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Event simulations in a transport model for intermediate energy heavy ion collisions:
Applications to multiplicity distributions
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We perform transport model calculations for central collisions of mass 120 on mass 120 at laboratory beam
energy in the range 20 MeV/nucleon to 200 MeV/nucleon. A simplified yet accurate method allows calculation
of fluctuations in systems much larger than what was considered feasible in a well-known and already existing
model. The calculations produce clusters. The distribution of clusters is remarkably similar to that obtained in
equilibrium statistical model.
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I. INTRODUCTION

There is an enormous amount of experimental and theoreti-
cal work on multifragmentation in heavy ion collisions at inter-
mediate energy. There are two classes of theoretical models: (a)
dynamical and (b) statistical where one assumes that because
of two-body collisions the colliding systems equilibrate and
break up into many fragments according to availability of
phase space. Unquestionably the most used and popular dy-
namical model is the Boltzmann-Uehling-Uhlenbeck (BUU)
model (also called by various other names). Here we restrict
ourselves to BUU [1]. In the original formulation, the BUU
model gave an account of one-body properties [2] and thus
was not suitable to describe multifragmentation. Later it
was extended to include fluctuations which made it suitable
for event-by-event simulation [3]. This is the focus of our
attention. In the past event-by-event simulation in this model
was limited to about mass number 30 on 30. The problem was
a practical one, namely, it required a large computing effort.
We show that with a slight reformulation without changing
any physics or numerical accuracy we can very significantly
reduce the execution time and we can handle much larger
systems. Computation becomes as short as an ordinary BUU
calculation. It is instructive to do large systems (finite number
effects often hide important bulk effects) and more importantly,
the fragmentation must be investigated over an energy range
to unravel many interesting effects. The objective of doing
examples is to demonstrate that many revealing features are
seen. These also allow us to relate with other models.

There are many models for multifragmentation. There are
some which can be labeled as “quantum molecular dynamics”
type [4,5]. These are different in spirit to the model used here.
Closer in spirit yet quite distinct are some studies based on a
Langevin model [6–10], where we have mentioned only a few.
We will have occasion to refer very briefly to only a small num-
ber of these. The literature in the Langevin approach is huge.

II. THE PRESCRIPTION

The basic features of our transport model calculation are
contained in the BUU model as developed in [1] and [3] but
some modifications were made. For brevity we will almost

entirely skip the physical motivations and details for the
models of Refs. [1,3] as they are not only adequately discussed
in the original papers but also elsewhere [8,9] where some
different models are also introduced. The modifications we
make to Refs. [1,3] are discussed fully.

The start of our consideration is the cascade model [11].
Here each nucleus is considered as a collection of point nucle-
ons whose positions are assigned by Monte Carlo sampling.
The projectile nucleus A approaches the target B with a beam
velocity and two-body collisions between the nucleons take
place. When these finish we have one event. We only consider
B the same as A and central collisions. It is convenient to
run several events simultaneously. Let us label the number of
runs by Ñ . In cascade the different runs do not communicate
with each other. Thus nucleus 1 hits nucleus 1′, nucleus 2
hits nucleus 2′, . . . , nucleus Ñ hits nucleus Ñ ′. In BUU we
introduce the communication between runs. What we were
calling nucleons we now call test particles (abbreviated from
now on as tp). The density ρ(�r) is given by n/(δr)3Ñ where n is
the number of tp’s in a small volume (δr)3. As far as collisions
go, in usual applications of BUU one still segregates different
runs. By segregating the collisions one is able to use σnn,
the nucleon-nucleon cross section, and reduce computation. If
we considered collisions between all tp’s, the collision cross
sections would have to be reduced. In between collisions tp’s
move in a mean field (Vlasov propagation). Applications of
BUU as summarized above have met much success in explain-
ing average properties such as average collective flows, etc.

To explain multifragmentation, multiplicity na as a function
of a, where a is the mass number of the composite, one needs
an event-by-event computation in the transport model. Bauer
et al. made the following prescription [3]. Now all tp’s are
allowed to collide with one another with a cross section of
σnn/Ñ . Collisions are further suppressed by a factor Ñ but
when two tp’s collide not only those two but 2(Ñ − 1) tp’s
contiguous in phase space change momenta also. Physically
it represents two actual particles colliding. When collisions
cease we have one event. A second event needs a new Monte
Carlo of tp’s and then the evolution in time.

