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We present here a comprehensive model to describe the bottomonium suppression data obtained from the CERN
Large Hadron Collider (LHC) at a center-of-mass energy of

√
sNN = 2.76 TeV. We employ a quasiparticle model

(QPM) equation of state for the quark-gluon plasma (QGP) expanding under Bjorken’s scaling law. The current
model includes the modification of the formation time based on the temperature of the QGP, color screening
during bottomonium production, gluon-induced dissociation, and collisional damping due to the imaginary part
of the potential between the bb̄ pair. We propose a method for determining the temperature-dependent formation
time of bottomonia using the solution of the time-independent Schrödinger equation and compare it with another
approach based on time-dependent Schrödinger wave equation simulation. We find that these two independent
methods based on different axioms give similar results for the formation time. Cold nuclear matter effects and
feed-down from higher resonance states of ϒ have also been included in the present work. The suppression of the
bottomonium states at midrapidity is determined as a function of centrality. The results compare closely with the
recent centrality-dependent suppression data at the energies available at the CERN LHC in the midrapidity region.

DOI: 10.1103/PhysRevC.91.034901 PACS number(s): 12.38.Mh, 12.38.Gc, 25.75.Nq, 24.10.Pa

I. INTRODUCTION

Chu and Matsui [1] employed the concept of color
screening [2] and presented a model to analyze the quarkonia
suppression in quark-gluon plasma (QGP). Since then various
experimental [3–7] and theoretical [8–18] studies have been
carried out on charmonium and bottomonium. Bottomonium
suppression is considered as a more preferred probe in the
CERN Large Hadron Collider (LHC) experiments since its
enhancement in the QGP medium is expected to be negligible
even at the energies available at the LHC. The LHC data
on bottomonium suppression [19] at midrapidity have been
analyzed using a model based on color screening and gluonic
dissociation along with collisional damping [20]. However,
in the above model, the formation time of bottomonia was
taken independent of the temperature. This is not strictly valid.
At higher temperatures, the QQ̄ bonding is weakened due
to Debye color screening, which leads to a decrease in the
binding energy and hence an increase in the formation time.
The formation time is a key ingredient for the color screening
model. Its modification can significantly impact bottomonia
suppression and consequently it is important to model the
modification of formation time due to QGP temperature.
The incorporation of the temperature effect on the formation
time to model the quarkonia suppression is currently lacking
in the literature. Here, we propose a method to estimate
the formation time at different temperatures employing the
solution of a time-independent Schrödinger wave equation. We
compare the outcome of this method with those obtained via
the solution of a time-dependent Schrödinger wave equation.
It is difficult to obtain the initial wave function for the time-
dependent Schrödinger equation exactly. We heuristically
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arrive at the initial wave form. The heuristics and the associated
uncertainties are described in detail in Sec. III (B).

It is expected that the gluonic dissociation and collisional
damping play a prominent role only after the quarkonia is
formed, i.e., after the quarkonia formation time. However, due
to increased formation time with temperature, the separation
between b and b̄ is considerable even before ϒ is fully
formed. With a temperature-dependent formation time, the
role of gluon-induced dissociation and collisional damping in
bottomonia suppression before the bottomonium formation
time may not be neglected. In view of the above facts, it
becomes necessary to put forward a suppression model based
on temperature-dependent formation time in order to analyze
the experimental data.

Furthermore, the cold nuclear matter (CNM) effects on
bottomonia can contribute significantly at the energies avail-
able at the LHC. Shadowing, nuclear absorption, and the
Cronin effect are the main components of CNM effects.
There have been studies on the initial state collisional and
radiative energy loss in CNM, which can affect the nuclear
modification factor, RAA [21–23]. However, we do not include
these initial-state energy-loss effects in the current work. It
has been argued that, as energy increases from the CERN
Super Proton Synchrotron (SPS) to the Large Hadron Collider
(LHC) via the BNL Relativistic Heavy Ion Collider (RHIC)
experiments, the absorption is expected to become less and
less prominent [24]. The quark and antiquark in the bb̄ pair
immediately after being formed are very close to each other
and hence the pair behaves almost as a color singlet and has
negligible interaction with the nucleus, leading to almost no
absorption. With higher energies, the bb̄ pair size is expected
to be even smaller when it crosses the nucleus leading to
even smaller absorption. Because we describe pt integrated
suppression data, the modeling of the pt broadening due to
the Cronin effect is irrelevant. This leaves shadowing as the
principal CNM effect that needs to be incorporated.
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There are various shadowing models available [25–29] in
the literature. For the purpose of modeling the shadowing
effect, we explore two different approaches. In the first
approach, we employ the framework developed by Vogt [24],
which is based on the shadowing parametrization first derived
by Eskola et al. [29]. From now onwards we refer to this
shadowing parametrization as EPS09. In the second approach,
which is a new approach proposed by us, we use the shadowing
obtained by EPS09 for the nuclei whose atomic mass is identical
to or at least close to Npart

