only independent terms are kept—
e.g., terms in the second sum with n = l only have a linear
dependence on anisotropic cumulants and should be combined
with the relevant linear term.

Note that the validity of this expansion does not necessarily
imply that the system evolution is well described by linearized
hydrodynamics [even if a single linear term in Eq. (19) is
sufficient to describe a particular flow harmonic Vn], nor
that the initial conditions can be well described as a small
perturbation around a smooth and symmetric average.

Since Vn is dimensionless, each of these terms should also
be dimensionless; the (real) coefficients k and K must depend
on the relevant scales of the system in order to render each
term dimensionless.

If this systematic expansion is valid, a low-order truncation
should give a good description of a full hydrodynamic
simulation, and such an estimator can be further improved by
increasing mmax and/or by adding higher terms in the power
expansion, as well as by adding terms that represent aspects
that are missing in this treatment—initial transverse flow and
initial shear and bulk stress, as well as deviations from boost
invariance. We investigate which of these corrections is most
important.

Note that, since the quality Qn is a statistical measure over
a set of events, its exact value for a given estimator Vest,n

can depend on the set of events over which it is calculated.
In particular, different models for the initial conditions can
have different statistical properties. For example, a truncated
expansion in m could be a better approximation when the initial
conditions are very smooth and higher cumulants are small,
but less good for “spiky” models where higher cumulants tend
to be large. More significantly, we will see that a model like
NeXus with initial flow and longitudinal dynamics results in
a poorer-quality Qn compared with a simpler Glauber model
since our proposed estimator neglects these effects. However,
even in that case, Qn is close to 1, and the proposed expansion
appears to be valid.

III. HYDRODYNAMIC CALCULATION

We calculate the flow harmonics Eq. (3) over the range of
transverse momentum 0 � pT � 5 GeV by using the boost-
invariant Lagrangian viscous relativistic hydrodynamical code
v-USPhydro [10,11] with vanishing baryon chemical potential.
v-USPhydro uses the simplest (Israel–Stewart) equations for
the bulk scalar and the shear stress tensor in order to minimize
the effect of the uncertainly regarding the unknown transport
coefficients. Here we can run ideal, shear, bulk, and shear +
bulk separately in order to test each individual hydrodynamical
expansion’s affect on the prediction of the flow harmonics
from the eccentricities and to complement previous results
using ideal hydrodynamics [24] and the inclusion of shear
viscosity [25].

As in Ref. [11], we consider a temperature-dependent shear
viscosity η/s from the extended mass spectrum in the hadron-
gas phase [38,39] and from lattice calculations in the high-
temperature region [40], which was parametrized in Ref. [19].
The ζ/s is inspired from the Buchel formula [41] and is the
same as shown in Refs. [10,11]. The shear relaxation time is
taken from Refs. [42,43] and the bulk relaxation time is from
Ref. [44].

The initial conditions are calculated within a Monte Carlo
Glauber model [45] at BNL Relativistic Heavy Ion Collider
(RHIC) Au + Au

√
sNN . The centrality-class binning is the

same as discussed in Ref. [11] and for each centrality class we
consider 150 events. In previous work [24], calculations were
made with realistic fluctuating initial conditions—specifically
involving nontrivial, fluctuating dependence on rapidity and
nonzero fluctuating initial transverse flow. Here, we simplify
by assuming that there is no initial transverse flow velocity
ux = uy = 0 and that there are no fluctuations in the rapidity
(exact boost invariance in each event). Additionally, when
viscous corrections are considered we assume that both the
bulk pressure � and the shear stress tensor πμν vanish at τ0.
Besides simplifying the calculations and allowing for a cleaner
study of the effect of, e.g., bulk viscosity, this also allows us
to study the effect of these commonly used approximations by
comparing with previous results.

Full viscous corrections are considered within the Cooper–
Frye freeze-out (here we take TFO = 150 MeV) as detailed
in Ref. [10,11] for the δf of shear and bulk viscosity. In this
paper we consider only the moments method for the bulk
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viscous corrections; however, as was shown in Ref. [11], there
is almost no difference between the final flow harmonics for
the integrated vn regardless of our choice in δf for small ζ/s.
Additionally, unlike in Eqs. (C2) and (C3) in Ref. [10], we do
not use a pT weight to calculate the event-plane vectors bur
rather do so according to the definition (3).