The prescription we use here is the following. This is the
middle ground between Refs. [1] and [3]. As in Ref. [1] for
nucleon-nucleon collisions we consider 1 on 1′(event1), 2 on
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2′(event2), etc., with cross section σnn. For event 1 we will
consider nn collisions only between 1 and 1′. The collision
is checked for Pauli blocking as in Ref. [1]. If a collision
between i and j in event 1 is allowed we follow Ref. [3] and
pick Ñ − 1 tp’s from all the tp’s closest to i and give them the
same momentum change � �p as ascribed to i. Similarly we
pick Ñ − 1 tp’s closest to j and ascribe them the momentum
change −� �p, the same as suffered by j . We will return to more
details about this later. As a function of time this is continued
till event 1 is over. For event 2 we return to time t = 0, the
original situation (or a new Monte Carlo sampling for the
original nuclei), follow the above procedure but consider nn
collisions only between 2 and 2′. This can be repeated for
as many events as one needs to build up enough statistics.
The advantage of this over that used in Ref. [3] is that here,
for one event, nn collisions need to be considered between
(NA + NB) nucleons (NA = number of nucleons in A, NB =
number of nucleons in B) whereas in the method of Ref. [3],
collisions need to be checked between (NA + NB) × Ñ tp’s.
Hence, in our calculation, the total number of combinations
for a two-body collision is reduced by a factor of 1/Ñ2. Since
typically Ñ is of the order of 100 this is a huge saving in
computation and has allowed us to treat mass as large as 120
on 120 over a substantial energy range. It is expected that the
model used in Ref. [3] and the one used here will give similar
results. The number of collisions for one event should be about
the same in both prescriptions. The characteristics of scattering
are the same. The objects that collide in our calculation arise
from a coarse grain representation of the initial phase space
population of two nuclei. In Ref. [3] a fine grain representation
is used. But since many events are generated any difference
should disappear. The Vlasov propagation is the same. For
mass 40 on 40 we compare our results with those using
the method of Ref. [3] (Fig. 1). The agreement between the
two calculations for multiplicities is remarkable. We regard
our method as a very convenient shortcut to the numerical
modeling of Ref. [3]. The theoretical formulation in Ref. [3] is
more appealing and “democratic” but numerically our method
gives indistinguishable results.

One bonus of our prescription is that one sees some
common ground between the BUU approach and the “quantum

FIG. 1. (Color online) Comparison of mass distribution calcu-
lated according to the prescription of Ref. [3] (blue dotted lines) and
the present work (red solid lines). The average value of 5 mass units
are shown. The cases are for central collision of mass 40 on mass 40
for different beam energies (a) 25, (b) 50, and (c) 100 MeV/nucleon.
500 events were chosen at each energy.

molecular dynamics” approach. In the latter nucleons are
represented by Gaussians in phase space; the centroids have
an �r and a �p which are originally generated by Monte Carlo
calculations. These collide. This corresponds to “nucleons”
colliding in our prescription. As the centroids move after
collision, they drag the Gaussians along. The Gaussian wave
packets in position and momentum space provide the mean-
field and Pauli blocking. The Gaussians do not change their
shapes or widths. These are very strong restrictions and
lead to very different mean field propagation. The Vlasov
propagation has much more flexibility and originates from
more fundamental theory.

III. SOME DETAILS OF THE SIMULATIONS

We provide some details of the calculation. For Vlasov
propagation we use the lattice Hamiltonian method [12] of
Lenk and Pandharipande which accurately conserves energy
and momentum. The mean field Hamiltonian for Vlasov
propagation is also adopted from that work. The potential
energy density is

v(ρ(�r)) = A

2
ρ2(�r) + B

σ + 1
ρσ+1(�r) + cρ

1/3
0

2

ρ(�r)

ρ0
∇2

r

[
ρ(�r)

ρ0

]
.

(1)

The values of the constants are A = −2230.0MeVfm3,
B = 2577.85 MeV fm7/2,σ = 7/6,ρ0 = 0.16 fm−3, c =
−6.5 MeV. The last term in the right hand side of Eq. (1)
gives rise to surface energy in finite nuclei. That favors the
formation of larger composites, for example, the occurrence
of a nucleus of A nucleons over the formation of two nuclei of
A/2 nucleons. Entropy works the other way.