2 . For instance, if Npart = 32, then each
nuclei provides 16 nucleons for the reaction. The effective
shadowing would mainly be a function of these 16 nucleons.
Interestingly, we find that the two approaches yield similar
results. The shadowing effect, being related to the parton
distribution function in the heavy nuclei, is expected to be an
initial-state effect and should have the same or similar effect
independent of the final state of heavy quarkonium (1S or
2S, etc). We use the same shadowing effect in all the final
bottomonium states.

In the current work, we describe a comprehensive model
by incorporating the effect of temperature on formation time,
color screening, gluon-induced dissociation, and collisional
damping along with CNM effects. All these effects are mod-
eled analytically. The results of the model are compared with
the recent centrality-dependent CMS data [19] at midrapidity
obtained from the LHC experiments. The organization of the
rest of the article is as follows. Section II briefly describes the
color screening, gluonic dissociation, and collisional damping
that have been used in this work. Section III describes how
the temperature-dependent formation time has been modeled.
CNM effects are also described in this section. Section IV gives
the results and the comparison with the CMS data. Finally, we
conclude our work in Sec. V.

II. COLOR SCREENING, GLUON DISSOCIATION,
AND COLLISIONAL DAMPING

A. Color screening

The color screening model used in the present work is
based on the pressure profile [30] in the transverse plane and
the cooling law for pressure based on a quasiparticle model
(QPM) equation of state (EOS) [31] for the QGP. It is described
in detail in Refs. [20,31]. The cooling law for pressure is
given by

p(τ,r) = A + B

τq
+ C

τ
+ D

τc2
s

, (1)

where A = −c1, B = c2c
2
s , C = 4ηq

3(c2
s −1) and D = c3. The con-

stants c1, c2, and c3 are given by

c1 = −c2τ
′−q − 4η

3c2
s τ
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The above constants are determined by using different
boundary conditions on pressure and energy density described
in Refs. [20,31].

Writing Eq. (1) at initial time τ = τi and screening time
τ = τs and combining it with the pressure profile [31], we get
the following two equations:

p(τi,r) = A + B

τ
q
i

+ C

τi

+ D

τ
c2
s

i

= p(τi,0) h(r), (2)

p(τs,r) = A + B

τ
q
s

+ C

τs

+ D

τ
c2
s

s

= pQGP, (3)

where pQGP is the pressure of QGP inside the screening region
required to dissociate a particular ϒ state and it is determined
by a QPM EOS for QGP medium. The above equations are
solved numerically and we equate the screening time τs to
the dilated formation time of bottomonia tF = γ τF (T ) to
determine the radius of the screening region rs [20,31]. The
τF (T ) is now dependent on the QGP temperature T . γ = ET

Mϒ
is

the Lorentz factor corresponding to the transverse energy ET

and the bottomonium mass Mϒ . The expression for survival
probability due to color screening can be obtained as

Sc(pT ,Npart) = 2(α + 1)

πR2
T

∫ RT

0
drrφmax(r)

{
1 − r2

R2
T

}α

(4)

where α = 0.5, and RT and φmax (which is a function of pt

and rs) are defined in Refs. [20,31]. The above expression for
survival probability is integrated over the range of pt allowed
by the CMS experiment [19] to obtain the pt integrated survival
probability.

B. Collisional damping

The singlet potential used in this work is given by [32]

V (r,mD) = σ

mD

(1 − e−mD r ) − αeff

(
mD + e−mD r

r

)

− iαeffT

∫ ∞

0

2 z dz

(1 + z2)2

(
1 − sin(mD r z)

mD r z

)
,

(5)

where

mD is the Debye mass given by mD = T

√
4παT

s (Nc

3 + Nf

6 ),

αeff = 4α
3 = 0.63, Nf = 3 = number of flavors, αT

s = 0.47,
and σ = 0.192 GeV2.