In this paper, v-USPhydro is not coupled to a hadronic
afterburner; rather, we fix the total number of π+ to 123,
which is further explained in Ref. [10]. We would not expect
that the hadronic decays would play a large role here but we
leave this to be tested in a future work.

Furthermore, we compare our results with our previous
NeXSPheRIO results from Ref. [24]. NeXSPheRIO provides
a good description of rapidity and transverse momentum
spectra [46], elliptic flow [4,47], rapidity-even directed flow at
midrapidity [27], and triangular and quadrangular flow [4]. In
addition, it reproduces the long-range structures observed in
two-particle correlations [14] and the breaking of factorization
seen in two-particle correlations [37].

NeXSPHeRIO is a 3 + 1 relativistic hydrodynamical code
which solves the equations of ideal relativistic hydrodynamics
using fluctuating initial conditions from the event generator
NeXus [48].

NeXus aims at a realistic and consistent approach of the
initial stage of nuclear collisions. It is a Monte Carlo generator
which takes into account not only the fluctuations of nucleon
positions within nuclei as above, but also fluctuations at the
partonic level: the momentum of each nucleon is shared
between one or several participants and remnants, which
implies nontrivial dynamical fluctuations in each nucleon-
nucleon collision. The resulting full energy-momentum tensor
is matched to a hydrodynamic form, resulting in a fluctuating
flow field in addition to a fluctuating initial energy density, in
all three spatial dimensions, with the transverse length scale
of the fluctuations set mostly by the size of the incoming
nucleons. It will therefore be interesting to compare our
new results from a Glauber model with previously published
NeXSPHeRIO results [24].

IV. RESULTS

A. v2

Consider an estimator, Eq. (19), for V2 with mmax = 2. This
gives

Vest,2 = k2,2W2,2 + O(W 3). (20)

The next term in the power series would be proportional to
(W2,2)3, and the next linear term, describing smaller scale
structure, proportional to W2,4.

One of the most natural scales to compare to is the global
system size, or W0,2 ∝ {r2}. Choosing k2,2 = k′/W0,2, with k′
being a dimensionless constant, we finally obtain the famous
participant eccentricity ε2 and participant plane 	2, as the
magnitude and phase of the ratio of the lowest possible
cumulants with the same symmetries as the elliptic flow vector
V2:

ε2e
i2	2 ≡ −2

W2,2

W0,2
= −{r2ei2φ}

{r2} . (21)

Recall that the expression on the right has been simplified
by assuming a centered coordinate system, but it actually
represents a translation invariant quantity.

This has long been thought to be a reasonably good
estimator:

V2(=v2e
i2�2 ) � Vest,2 � k ε2e

i2	2 . (22)

The minus sign in Eq. (21) is arbitrary, but is used in
anticipation of an expected positive value for the coefficient
k—the minor axis of an elliptical initial density corresponds to
the direction of steepest gradient and, therefore, to the direction
in which more particles are pushed.

We can actually test this idea quantitatively by calculating a
large set of events and computing the quality estimator Eq. (6),
which in this case becomes explicitly

Q2 = 〈v2ε2 cos 2(�2 − 	2)〉√〈
v2

2

〉〈
ε2

2

〉 . (23)

This was done for the first time in Ref. [24]. Equation (23)
was calculated by using both energy density and entropy
density, with the result for energy density reproduced here in
Fig. 1. In both cases, Eq. (22) is indeed a good approximation
as a vector equation—the event plane �2 is approximately the
same as the participant plane 	2 in each event, and the elliptic
flow coefficient v2 is proportional to the eccentricity ε2.