Further details are
(1) Calculations were done in a 200 × 200 × 200 fm3 box.

The configuration space was divided into 1 fm3 boxes.
(2) For results shown here the code was run from t = 0 fm/c

to t = 200 fm/c. Positions and momenta of tp’s were updated
every �t = 0.3 fm/c.

(3) For nucleon-nucleon collision we follow Appendix B.
of Ref. [1].

(4) The number Ñ was set at 100.
(5) Once the two-body collisions are nearly over, contigu-

ous boxes with tp’s that propagate together for a long time are
considered to be part of the same cluster. The contiguous boxes
have at least one common surface and the nuclear density
exceeds a minimum value (dmin). Different dmin values as
0.002, 0.005, 0.01, 0.015, and 0.02 fm−3 are tried to check the
sensitivity of this parameter. It is observed that the fragment
multiplicity distribution is not changing very much with dmin,
therefore we use dmin = 0.01 fm−3 for further calculations.

IV. RESULTS

In Fig. 2 we show plots of multiplicity against mass
number a for 120 on 120. Four beam energies are shown.
For each energy 1000 events were taken. We show results
of averages for groups of five consecutive mass numbers.
The prominent feature we wish to point out is that at low
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FIG. 2. (Color online) Mass distribution from BUU model cal-
culation for NA = 120 on NB = 120 reaction at beam energies (a)
50 MeV/nucleon, (b) 75 MeV/nucleon, (c) 100 MeV/nucleon, and
(d) 150 MeV/nucleon. The average value of 5 mass units is shown.
At each energy 1000 events are chosen. Only central collisions are
considered here but even at Ep = 50 MeV/nucleon, nucleons in the
peripheral region passes through and largest fragment remaining is
less than the sum of the masses of the two nuclei.

beam energy (50 MeV/nucleon) the multiplicity first falls
with mass number a, reaches a minimum, then rises, reaches a
maximum before disappearing. As the beam energy increases
the height of the second maximum decreases. At beam energy
75 MeV/nucleon the second maximum is still there but barely.
At higher energy the multiplicity is monotonically decreasing,
the slope becoming steeper as the beam energy increases.
This evolution of shape of the multiplicity distribution is of
significance as we will emphasize soon but let us point out
this evolution of shape was a long time prediction of the

FIG. 3. Mass distribution from the canonical thermodynamical
model (CTM) calculation for fragmentation of a system of mass
A0 = 192 at temperature (a) 6.5 MeV, (b) 7.5 MeV, (c) 10 MeV, and
(d) 14 MeV.

canonical thermodynamic model (CTM) [13,14]. For transport
models the natural variable is the beam energy. For CTM
the natural variable is the temperature T . For illustration
we have shown the multiplicity distribution for a system of
192 particles in CTM at temperatures of 6.5 MeV, 7.5 MeV,
10 MeV, and 14 MeV (Fig. 3). The calculations with BUU
and CTM are so different that the similarity in the evolution of
the shape in multiplicity distribution is very striking. Indeed
this correspondence provides the support for assumptions of
statistical model from a microscopic calculation.

To proceed further with the correspondence between the
two models we need to establish a connection between
Ep of BUU and temperature T of CTM. Temperature T
of CTM will give an average excitation energy E∗ of the
multifragmenting system in its center of mass (c.m.) [14].
We can calculate the excitation energy (E∗) in the c.m. from
(Ep) by direct kinematics by assuming that the projectile and
the target fuse together. In that case the excitation energy is
E∗ = ApEp/(Ap + At ), where Ap and At are projectile and
target masses, respectively. This value is too high as a measure
of the excitation energy of the system which multifragments.
The nucleons at the edges of the two nuclei pass through
carrying a lot of energy and are not part of the multifragmenting
system. These are pre-equilibrium particles. In experiments
about 20% of nucleons are emitted as fast pre-equilibrium
particles: see for example [15,16]. Further details can be found
in Ref. [17] but this is what we do basically. We go to the
cm of the two ions to do BUU and at the end discard 20%
particles (these have the highest energies), and measure energy
(potential plus kinetic) of the rest. To find the excitation energy
we subtract Thomas-Fermi ground-state energy of the rest with
the Hamiltonian of Eq. (1).