The collisional damping dissociation time constant is
given by �damp = ∫

[ψ† [Im(V )] ψ] dr [20], with ψ being the
bottomonium wave function.

We solve the Schrödinger equation to get the radial wave
function for the 1S, 2S, and 1P states.
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C. Gluonic dissociation

We model the gluonic dissociation cross section as [32]

σdiss,nl(Eg) = π2αu
s Eg

N2
c

√
m

Eg + Enl

×
(

l
∣∣J q,l−1

nl

∣∣2 + (l + 1)
∣∣J q,l+1

nl

∣∣2

2l + 1

)
, (6)

with αu
s = 0.59, and J

ql′
nl can be expressed using singlet and

octet wave functions as

J
ql′
nl =

∫ ∞

0
drrg∗

nl(r)hql′(r). (7)

The octet wave function hql′ is obtained by solving the
Schrödinger equation with potential, αeff/(8 r) [20,32,33]. The
cross section is then averaged over a Bose-Einstein distribution
function of gluons at temperature T as

�diss,nl = gd

2π2

∫ ∞

0

dpg p2
gσdiss,nl(Eg)

eEg/T − 1
, (8)

with gd = 16 for gluons.
The net dissociation constant is given by

�total = �damp + �diss. (9)

At the very initial time, the bb̄ pair would be very close to each
other and hence would behave almost as a color singlet. During
this time, the gluon-induced dissociation and the dissociation
due to collisional damping may be assumed to be negligible.
Consequently, we integrate the dissociation due to the above
two processes from a nonzero initial time, t0. The survival
probability due to gluonic dissociation along with collisional
damping is then given by

Sg =
∫ ∞

t0

exp(−�total) dt. (10)

We take the value of t0 to be 0.5 fm.

D. Net survival probability

From Ref. [20], the net survival probability is obtained by
combining Sc and Sg:

S ′ = ScSg.

The expressions for survival probability after incorporating
feed-down corrections are expressed as

S1S = 0.6489S ′
1S + 0.1363S ′

1P + 0.1733S ′
2S + 0.0416S ′

2P ,

S1P = 0.8450S ′
1P + 0.1508S ′

2S + 0.0041S ′
2P , (11)

S2S = 0.8780S ′
2S + 0.1220S ′

2P ,

where S ′
nl is the survival probability of the |nl〉 quarkonium

states before feed-down is considered, while Snl is the survival
probability of the |nl〉 state after feed-down.

III. TEMPERATURE-DEPENDENT FORMATION TIME
AND CNM EFFECTS

A. Temperature-dependent formation time

We model the temperature as a function of Npart as [20]

T (tqgp) = Tc

(
Npart(bin)

Npart(bin0)

)1/3 (
tQGP

tqgp

)1/3

. (12)

In the above equation, Tc = 0.170 GeV, tQGP is the total QGP
lifetime taken as 5 fm, and tqgp is the current time of the QGP.
The temperature is inversely proportional to the cube root of
proper time. The cube root can be seen from the QPM as a
limiting case when the Reynolds number R � 1 [20]. To model
the temperature dependence of the formation time we use the
real part of the singlet potential given in Eq. (5), namely,

V (r,mD) = σ

mD

(1 − e−mD r ) − αeff

(
mD + e−mD r

r

)
.

(13)

Solving the Schrödinger equation − 1
2μ

∂2ψ

∂2r
+ V (r,mD)ψ +

l(l+1)
2μr2 ψ = ET (n,l)ψ gives the energy eigenvalues ET (n,l) (n
= principal quantum number, l = azimuthal quantum number)
at temperature T for the bottom quark-antiquark system with
reduced mass μ. We calculate the binding energy as

Ebind(T ) = ET (n,l) − V [r = ∞,mD(T )]. (14)

The formation times of ϒ(1S), ϒ(1P ), and ϒ(2S) at 0 MeV (in
vacuum) are taken as 0.76, 2.6, and 1.9 fm, respectively [34–
37]. The binding energy values in a vacuum are taken as 1.1,
0.67, and 0.54 GeV, respectively [38,39]. One can note that
the given formation times are greater than the inverse of the
binding energies in vacuum. In general, the formation time
is taken to be of the form K