In this approximation, the coefficient k contains all relevant
information about fluid properties such as viscosity, as well
as freeze-out and subsequent evolution of the system, and
this is the same in every collision event at a given centrality.
Conversely, the only thing that changes from one event to the
next is the initial condition, and the only aspect that matters
is the large-scale structure—in particular the only allowed

FIG. 1. (Color online) Measure of the quality Q2 (6) of the
elliptic flow estimator defined in Eq. (22); i.e., the event-by-event
linear correlation coefficient (23) between the elliptic flow and
initial eccentricity vectors over 150 events in each centrality bin.
Computations were performed with ideal hydrodynamics (“ideal”),
as well as including nonzero shear viscosity (“shear”), nonzero
bulk viscosity (“bulk”), or both (“shearbulk”), using v-USPhydro.
Previous results [24] from NeXSPheRIO are also shown (star). The
points have been given an x offset for readability.
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combinations of the lowest cumulants (W2,2 and W0,2) to
quadratic order.

Unsurprisingly, the simple linear dependence of Eq. (22)
allows for straightforward relationships to be drawn between
the initial state and various observables. Indeed, one can
find combinations of observables that effectively remove
the dependence on medium properties [32] or, conversely,
to isolate medium properties, in a way that would not be
possible without this knowledge [35]. Note that, in principle,
one can use any choice of basis to characterize the initial
transverse density [49,50]. However, one benefits enormously
by choosing a basis that converges most quickly [in the sense
of the expansion Eq. (19)]. The fewer number of terms that can
describe the hydrodynamic response to the desired accuracy,
the more useful and powerful is the resulting relation. Even
at linear order, if more than just the lowest term in the m
expansion is required, the expression for the magnitude vn and
�n become much more complicated.

Indeed, it was shown in Ref. [24] that adding the next term
(i.e., considering a linear combination of W2,2 and W2,4) has a
negligible effect, indicating that the small deviation of Q2 from
1 is due either to nonlinear terms, or from the initial transverse
flow and rapidity-dependent fluctuations. If we compare the
previous (NeXSPheRIO ideal hydrodynamics) results to the
ideal hydrodynamic result in this work, as seen in Fig. 1, we
can see that the quality Q2 becomes extremely close to 1. Thus,
rather than nonlinear terms, most of the deviation from 1 in
the previous results is explained by the latter effects, and they
appear to be most important for central collisions. We save a
more thorough investigation of these effects for future work.

However, the previous result may not be entirely realistic
because it neglects viscous effects. The later results of Ref. [25]
imply that shear viscosity should improve the estimator. We
confirm this result, as can be seen in Fig. 1. Adding bulk
viscosity to ideal hydrodynamics has a similar effect. With
the value of bulk viscosity used here, the effect is smaller,
and when bulk viscosity is included in addition to shear
viscosity there is a negligible difference in Q. Thus, the
previous results from NeXSPheRIO represent something of
a worst-case scenario, and reality will likely lie somewhere in
between these results.

So in general, remarkably, one can predict quite accurately
v2 in a given event by only knowing ε2, regardless of any other
details of the initial condition.

B. v3

The lowest cumulant with the correct symmetry for V3 is
W3,3. The only rotationally invariant cumulant with m � 3 that
can provide a scale for creating a dimensionless ratio is W0,2.
Thus one possible choice for estimator is

−W3,3

W0,2
∝ −{r3ei3φ}

{r2}3/2
. (24)

A more popular choice for scale is {r3}, which results in the
standard “triangularity,”

ε3e
i3	3 ≡ −{r3ei3φ}

{r3} . (25)

FIG. 2. (Color online) Measure of the quality Q3 (27) of initial
triangularity as an estimator of triangular flow, Eq. (26), for ideal
and several kinds of viscous hydrodynamics using v-USPhydro.
NeXSPheRIO results are also shown (star) [24]. The points have
been given an x offset for readability.

Note that the quantity {r3} is not actually a cumulant, nor
a simple function of cumulants. However, it was found that
both of the above estimators are equally good [24], and so the
distinction is not important. For reference, in the latter case we
have explicitly

Vest,3 = k ε3e
i3	3 , (26)

and Eq. (6) becomes

Q3 = 〈v3ε3 cos 3(�3 − 	3)〉√〈
v2

3

〉〈
ε2

3

〉 . (27)

The results for this estimator are shown in Fig. 2. Similar to
the elliptic flow results, both shear viscosity and bulk viscosity
improve the quality Q3 of the estimator compared to the ideal
hydrodynamics results. However, adding bulk viscosity to a
calculation with nonzero shear viscosity results in a slight
decrease of Q3. This can be understood as follows:

Bulk viscosity, like shear viscosity, has a smoothing effect
on the hydrodynamic evolution that decreases the dependence
on higher cumulants (i.e., on small-scale structure in the initial
condition). This can be seen in Fig. 3 by comparing results with
and without shear and bulk viscosity, but neglecting the viscous
correction to the distribution function—i.e., assuming an
isotropic, thermal particle distribution function at freeze-out.
However, whenever viscosity is present, there is necessarily
a local anisotropy, represented by a correction δf . This
correction is a complicated nonlinear function that does not
necessarily follow the same intuition as the hydrodynamic
equations—that viscosity damps small-scale structure.

Indeed, we see that adding δf in the case of shear
viscosity increases the linear correlation between triangularity
and triangular flow Q3, while for bulk viscosity, adding δf
decreases Q3. So shear viscosity appears to always increase
Q3, while bulk viscosity displays an interplay between its
effect on the global hydrodynamic evolution and the local
distribution function whose combination can have a different
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FIG. 3. (Color online) Measure of the quality Q3 (27) of initial
triangularity as an estimator Eq. (26), for ideal and viscous hydro-
dynamics with and without the viscous correction to the equilibrium
distribution function δf using v-USPhydro. The points have been
given an x offset for readability.

net effect on Q3 depending on the situation. We note that a
similar observation was made for other harmonics, with the
exception of v1 where δf has a somewhat larger effect, as
discussed below.

One can add corrections to this linear relation either by
keeping mmax = 3 and going to quadratic order, which gives
the possible term W1,3W2,2, or by adding the next-highest
linear term W3,5.

Following the traditional way of normalizing these terms to
create dimensionless quantities, we can define the a two-index
anisotropy coefficients and angles

εn,mei	n,m ≡ −{rmeinφ}
{rm} . (28)

Note the ordering of m and n, which we choose here following
the convention for Wn,m, originally from Ref. [26], but which
is the opposite of the εm,n from Ref. [24]. The order should
always be clear since valid cumulants always have m � n.

Anticipating our discussion of v1, we can define the lowest
translation-invariant anisotropy coefficient as ε1 = ε1,3 and
	1 = 	1,3. (Note that W1,1 simply indicates the location of the
center of the system, and such a translation-variant quantity
cannot be expected to predict any aspect of any Vn. As such,
the lowest relevant cumulant in the first harmonic is W1,3.)

Adding the corrections then gives the following full
estimator:

Vest,3 = kε3e
i3	3 + k′ε3,5e

i3	3,5 + k′′ε1ε2e
i(	1+2	2). (29)

If two or more of the coefficients k are allowed to
be nonzero, the quality measure Q3 now becomes a more
complicated function. The coefficients of the best estimator
are given by the solution of a set of linear equations (14) and
are then plugged into Eq. (6) to obtain Q3.

In Fig. 4, we show the effect of adding the corrections
individually and together. One can see that the higher cu-
mulant correction ε3,5, representing smaller-scale structure,
has a negligible effect in central collisions, with a small
but increasing importance for more peripheral collisions. The

FIG. 4. (Color online) Measure of the quality Q3 (6) of improved
estimators Eq. (29) in viscous hydrodynamics using v-USPhydro
including both shear and bulk viscosity. The points have been given
an x offset for readability.

nonlinear term ε1ε2 is also negligible in central collisions, but
is more important than the higher-order cumulant in noncentral
collisions.

In general, the systematic framework described in Sec. II
appears to be indeed valid—the lowest linear term is by
far the most important and can predict v3 to very good
precision, while systematically adding terms in the expansion
of Eq. (19) improves the estimator even more. Nonlinear
terms (in particular those involving the second harmonic, as
discussed below) appear to be more important than small-scale
structure in the initial conditions, as quantified by higher-order
cumulants. However, demanding a linear correlation much
larger than ∼95% may require the inclusion of a quickly
increasing number of terms, and will be complicated further
by the presence of nontrivial rapidity dependence and initial
flow in a more realistic simulation.

