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Higher partial-wave potentials from supersymmetry-inspired factorization
and nucleon-nucleus elastic scattering
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A simple potential model of the Hulthen type without spin-orbit coupling is considered as the ground-state
interaction, and in conjunction with supersymmetric quantum mechanics, higher partial-wave interactions are
developed to study the scattering of nucleons from light nuclei. The phase function method is adopted to deal
with scattering phase shifts. Applying certain energy-dependent correction factors to our interactions, a close
agreement with experimental data is obtained for the elastic scattering of nucleons from alpha particles up to
12 MeV.
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I. INTRODUCTION

The theory of nuclear forces is one of the oldest branches
in nuclear physics and has a long history. Although a vast
amount of works has already been devoted to the nucleon-
nucleon (NN) problem still the NN interaction is the most
fundamental problem in nuclear physics yet. These systems
have been studied extensively and they provide a large number
of reliable experimental data. The first field theoretic approach
to find the fundamental theory of nuclear forces was started
by Yukawa [1]. Since then a vast theoretical effort was made
to derive 2π exchange contribution to the nuclear force to
develop high precession parametrized potentials such as Paris
potential [2], Nijm 93, Nijm-I, Nijm-II [3], CD-Bonn [4], and
many others [5–7]. The data base regarding phase shift analysis
was augmented considerably by a number of groups [8–15].
The phase shift data presented by these groups do not differ
much except the methods employed were refined in one way
or another. Thus, one can safely rely on these NN phase shift
values.

But the situation is not so reliable for heavier systems.
The elastic scattering between light nuclei is generally treated
within the framework of the generator coordinate method
(GCM) or the resonating group method. Within this model
good agreement with experimental data regarding elastic
scattering phase shifts have been achieved [16,17] by using
phenomenological two-body interactions. Satchler et al. [18]
with an optical potential model and Dohet-Eraly and Baye [19]
within the formalism of unitary correlation operator method
have studied (α − n) and (α − p) elastic scattering below
20 MeV and found good agreement with experimental data
[20]. In the recent past we have exploited the supersymmetry-
inspired factorization method to develop higher partial-wave
potentials for nucleon-nucleon systems from their ground-state
interactions and compute the related phase shifts [21–25].
Inspired by this we propose here a simple potential model (s
wave) for the nuclear part of the (α − n) and (α − p) systems
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and generate their higher partial-wave interactions through the
application of the well-known formalism of supersymmetric
quantum mechanics (SQM) [21–29]. For the charged hadrons
system one has to add an electromagnetic interaction with
the nuclear part. Here the atomic Hulthen potential takes care
of the electromagnetic interaction. We compute the scattering
phase shifts for the associated interactions by judicious use of
the phase function method (PFM) [30]. The present article is
an effort in this direction. In Sec. II we propose ground-state
interactions along with a brief outline of the development of the
next higher partial-wave interactions through SQM formalism.
Section III is devoted to computation and discussion on
phase shifts. Finally, in Sec. IV some concluding remarks are
presented.

II. SUPERSYMMETRY AND HIGHER
PARTIAL-WAVE INTERACTIONS

Arnold and MacKellar [31] have parametrized the Hulthen
potential to fit the deuteron binding energy and s-wave
scattering length. Hereafter we shall designate it as nuclear
Hulthen potential. It is also well known that the Hulthen
potential is applicable for the s wave only. In SQM [26–29] one
often deals with the hierarchy problems, for example, within
the framework of the SQM one can generate a Hamiltonian
hierarchy, the adjacent members of which are the supersym-
metric partners in that they share the same eigenvalue spectrum
except the missing ground state. Therefore, it may be of
considerable interest to generate the supersymmetric partners
of the nuclear Hulthen potential and study their properties. We
designate these generated supersymmetric partners as p- and
d-wave potentials.