Ebind(T ) , with K � 1. One can then
determine the formation time at temperature T1 as

τf (T1) = τf (T0)
Ebind(T0)

Ebind(T1)
. (15)

The above equation indicates that if the formation time in
vacuum (i.e., at temperature T0 = 0 MeV) is known, then the
formation time at any other temperature T1 can be calculated.
We solve a time-independent Schrödinger equation and deter-
mine the ϒ wave function ψT (r) for various temperatures T .
Equation (12) shows that the temperature of the QGP decreases
as the cube root of proper time. The question then arises
as to what temperature needs to be used to determine the
formation time at a particular centrality. We suggest to use
the temperature T such that τf [T (tqgp)] = tqgp, where tqgp is
the time for which the QGP has existed. The motivation behind
this is as follows: When the bb̄ pair is formed, it will keep on
expanding until the stable state of ϒ is formed. Let, at QGP
time t0, the temperature of the QGP be T (t0). If t0 < τf [T (t0)]
[given by Eq. (15)], then the ϒ has not yet reached its stable
state and will continue to expand. The desired formation time
would then be greater than t0. As a consequence of the above,
a point in time will be reached when t0 = τf [T (t0)]. At this
point the bb̄ will be at equilibrium and the ϒ will just get
formed. Beyond this time the temperature will decrease and
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FIG. 1. Formation time given by the intersection of the two curves
tqgp and τf [T (tqgp)] for ϒ(1S) for the most central bin.

the ϒ wave function may shrink due to string tension, but
will continue to remain stable unless dissociated by the sea of
gluons present in the QGP or by collisions with other particles
in the QGP. The condition τf [T (tqgp)] = tqgp may not be valid
for QQ̄ created much after the formation of the QGP. As a
corollary, the ability of this temperature-dependent formation
time model to explain CMS data gives an indication that the ϒ
enhancement may be negligible at the energies available at the
LHC. We solve the equation τf [T (tqgp)] = tqgp by finding the
intersection of the two curves tqgp and τf [T (tqgp)]. Figure 1
shows the two curves for ϒ(1S) corresponding to the most
central bin. The point of intersection gives the formation time
as 2.35 fm for ϒ(1S) for the most central bin.

B. Formation time based on a time-dependent
Schrödinger wave equation

We now compare the above method of determining the
formation time with another one based on the solution of
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FIG. 2. Variation of mean separation between the bb̄ pair with
time for ϒ(1S) for the most central bin.

a time-dependent Schrödinger wave equation: ψT (r,tN ) =
[�N−1

i=0 eiH (ti )(ti+1−ti )]ψT (r,t0), where H (ti) is the Hamiltonian
with the potential term given in Eq. (13), along with the
kinetic energy and l (l+1)

2μ r2 terms. The potential is evaluated
at temperature T (ti) of the QGP at time ti . To determine
the formation time from simulation, it is required to use the
following:

(i) a criteria to define the condition that the ϒ has formed,
(ii) an initial condition for the simulation.

For the purpose of determining the formation time from the
simulation results, we use the following criteria: If the ϒ wave
function ψ(r,t) is normalized such that

∫
ψ

†
T (r,t)ψT (r,t)dr =

1, then the mean distance 〈r(t)〉 between the quark and
antiquark can be written as 〈r(t)〉 = ∫

ψ
†
T (r,t)rψT (r,t)dr. We

define the formation time as the earliest time at which the ϒ
becomes stable. We say that the ϒ has become stable when the
wave function ceases to expand, i.e., when d〈r(t)〉

dt
= 0 (Fig. 2).