C. v4 and v5

Equation (19) for V4 allows for a linear term but requires a
cumulant with m = 4. Conversely, if one demands mmax = 2,
allowing only the lowest cumulants, then a quadratic term is
required [51]. Explicitly, we have

Vest,4 = k4,4W4,4 + K2,2,2W2,2W2,2 + O(W 2), (30)

where the next omitted terms are quadratic with mmax = 4 [see
Eq. (38)]. It turns out that both these terms are important—the
quadratic term being particularly important not because the
hydrodynamic response K2,2,2 to the larger-scale structure
(m = 2 compared to m = 4) is strong enough for the quadratic
term to overwhelm a much larger linear cumulant, but because
it is typically just as large. That is, the elliptical overlap region
between nuclei colliding at nonzero impact parameter causes
modes with azimuthal harmonic n = 2 to be systematically
larger than other modes. Thus, we must use a separate power
counting for these modes, since the quadratic term (W2,2)2

can be the same size as W4,4 in noncentral collisions. In
central collisions, on the other hand, the quadratic term is
not important [24].
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In a centered coordinate system, this relation can be
rearranged to read

Vest,4 = k̃{r4ei4φ} + k̃′{r2ei2φ}2. (31)

(One should note that the first term here does not correspond
to W2,2, but rather to a linear combination of the terms.) Thus,
if we define a “quadrangularity” in analogy with eccentricity
and triangularity,

ε4e
i4	4 ≡ −{r4ei4φ}

{r4} , (32)

we can obtain the canonical estimator which has been shown
to accurately predict quadrangular flow event by event [24]:

V4 � Vest,4 = kε4e
i4	4 + k′ε2

2e
i4	2 . (33)

The vector nature of the flow coefficients becomes especially
important here. Because this relation has two vector terms, it
is more complicated than the simple relations that worked for
v2 and v3. For example, if this relation holds, the magnitude v4

is not a function only of the magnitudes ε4 and ε2
2 but instead

depends on both the magnitude and direction of the anisotropy
vectors:

v2
4 = |V4|2 = k2ε2

4 + k′2ε4
2 + 2kk′ε4ε

2
2 cos 4(	2 − 	4). (34)

The coefficients of the best estimator k and k′ are again given
by the solution of two linear equations, Eq. (14), which are
then plugged into Eq. (6) to find Q4.

The same discussion applies for the fifth azimuthal har-
monic. A good estimator requires both a linear contribution
W5,5 and a quadratic term W2,2W3,3, or

V5 � Vest,5 = kε5e
i5	5 + k′ε2ε3e

i(2	2+3	3), (35)

with

ε5e
i5	5 ≡ −{r5ei5φ}

{r5} . (36)

Our results are shown in Figs. 5 and 6, respectively. They
show behavior similar to that of the lower harmonics. Shear

FIG. 5. (Color online) Measure of the quality Q4 (6) of the
two-term estimator Eq. (33), for ideal and several kinds of viscous
hydrodynamics using v-USPhydro. NeXSPheRIO results are also
shown (star). The points have been given an x offset for readability.

FIG. 6. (Color online) Measure of the quality Q5 (6) of the
two-term estimator Eq. (35), for ideal and several kinds of viscous
hydrodynamics using v-USPhydro. NeXSPheRIO results are also
shown (star). The points have been given an x offset for readability.

viscosity increases the quality of the estimator, while the
addition of bulk improves the ideal hydrodynamic result, but
not the shear viscous result.

We can also investigate corrections to this estimator.
Equation (19) for V4, with mmax = 4 reads in full

Vest,4 = k4,4W4,4 + K2,2,2W2,2W2,2

+K2,4,2W2,4W2,2 + K2,4,4W2,4W2,4

+K1,3,3W1,3W3,3 + O(W 2), (37)

and we can therefore propose a potentially improved estimator

Vest,4 = kε4e
i4	4 + k′ε2

2e
i4	2 + k′′ε2ε2,4e

i2(	2+	2,4)

+ k′′′ε2
2,4e

i4	2,4 + k′′′′ε1ε3e
i(	1+3	3). (38)

Similarly, we can write a full estimator for V5 up to
mmax = 5:

Vest,5 = kε5e
i4	5 + k′ε3ε2e

i(3	3+2	2)

+ k′′ε3,5ε2e
i(3	3,5+2	2) + k′′′ε3ε2,4e

i(3	3+2	2,4)

+ k′′′′ε3,5ε2,4e
i(3	3,5+2	2,4) + k′′′′′ε1ε4e

i(	1+4	4)

+ k′′′′′′ε1,5ε4e
i(	1,5+4	4). (39)

In Figs. 7 and 8, one can see that the corrections do indeed
improve the estimator, though only a small amount compared
to the first two terms alone, which already proved a good
estimator.