The s-wave nuclear Hulthen potential [31] for the N-N
system reads

V 0
N (r) = −(β2 − α2)

e−βr

(e−αr − e−βr )
, (1)

where β stands for the inverse range parameter and the wave
number α is related to the strength of the interaction. Following
the SQM formalism, in our recent few papers [21–25], we have
constructed the higher partial-wave NN potentials. Those are
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FIG. 1. (Color online) Potentials (s, p, and d states) for the
(α − n) system.

expressed as

V �
N (r) = V 0

N (r) + �(� + 1) (β − α)2e−(α + β) r

2 (e−αr − e−βr )2 ;

� = 1,2, . . . (2)

For the (α − n) and (α − p) systems, unlike the NN system,
the s-wave nuclear interaction is proposed by the following
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FIG. 2. (Color online) Phase shifts (s and p states) for the (α − n)
system.
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FIG. 3. (Color online) Phase shifts (d state) for the (α − n)
system.

two-term potential:

V (0)
αn (r) = V

(0)
N (r) + (β − α)2 e−(α +β) r

(e−αr − e−βr )2 . (3)

Applying the basic formalism of SQM the higher partial-
wave (p- and d-wave) nuclear potentials are obtained as

V (1)
αn (r) = V

(0)
N (r) + 3(β − α)2 e−(α +β) r

(e−αr − e−βr )2 (4)
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FIG. 4. (Color online) Potentials (s, p, and d states) for the
(α − p) system.
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FIG. 5. (Color online) Phase shifts (s and p states) for the
(α − p) system.

and

V (2)
αn (r) = V

(0)
N (r) + 6(β − α)2 e−(α + β) r

(e−αr − e−βr )2 . (5)
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FIG. 6. (Color online) Phase shifts (d state) for the (α − p)
system.

For the (α − p) system the s-, p-, and d-wave interactions
read

V (0)
αp (r) = VH (r) + V (0)

αn (r) , (6)

V (1)
αp (r) = VH (r) + V (1)

αn (r) , (7)

and

V (2)
αp (r) = VH (r) + V (2)

αn (r) . (8)

The quantity VH (r) stands for the two-parameter (V0 and
a) atomic Hulthen potential [32] written as

VH (r) = V0
e−r/a

(1 − e−r/a)
. (9)

III. COMPUTATION OF PHASE SHIFTS
AND DISCUSSIONS

The phase function method (PFM) is an efficient tool for
evaluating scattering phase shifts for quantum mechanical
problems involving local and nonlocal interactions [30,33,34].
For a local potential the phase function δ�(k,r) satisfies a
first-order nonlinear differential equation [30] that reads

δ′
�(k,r) = −k−1 V (r)[ĵ�(kr) cos δ�(k,r)

− η̂�(kr) sin δ�(k,r)]2, (10)
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FIG. 7. (Color online) Potentials (s, p, and d states) for the
(α − n) system with correction.
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FIG. 8. (Color online) Phase shifts (s and p states) for the (α − n)
system with correction.

where ĵ�(kr) and η̂�(kr) are the Riccati Bessel functions
with ĥ

(1)
� (x) = −η̂�(x) + i ĵ�(x). The scattering phase shift

δ�(k) is obtained by solving the equation from the origin to
the asymptotic region with the initial condition δ�(k,0) = 0.
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FIG. 9. (Color online) Phase shifts (d state) for the (α − n)
system with correction.
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FIG. 10. (Color online) Potentials (s, p, and d states) for the
(α − p) system with correction.

We have computed and plotted the s- and p-wave potentials
for the systems under consideration. With the parameters
β = 1.135 fm−1 and α = 0.949 fm−1 the s-, p-, and d-wave
interactions and the corresponding phase shifts for the (α − n)
system are portrayed in Figs. 1–3. For the (α − p) system
the same are depicted in Figs. 4–6 with the parameters
β = 1.135 fm−1 and α = 1.011 fm−1. We have chosen to
work with (2kη)−1 = 18.12908 fm and a = 20 fm. The phase
shifts are computed for the potentials in Eqs. (3)–(9) by
applying Eq. (10).