Because the effect of temperature can only widen the wave
function and thus increase the formation time (as compared
to formation time in vacuum), the simulation for a particular
state of ϒ is started at a time equal to the formation time tf 0

for that state in vacuum. At any point of time, the ϒ wave
function influenced by the QGP medium would be expected to
have much larger separation between the quark and antiquark,
as compared to the quark-antiquark separation within the
bottomonium wave function in vacuum which has evolved
for the same amount of time. This is realized by the nonzero
value of the temperature Tinit, at which the initial wave function
is determined. In fact, for this reason, there is a need to apply a
lower bound on the value of Tinit to a value higher than 0 MeV.
In view of the above arguments, we heuristically fix the lowest
value of Tinit to a nominal value of 30 MeV. For the initial
wave function at the start of the simulation, we propose to use
the time-independent wave function ψT (r) at the temperature
Tinit, subject to the lower bound of 30 MeV, for which the
criteria d〈r(t)〉

dt
= 0 exist. Below the temperature Tinit, the wave

function keeps on expanding.
For the ϒ(1S) state, we find that the d〈r(t)〉

dt
= 0 criteria exist

when we start with ψT (r,t0) at any small value of temperature
T , including T = 0 MeV. Based on the above arguments, we
choose Tinit = 30 MeV. However, for ϒ(2S) and ϒ(1P ), the
value of temperature varies from Tinit = 160 MeV to Tinit =
30 MeV depending upon the centrality.

With the above framework for the time-dependent
Schrödinger equation, the simulation results for the three states
of ϒ(1S), ϒ(2S), and ϒ(1P ) are shown in Figs. 3, 4, and 5,
respectively.

We find that the method based on the time-dependent
Schrödinger equation follows the trend of the formation time as
a function of centrality as determined by our proposed method,
i.e., by solving the time-independent Schrödinger equation.
Differences in the two curves could possibly be due to the
uncertainty in the initial conditions. For central collisions,
the time interval for which the time-dependent Schrödinger
equation is simulated is large (since the formation time is
large), and errors in the initial conditions probably have a
lesser impact. But for peripheral collisions where the time

034901-4



TEMPERATURE-DEPENDENT FORMATION-TIME APPROACH . . . PHYSICAL REVIEW C 91, 034901 (2015)

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

N
part

F
o

rm
at

io
n

 t
im

e 
(f

m
)

TDS
TIS: our method
vacuum formation time

FIG. 3. (Color online) Comparison of the ϒ(1S) formation time
obtained using the time-dependent Schrödinger equation (TDS), our
method based on the time-independent Schrödinger equation (TIS),
and the vacuum formation time.

interval of simulation is much smaller, the impact of the initial
conditions is much larger. In the results section, we describe
the ϒ suppression by using both the sets of formation time and
we show that the difference is almost negligible. At the same
time, we also show that the suppression obtained by ignoring
the effect of temperature T on the formation time and using
the T -dependent formation time is significantly different.

C. CNM effects

As mentioned in the Introduction, nuclear absorption is
expected to be quite small and the Cronin effect irrelevant,
the main CNM effect is therefore shadowing. Thus, only the
shadowing effect has been used to determine the contribution
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FIG. 4. (Color online) Comparison of the ϒ(2S) formation time
obtained using the time-dependent Schrödinger equation (TDS), our
method based on the time-independent Schrödinger equation (TIS),
and the vacuum formation time.
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FIG. 5. (Color online) Comparison of the ϒ(1P ) formation time
obtained using the time-dependent Schrödinger equation (TDS), our
method based on the time-independent Schrödinger equation (TIS),
and the vacuum formation time.

of suppression arising due to the CNM effect. Shadowing is
an initial-state effect and hence it is expected to be similar
for all the bottomonium states [24]. We now describe the
two approaches that we have used to model shadowing in
the current work.

1. The Vogt approach

Vogt [24] has computed the shadowing effect at a center-
of-mass energy of

√
sNN = 5.5 TeV. We employ the same

formulation to compute the shadowing effect for various
centrality bins at

√
sNN = 2.76 TeV. We use the EPS09 [29]

parametrization to obtain the shadowing Si(A,x,μ) for nuclei
with atomic mass number A, momentum fraction x, and scale
μ. The superscripts i and j refer to the incoming and target
nuclei, respectively.

The spatial variation of shadowing, Si
ρ(A,x,μ,	r,z), is taken

to be a function of the shadowing Si(A,x,μ) and the nucleon
density ρA(	r,z):

Si
ρ(A,x,μ,	r,z) = 1 + Nρ[Si(A,x,μ) − 1]

×
∫

dzρA(	r,z)∫
dzρA(0,z)

, (16)

where Nρ is determined by the following normalization
condition,

1

A

∫
d2rdzρA(s)Si

ρ(A,x,μ,	r,z) = Si(A,x,μ), (17)

with atomic mass number A = 208 for Pb and s = √
r2 + z2.