D. v1

The lowest translationally invariant cumulant with the same
symmetries as V1 is W1,3. Similar to the other harmonics, a
dimensionless asymmetry parameter can be defined from this,
called the “dipole asymmetry” [26]:

ε1e
i	1 ≡ −{r3eiφ}

{r3} . (40)

Directed flow has been less studied than v2–v5—it appeared
to be reasonably well correlated with the dipole asymmetry
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FIG. 7. (Color online) Measure of the quality Q4 (6) for the two-
term estimator Eq. (31) and improved estimator Eq. (38), for ideal
and shear + bulk δf viscous hydrodynamics using v-USPhydro. The
points have been given an x offset for readability.

ε1, but this has not been quantified. Nor have the effects of
corrections to the simplest linear relationship been studied.

The next-order linear correction, then, with mmax = 5, can
be investigated by adding a term proportional to ε1,5.

Similarly to v4 and v5, there are possible quadratic terms
involving the second harmonic that may be important—in
this case two terms, W ∗

1,3W2,2 and W3,3W
∗
2,2, have the correct

symmetries (although the latter is typically larger than the
former).

We test the importance of each of these by using the
estimator

V1 � Vest,1 = kε1e
i	1 + k′ε2ε3e

i(3	3−2	2) + k′′ε1,5e
i	1,5

+ k′′′ε2ε1e
i(2	2−	1), (41)

with various coefficients set to zero to study the importance of
the inclusion of each term.

FIG. 8. (Color online) Measure of the quality Q5 (6) for the two-
term estimator (35) and improved estimator (39), for ideal and shear +
bulk δf viscous hydrodynamics using v-USPhydro. The points have
been given an x offset for readability.

FIG. 9. (Color online) Q1 (6) for various combinations of terms
in estimator (41). The hydrodynamic calculation includes shear
viscosity and the standard correction to the distribution function δf.
The points have been given an x offset for readability.

In Fig. 9, various combinations are compared for v1

calculated with shear viscosity included. The lowest-order
cumulant ε1 is a very good estimator for central collisions
but is poorer in peripheral collisions. In the case of v4 and
v5 a similar (but stronger) degradation of the correlation with
εn indicates the importance of quadratic terms [24]. In Fig. 9,
we see that the nonlinear terms do indeed have an effect.
In particular, adding the ε2ε3 term significantly improves the
quality of the estimator, while the ε2ε1 term appears to be much
less important. However, even with all three terms, the quality
still does not exceed Q1 = 60% in peripheral collisions.

Directed flow v1 also has a non-negligible dependence
on higher cumulants, and therefore smaller-scale structure
in the initial density. Adding ε1,5 provides a non-negligible
improvement to the estimator, even in the presence of viscosity.
This is in stark contrast to v2, which showed a negligible
dependence on higher cumulants, even in the case of ideal
hydrodynamics [24]. So both higher cumulants and nonlinear
terms are important for noncentral collisions, and further
corrections will be necessary to get Qn > 0.8 to 0.9 at all
centralities.

In Fig. 10 the results using Eq. (41) are shown. One can
see that, as with our previous results, shear viscosity gives the
highest-quality estimator. However, shear and bulk together
are almost identical to shear with the exclusion of the most
peripheral collisions. v1 also appears to be the most strongly
affected by shear (and shear + bulk) viscosity compared to the
other flow harmonics. One can see a large difference between
bulk and ideal vs v1 when shear is present, which is in contrast
to our results for v2 where the various viscosities play a smaller
role. Similarly, we observe that the viscous correction to the
distribution function δf has the same qualitative effect but
plays a much larger role here compared to other harmonics—
especially in peripheral collisions—although only the shear
viscous correction is significant.