Figure 4 gives some CTM results and also makes a
comparison of one CTM result with transport model result.
The top left diagram is E∗ vs. T in CTM for 192 particles
(A0 = 192 = 80% of 240). This approximates usual E∗ vs
T for first-order phase transition. There is a boiling point
temperature T which remains constant as energy increases.
In the example here, because we have a very finite system, the
slope dE∗/dT is not infinite but high. Let us now consider
lower left diagram again drawn in CTM. Here Amax is the
average value of the largest cluster. A high value of Amax/A0

means liquid phase and low values means gas phase. The
criteria of deciding which composites belong to the gas phase
and which to the liquid phase are discussed in detail in two
previous papers [18,19].

In the bottom left diagram, one sees more dramatically that
in a short-temperature interval liquid has transformed into gas.
The only input in our transport model is the beam energy.
The common dynamical variable in both our model and CTM
is E∗. Of course the E∗ in CTM is an average whereas the
E∗ in transport model is a microcanonical E∗. In the top
right corner of Fig. 4 is the plot of Amax/A0 as a function
of E∗ in CTM. The transformation from liquid to gas is more
gradual, essentially spanning the energy range across which,
liquid transforms totally into gas. Even for a large system,
where the transformation of liquid to gas as a function of
temperature is very abrupt, the transformation as a function of
energy per particle will be quite smooth. The bottom right in
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FIG. 4. (Color online) Top left curve (a) is a canonical thermody-
namical model (CTM) calculation for excitation (E∗) vs. temperature
(T ) for A0 = 192. Between 6 MeV and 7.5 MeV temperatures, E∗

rises quickly. The dE∗/dT slope increases sharply with mass size
A0 and is indicative of first-order phase transition. Bottom left curve
(b) is also a CTM curve showing that the size of largest cluster drops
sharply between 6 MeV and 7.5 MeV. Again this is a first-order liquid
gas phase transition. Top right (c) is also with CTM but Amax/A0 is
plotted against excitation energy per nucleon instead of temperature.
The change of liquid to gas is necessarily slower, the range of energy
for the change is dictated by latent heat. Bottom right (d) is the
calculation from transport model.

Fig. 4 is from our transport model calculation. The similarity
with the CTM graph is close enough that we conclude the
transport model calculation gives evidence of liquid-gas phase
transition. To find closer correspondence between transport
model calculations and CTM, it will be best if we can deduce
at least an approximate value of temperature for each beam
energy. For an interacting system this is very nontrivial.
Formulas like E∗

A
= 3T

2 are obviously inappropriate. One might
try to exploit the thermodynamic identity T = ( ∂E

∂S
)V . This

requires obtaining a value of the entropy for an interacting
system. We will be working on this in future.

In concluding this section, we mention that while we have
established a correspondence between transport model results
and CTM results, a more natural choice would have been to
compare transport model results with multiplicity distributions
obtained from the microcanonical statistical multifragmenta-
tion model (SMM) [20]. These are not available to us. However
for the only cases investigated we found that CTM and SMM
results were quite close [21] so the correspondence we have
found here between transport model results and CTM will
presumably hold for SMM also. Multiplicity distributions in
16O +80 Br were done with dynamic models before. The work
in Ref. [22] used molecular dynamics. The work in Ref. [23]
comes closer in spirit to ours. The colliding system was small

and no attempt was made to link the work with statistical
models or phase transition.

V. DISCUSSION

We now look at one feature of the model that raised concerns
and led to a lot of work to propose alternative methods for
calculations [9,10]. This is related to dangers of crossing
fermionic occupation limits in the model here (as in the model
of Ref. [3]). As mentioned already, if Pauli blocking allows
two tp’s i and j to collide, then not only these two but also
Ñ − 1 tp’s closest to i and Ñ − 1 closest to j move to represent
that two actual nucleons scatter. The tp’s that move with i are
denoted by is , with s = 0 to Ñ − 1. The square of the distance
is taken to be d2

0s = ( �rio− �ris )2

R2 + ( �pio− �pis )2

p2
F

. Here R is the radius of
the static nucleus of A = 120 and pF the Fermi momentum..
The tp’s js are then chosen from the rest of the tp’s. Define now
〈 �pi〉 =

∑ �pis

Ñ
, similarly 〈 �pj 〉. One then considers a collision

between 〈 �pi〉 and 〈 �pj 〉 and obtain a � �p for 〈 �pi〉 and −� �p for
〈 �pj 〉. This � �p is added to all �pis and −� �p to all �pj . Since the
tp’s are moved without verifying Pauli blocking there may be
cases where one exceeds the occupation limits for fermions.