The nuclear density ρ(s) has been taken to be the Woods-Saxon
distribution: ρA(s) = ρ0

1+ω(s/RA))2

1+exp[(s−RA)/d] . The values of ρ0, RA,
d, and ω have been taken from Ref. [40] for Pb.

The suppression factor is defined as the ratio

RAB(Npart; b) = dσAB/dy

TAB(b)dσpp/dy
, (18)
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where b is the impact parameter and TAB is the nuclear overlap
function given by

TAB(b) =
∫

d2s dz1 dz2ρA(	s,z1)ρB(|	b − 	s|,z2). (19)

In this particular case, both A and B stand for atomic mass
numbers of Pb.

From Ref. [41], the color evaporation model gives

σAB =
∫

dz1 dz2 d2r dx1 dx2 [f i
g (A,x1,μ,r,z1)

× f j
g (B,x2,μ,b − r,z2)σgg QQ(x1,x2,μ)], (20)

σpp =
∫

dx1 dx2 [fg(p,x1,μ)

× fg(p,x2,μ)σgg QQ(x1,x2,μ)]. (21)

The above formalism excludes the explicit modeling of spin
and color of the initial and final states.

In the above expressions, x1 and x2 are the momentum
fraction of the gluons in the two Pb nuclei at

√
sNN =

2.76 TeV and are related to the rapidity y as x1 = Mt√
sNN

ey and

x2 = Mt√
sNN

e−y, with Mt =
√

M2
ϒ + 〈pt 〉2, where Mϒ is the

bottomonium mass and 〈pt 〉 is the mean transverse momentum
of the bottomonium.

The function fg(A,x,μ,r,z) is determined from the gluon
distribution function for proton fg(p,x,μ) by using the
following relations:

(i) f i
g (A,x1,μ,r,z) = ρA(s)Si(A,x1,μ,r,z)fg(p,x1,μ),

(ii) f
j
g (B,x2,μ,b − r,z)=ρB(s)Sj (B,x2,μ,b−r,z)fg(p,

x2,μ).

By using the above expressions, the value of dσAB

dy
and dσpp

dy
can

be computed numerically and, finally, RAB can be obtained.
The value of the gluon distribution function fg(p,x,μ) in

a proton (indicated by label p) has been estimated by using
CTEQ6 [42].

2. Our approach

Repeating the example mentioned in the Introduction, if
Npart = 32, then each nuclei provides 16 nucleons for the
reaction. The effective shadowing is taken to be mainly a
function of these 16 nucleons. In general,

Si(A = 208,x,μ,b) = S

(
A = Npart

2
,x,μ

)
, (22)

where b is the impact parameter corresponding to the given
value of Npart and S(A = Npart

2 ,x,μ) is the value obtained
from EPS09 for nuclei with atomic mass Npart/2. We use
this procedure to determine the shadowing Si(A,x,μ,b) and
Sj (A,x,μ,b) for the various centrality bins.
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FIG. 6. Monotonic and smooth nature of shadowing versus
atomic mass. The shadowing values shown here are for momentum
fraction =0.000 312.

Once Si(A,x,μ,b) and Sj (A,x,μ,b) are determined, we
determine σAB as

σAB =
∫

dx1 dx2 [f i
g (A,x1,μ,b)

× f j
g (B,x2,μ,b)σgg QQ(x1,x2,μ)], (23)

where

f i
g (A,x1,μ,b) = Si(A,x1,μ,b)fg(p,x1,μ)

and

f j
g (B,x2,μ,b) = Sj (B,x2,μ,b)fg(p,x2,μ).

We then use Eqs. (18) and (19) to determine RAB . The
shadowing data are not available for all the atoms, which
leads to the possibility that, for a particular centrality bin,
the corresponding shadowing data for atoms with atomic mass
≈Npart/2 would not be available. In such cases we use linear
interpolation of the available shadowing data of the atoms with
the closest value of atomic mass. We justify the use of linear

TABLE I. Values of the effective atomic mass and corresponding
Npart.

Centrality Npart Effective atomic mass
bin

1 394 197
2 369 184
3 341 Linear interpolation of 108 and 184
4 315 Linear interpolation of 108 and 184
5 261 Linear interpolation of 108 and 184
6 187 Linear interpolation of 64 and 108
7 130 64
8 85.5 40
9 53 27
10 30.3 16
11 16 9
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TABLE II. Values of the input data used in our simulation [32].