Directed flow has a more complicated dependence on
transverse momentum compared to the other harmonics. Low-
pT hadrons tend to flow in the opposite direction compared to
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FIG. 10. (Color online) Measure of the quality Q1 (6) for v1

computed by using the estimator given by Eq. (41), for ideal and
several kinds of viscous hydrodynamics using v-USPhydro. The
points have been given an x offset for readability.

high-pT hadrons, i.e., �1(pT ) changes by a phase of π from
low to high transverse momentum. Alternately, if the flow
vector is projected onto a fixed direction, as in common flow
measurements, directed flow changes sign as a function of pT .
This nontrivial dependence also affects our ability to predict
v1 from the initial dipole asymmetry. In Fig. 11 we compare
Q1 for pT -integrated flow with the same quantity calculated
for directed flow with a smaller range pT � 1 GeV. It turns out
that low-pT hadrons are better correlated with the initial dipole
asymmetry, as well as the improved estimator (41), compared
with the set of all hadrons. While the effect is not large, it is
much larger for v1 than for the other harmonics. We save a
more detailed investigation into the pT dependence for future
work.

FIG. 11. (Color online) Q1 (6) of estimator (41) for pT -
integrated directed flow (pT < 5 GeV), compared to Q1 for the
directed flow of hadrons with pT < 1 GeV. The hydrodynamic
calculation includes shear viscosity and the standard correction to
the distribution function δf. The points have been given an x offset
for readability.

V. CONCLUSIONS

In this paper we tested the viscous hydrodynamical re-
sponse to event-by-event initial conditions of the energy
density profile. In the most state-of-the-art relativistic hydro-
dynamical calculations many factors contribute to the final
anisotropic flow, such as the initial flow, fluctuations in the
initial energy density in rapidity, and transport coefficients. In
our calculations we find that the inclusion of shear viscosity
within relativistic hydrodynamical calculations provides the
cleanest relationship between the final flow harmonics and
the large-scale structures in the initial density, represented
by eccentricities εn. Once bulk viscosity is included, the
sensitivity to other aspects of the initial conditions increases
but the correlation between εn and vn is still stronger than for
ideal hydrodynamics.

Furthermore, we compared the results by using the ideal
version of v-USPhydro with that of NeXSPheRIO. The
primary differences between the two codes is that SPhe-
RIO is a 3 + 1 code with NEXUS initial conditions that
have fluctuations in the rapidity direction and that NEXUS
provides a nonzero, fluctuating initial flow. One can see in
Figs. 1, 2, 5, and 6 that, generally, the NeXSPheRIO results
remain below the v-USPhydro results (with the exception of
v5). It appears that the central collisions are the most sensitive
to the differences between v-USPhydro and NeXSPheRIO,
which indicates that either initial nonzero flow or fluctuations
in the rapidity direction partially washes out the effects of the
initial eccentricities on the final anisotropic flow. It appears
that the effect of initial flow and longitudinal fluctuations are
then not as important for v5 because NeXSPheRIO actually
provides the same or better estimator than the ideal results
from v-USPhydro (with the exception of the most central
collisions). Additionally, even for the other flow harmonics it
appears that the midcentrality flow harmonics (around 20% to
40%) are the least affected by the initial flow and longitudinal
fluctuations, which indicates that this is the region (combined
as well as with v5) most able to give us information needed
to understand the initial conditions even in the most state-of-
the-art calculations. Disentangling the effects of longitudinal
fluctuations and nonzero initial flow is a nontrivial matter since
NeXus provides nonzero initial flow that has large fluctuations
in both the transverse and longitudinal directions; thus, we
plan on investigating the interplay between the various effects
in a future study.

One question raised by these results is why the initial
conditions from peripheral collisions are such poor estimators
for the final flow harmonics. In both v1 and v5 for the most
peripheral collisions the initial eccentricities do not appear
to be able to predict the final flow harmonics as well as for
other harmonics or for other centralities. It may well be that
the peripheral collisions (especially for v1 and v5) are more
dependent on the higher-order cumulants of the initial energy
density profile.
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