In Figs. 1 and 4 it is observed that stronger repulsive cores
develop in the SQM generated p- and d-wave interactions than
their s-wave counterparts. Looking closely into Figs. 2, 3, 5,
and 6 it is observed that the phase shifts for our proposed s
wave and SQM generated p- and d-wave potentials produce
the correct nature of the phase shifts for 1/2(+), 1/2(−), and
5/2(+) states of the (α − n) and (α − p) systems, respectively.
For the (α − n) system we notice that our phase shift values
δ1/2(+), δ1/2(−), and δ5/2(+) differ more or less symmetrically
on either side of ELab = 7.5 MeV, ELab = 6.5 MeV, and
ELab = 10.0 MeV, respectively, from those of experimental
results [20]. On the other hand, for the (α − p) system these
values are ELab = 4.3 MeV and ELab = 9.0 MeV for s and
p waves, respectively. However, for the d wave our phase
shifts differ significantly and no such point of coincidence
is detected within the range of consideration. Therefore, our
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FIG. 11. (Color online) Phase shifts (s and p states) for the
(α − p) system with correction.

data need correction on either side of the point of coincidence
to have a better agreement with standard data [18–20]. To
simulate the effect of such correction in the phase data
we have identified and incorporated an energy-dependent
correction factor to the s, p, and d-wave interactions to
achieve good agreement with the experiment [20]. These
are V (0)C

αn (k,r) = 1.25(k2 − 0.231)e−γ (α + β)r ; γ = 0.58,
V (1)C

αn (k,r)=1.25(k2−0.2)e−γ (α+β)r ; γ = 0.097, V (2)C
αn (k,r) =

1.25(k2 − 0.308)e−γ (α+β)r ; γ = 0.273 for the (α − n) sys-
tem and V (0)C

αp (k,r) = 1.25(k2 − 0.133)e−γ (α+β)r ; γ = 0.38,
V (1)C

αp (k,r) = 1.25(k2 − 0.28)e−γ (α+β)r ; γ = 0.067 for the
(α − p) system. Although no point of coincidence is noticed
in our d-wave data with the standard result [18–20] still we
have applied this correction factor V (2)C

αp (k,r) = 1.25(k2 −
0.772)e−γ (α+β)r ; γ = 0.25 to our generated (α − p) potential
to achieve a close agreement with the experiment [20].
Here γ is an additional adjustable parameter. These phase
shifts and potentials with respective correction factors are
included in Figs. 7–12. The phase shifts and the potentials
with correction factors to s, p, and d states are denoted by
δ

1/2(+)
C , δ

1/2(−)
C , δ

5/2(+)
C , and V (0)(k,r), V (1)(k,r), V (2)(k,r),

respectively.
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FIG. 12. (Color online) Phase shifts (d state) for the (α − p)
system with correction.

IV. CONCLUSION

In the present text we have proposed a simple potential
model without taking recourse to the spin-orbit interaction for
the (α − n) and (α − p) systems for the partial wave � = 0.
The higher partial-wave interactions have been generated
by exploiting the formalism of supersymmetric quantum
mechanics and analyzed its effectiveness through the phase
shift calculations. Although they differ in their numerical
values our computed phase shifts produce the correct nature
of the respective states. With an additional energy-dependent
correction factor to the potential we have achieved fairly good
agreement with the experiment [20]. In contrast to earlier
approaches to the problem [18,19] the present model is much
simpler; it involves two parameters (α &β ) related to range
and depth of the ground interaction, and γ , another adjustable
one. From our observation it is reflected that the algebra
of SQM also has the qualitative ability to describe higher
partial-wave state interactions and physical observables from
the knowledge of their ground state in subatomic regions.
The quantitative agreement of phase shifts was obtained by
applying an additional energy-dependent correction factor to
respective states. Thus, one may conclude by noting that the
energy-dependent correction factors of the interactions, to
some extent, have the ability to produce the effect of spin-orbit
coupling factors. Therefore, it our belief that the combined
approach of SQM and PFM may be of considerable interest for
the nucleon-nucleus scattering and deserves some attention.
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