ϒ property

ϒ(1S) ϒ(2S) ϒ(1P ) ϒ(2P )

Mass (GeV) 9.46 10.02 9.99 10.26
τF (fm) 0.76 1.9 2.6 –
Tdiss (MeV) 668 217 206 185∗

interpolation by the fact that the shadowing effect is almost a
monotonic smooth function of atomic mass (see Fig. 6).

The atomic mass (more appropriately, we call it effective
atomic mass) used for each value of Npart is given in Table I.

The values of the parameters used in our simulations are
given in Table II.

IV. RESULTS AND DISCUSSIONS

The survival probability of the ϒ(1S) and ϒ(2S) states
due to color screening versus the number of participants
are depicted in Figs. 7 and 8, respectively. Each centrality
region has different temperature and the formation time of
both the ϒ states has been modified based on the temperature
corresponding to those centrality bins. The experimental CMS
data in terms of the nuclear modification factor RAA, measured
as a function of the collision centrality [19], are also shown
in both the plots for comparison. The solid lines indicate the
suppression for ϒ(1S) and ϒ(2S) in Figs. 7 and 8, respectively,
due to color screening with temperature-dependent formation
time. For comparison, the dashed lines in both figures indicate
the suppression for ϒ(1S) and ϒ(2S) bottomonium states with
constant formation time. In the peripheral region, where the
modification in formation time is small, the suppression due to
color screening remains similar to the suppression due to color
screening with constant formation time. However, for central
bins, where the formation time modification is significant,
the modification in suppression due to color screening is also
significant. Qualitatively, the suppression now decreases while

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

N
part

S
U

R
V

IV
A

L
 P

R
O

B
A

B
IL

IT
Y

CMS data 1S
1S: T based formation time
1S: const formation time

FIG. 7. (Color online) CMS data [19] compared with simulation
results with only color screening for ϒ(1S).
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FIG. 8. (Color online) CMS data [19] compared with simulation
results with only color screening for ϒ(2S).

traversing from the peripheral region to the central region. At
a higher temperature, the ϒ-wave-function stability criterion
d〈r(t)〉

dt
= 0 is satisfied at a much later point when the separation

between b and b̄ is much larger. Thus, despite weaker bonding
due to color screening and increased distance between the
bottom quark-antiquark pair, the quarkonia need not dissociate
as long as the bb̄ pair separation is less than the critical distance
〈r〉, where d〈r(t)〉

dt
= 0. This leads to decreased suppression

in central collisions, where due to higher temperatures, the
distance 〈r〉 at which d〈r(t)〉

dt
= 0 happens is larger. It is

clear from the above figures that the temperature-dependent
formation time model modifies the suppression up to some
extent for ϒ(1S) and is very significant for ϒ(2S) suppression.
The modification of formation time thus becomes more critical
for ϒ(2S). It is also apparent from the above plots that the color
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FIG. 9. (Color online) Survival probability of ϒ(1S) and ϒ(2S)
versus Npart by incorporating color screening and gluonic dissoci-
ation with collisional damping. CNM effects are not incorporated.
Temperature-dependent formation time using our proposed method
is incorporated while calculating color screening.
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FIG. 10. (Color online) Survival probability of ϒ(1S) and ϒ(2S)
versus Npart by incorporating color screening, gluonic dissociation,
and collisional damping along with CNM effects. The CNM calcula-
tion used here is based on the Vogt approach [24]. The bands given
by the shaded regions on the top and bottom indicate the maximum
and minimum range of CNM for ϒ(1S) and ϒ(2S), respectively. The
temperature-dependent formation time using our proposed method is
incorporated while calculating color screening.

screening model alone is not able to explain the experimental
data on bottomonium suppression for central collisions.

In Fig. 9, we introduce gluonic dissociation and collisional
damping in addition to the color screening mechanism. The
difference between the CMS data and our model prediction
has clearly decreased in comparison to Figs. 7 and 8.
Our suppression results clearly overlap with the measured
suppression data within error bars.