Initially the two ions have a very compact occupation at two
different corners of phase space. Collisions make a far wider
region of phase space available to nucleons so this problem
may not be severe. An accurate estimation of exceeding the
fermionic limit of occupation at various parts of phase space
is very hard to compute in our present problem but some
measures are relevant.

For 120 on 120 at 100 MeV/nucleon beam energy (50
MeV/nucleon beam energy was studied also) we follow one
event as a function of time. In every collision in the event,
2Ñ tp’s change momenta. To be specific, let the tp is move
from �r, �pin to �r, �pf i . We check if by moving is to the final
phase space point (�r, �pf i) we cross the fermionic limit. We
build a six-dimensional unit cell in phase space around this
final phase space point [1,24]. The volume of the unit cell
Should be small so that one is investigating the phase-space
occupation very near (�r, �pf i), but it cannot be too small since
Monte Carlo simulation has noise which can cloud the actual
effect. In accordance with past calculations we chose a volume
of unit cell in phase space where eight tp’s is the maximum
number allowed for fermions. If n is the number of tp’s (not
including is) already in the unit cell we define an availability
factor f̃ = 1.0 − n/8. If f̃ = 0 we are already at the limit
of fermionic occupation. If f̃ is negative we have crossed
the quantum limit and are in the classical regime. Any positive
number between 0 and 1 will accommodate additional fermion.
For each collision there are 200 f̃ ’s to be calculated so for
each collision we get an ave f̃ and that is plotted in Fig. 5. We
have shown results for t = 25 to 125 fm/c when most of the
action takes place. For reference we also plot average f̃ for
randomly chosen 120 tp’s in a static mass 120 nucleus as they
move around in time. This number should ideally be 0 and not
fluctuate. The deviations from zero in the static case probably
largely arise due to fluctuations in Monte Carlo sampling. This
degree of uncertainty must be also present in the values of f̃ we
have plotted for collisions. In spite of these uncertainties the
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FIG. 5. (Color online) Variation of average availability factor
(see text) with time (red line) for NA = 120 on NB = 120 reaction
at beam energy 100 MeV/nucleon. The lower curve (black dotted
line) is the average availability factor 〈f̃ 〉 at the phase space points of
arbitrarily chosen 120 test particles in an isolated mass 120 nucleus
as they move in time. The fluctuations from the value 0 reflects
uncertainties, probably due to fluctuation in initial Monte Carlo
simulations.

predominantly positive values of f̃ as displayed in Fig. 5 lead
us to believe that the general trends we find in our calculation
will hold.

If in a collision all of the 200 tp moved to locations where
f̃ were all positive we will stay within the fermionic limits.
In case there is a tp which does not satisfy this we can try to
improve the situation by discarding that tp and choosing the
next available tp to be part of the cloud. Complications arise
because when some of the previously chosen tp’s are discarded
for new ones the average momentum of the clouds will change,
new � �p will have to be used so the final resting spots obeying
energy and momentum conservation will change too. An
iterative procedure needs to be formulated but convergence
may be slow.

Alternative methods have been proposed. The two papers
which give procedural details of moving two clouds of tp’s
from initial positions to final positions with a stricter adherence
to fermionic limits are Refs. [9,10]. Multiplicity distributions
are not given so we cannot compare. Even if the multiplicity
distributions turn out to be similar, higher order correlations
can be very different. The present work extended the first
proposed model of fluctuations in BUU to a larger system
at many energies and a very interesting lesson was learned.
The gross features of multiplicity distribution do resemble
strongly the results from equilibrium statistical models which
have proven very successful in explaining experimental data.

VI. SUMMARY

An event-by-event simulation of a transport model was
made at collisions of moderately heavy ions at zero impact
parameter. Multiplicity distributions were calculated. They
are remarkably similar to those obtained from a equilibrium
statistical model (CTM). This work therefore justifies the
use of the equilibrium statistical model for data fitting. This
statistical model implies first order phase transition in large
nuclear systems at finite temperature. It will be of interest to
quantify more precisely the correspondence of transport model
result and statistical model results. That work is in progress.
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