In Fig. 10, the bottomonium suppression with all the
above three effects, including CNM, is shown. This uses the
first CNM approach, i.e., the Vogt approach. Our simulation

FIG. 11. (Color online) Survival probability of ϒ(1S) and ϒ(2S)
versus Npart by incorporating color screening, gluonic dissociation,
and collisional damping along with CNM effects. The formation time
has been determined by simulation of the time-dependent Schrödinger
equation.
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FIG. 12. (Color online) Comparison between the two CNM ap-
proaches for ϒ(1S) and ϒ(2S). The subscripts 1 and 2 in CNM1

and CNM2 refer to the two CNM approaches. CNM1 is the “Vogt
approach” [24], while CNM2 is “our approach.”

results are in good agreement with the experimental data.
The maximum and minimum range of CNM effects for
ϒ(1S) and ϒ(2S) are indicated by the shaded region. The
calculations are done using EPS09 at leading order and with the
temperature-dependent formation time calculated by solving
the time-independent Schrödinger wave equation. Comparison
of the central region for ϒ(1S) between Figs. 9 and 10
indicates that the mean of the experimental data falls between
the suppression without CNM effects (shown in Fig. 9) and
the mean suppression with CNM effects (shown in Fig. 10).
The band depicting the possible CNM uncertainty overlaps
with the error bars. This may indicate that the CNM may
be on the lesser side of the CNM uncertainty band. The
CNM uncertainty band for ϒ(2S) is pretty small, but still
a lesser value of the CNM effect continues to be in reasonable
agreement with the experimental data. In Fig. 11, the variation

FIG. 13. (Color online) Our prediction for the ϒ(1P ) bottomo-
nium state using EPS09 and CTEQ6 after including color screening,
gluon dissociation, collisional damping, and the CNM effect.
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FIG. 14. (Color online) Comparison between the two CNM ap-
proaches for ϒ(1P ). CNM1 is the approach used by Vogt [24]. CNM2

is our approach.

of bottomonium suppression with respect to centrality using
the temperature-dependent formation time obtained by simu-
lation of the time-dependent Schrödinger equation is shown.
Comparison of Fig. 10 with Fig. 11 shows that two different
approaches to determine the temperature-dependent formation
time give similar results. The differences in the peripheral
region for ϒ(2S) arise due to the differences in formation time
in the peripheral region between the two methods as shown in
Figs. 4 and 5.

Figure 12 shows the comparison between the two CNM
approaches for the variation of the final suppression of ϒ(1S)
and ϒ(2S) states with Npart. One can see from the above plot
that there is little difference in the final suppression employing
the two CNM approaches. Shadowing has been shown to
vary as A1/3 [43]. Even though we use only the neighboring
nucleons, this shadowing methodology seems to give results up
to a reasonable approximation. Figure 13 depicts our predicted
suppression for ϒ(1P ) versus Npart including all the effects
employed in Figs. 10 and 11. The CNM model used here
is based on the Vogt approach [24]. Finally, Fig. 14 gives

the comparison of the variation of overall ϒ(1P ) suppression
with respect to centrality determined by employing two CNM
approaches. Again, we see that both the CNM methods yield
almost the same results.

V. CONCLUSIONS

In conclusion, we have presented a comprehensive model of
bottomonium suppression in the QGP medium by combining
color screening, gluonic dissociation, and collisional damping.
Temperature-dependent formation time of the bottomonium
states is used in the current work. We have developed a
method for estimating the modification of the formation time
of the ϒ with temperature by solving the time-independent
Schrödinger wave equation. Temperature-dependent forma-
tion time has also been determined explicitly by simulating
the temporal variation of the ϒ wave function using the
time-dependent Schrödinger equation. We find that the two
independent methods, based on different approaches, give
comparable results. The modification of formation time due
to temperature modifies the ϒ suppression to a considerable
extent in the central region and plays a crucial role in accurately
determining the ϒ suppression. The quasiparticle model is
employed as an EOS for the QGP expanding under Bjorken’s
scaling law. The shadowing (as a CNM) effect has also
been calculated by using two approaches, namely, the Vogt
approach [24] and our approach. The final suppression of
the bottomonium after taking into account the CNM effect
is calculated as a function of the number of participants and
the results are compared with the recent CMS data [19] at
the energies available at the LHC in the midrapidity region.
Our simulated results compare reasonably well with the CMS
data. We also see that both the approaches for modeling the
shadowing effect give similar results.
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