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Background: Astrophysical reaction rates, which are mostly derived from theoretical cross sections, are necessary
input to nuclear reaction network simulations for studying the origin of p nuclei. Past experiments have found a
considerable difference between theoretical and experimental cross sections in some cases, especially for («,y)
reactions at low energy. Therefore, it is important to experimentally test theoretical cross section predictions at
low, astrophysically relevant energies.

Purpose: The aim is to measure reaction cross sections of '’ Ag(a,y)!"'In and '7 Ag(ar,n)!'°In at low energies
in order to extend the experimental database for astrophysical reactions involving « particles towards lower
mass numbers. Reaction rate predictions are very sensitive to the optical model parameters and this introduces a
large uncertainty into theoretical rates involving « particles at low energy. We have also used Hauser-Feshbach
statistical model calculations to study the origin of possible discrepancies between prediction and data.
Method: An activation technique has been used to measure the reaction cross sections at effective center of mass
energies between 7.79 MeV and 12.50 MeV. Isomeric and ground state cross sections of the («,n) reaction were
determined separately.

Results: The measured cross sections were found to be lower than theoretical predictions for the («,y ) reaction.
Varying the calculated averaged widths in the Hauser-Feshbach model, it became evident that the data for the
(e, ) and (a,n) reactions can only be simultaneously reproduced when rescaling the ratio of y to neutron width
and using an energy-dependent imaginary part in the optical « + '’ Ag potential.

Conclusions: The new data extend the range of measured charged-particle cross sections for astrophysical
applications to lower mass numbers and lower energies. The modifications in the model predictions required to
reproduce the present data are fully consistent with what was found in previous investigations. Thus, our results

confirm the previously suggested energy-dependent modification of the optical a+nucleus potential.

DOI: 10.1103/PhysRevC.91.034610

I. INTRODUCTION

The synthesis of elements heavier than iron proceeds
via different processes. The so-called s and r processes
involve neutron capture reactions. The s process is the slow
neutron capture process responsible for the production of
stable isotopes along the valley of B stability in the chart of
isotopes. The r process is the rapid neutron capture process and
approximately half of the heavy elements with mass number
A > 70 and all the actinides in the solar system are believed to
have been produced by the  process. These two processes were
found to be unable, however, to create 35 neutron-deficient,
natural isotopes between *Se and '°°Hg, which were called
“p nuclei” or “excluded isotopes” [1,2]. Recently, it has been
shown, on the other hand, that '%*Er,'52Gd, and '3Ta may
have large s-process contributions, nevertheless, and that the
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v process may contribute to '*¥La and '3°Ta (see, e.g., [3]
and references therein). The remaining p nuclei are thought to
be produced in the y process which includes combination of
(y,n), (¥, p), and (y,) reactions [1-9].

The y-process nucleosynthesis is modeled by using an ex-
tended nuclear reaction network, for which—among others—
reaction rate information of thousands of neutron, proton,
and «-induced reactions as well as their inverse reactions are
needed [10-12]. Experimental studies of reactions important
in this context have been performed in recent years [13-35]
but despite this effort, experimental cross sections are still
very scarce at astrophysically interesting, low energies. The
full list of the experiments can be found in the KADoNiS
p-process database [36]. The experiments performed so far
have shown that there can be considerable differences between
theoretical and experimental cross sections in some cases
at energies close around the Coulomb barrier. In order to
get rid of this discrepancy, there is also strong effort to
obtain a global a+nucleus optical potential [37] via a-elastic
scattering experiments [38—40]. Theoretical cross sections
are used in y-process network calculations and a deficiency
in reaction rates can perhaps be responsible for the failure
of y-process models in reproducing the observed p isotope
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TABLE 1. Decay parameters of reaction products taken
from [42,43]. Only the y transitions used for the analysis are listed.

Reaction Half-life E, I,
(keV) (%)
07 Ag(a,y)""In  2.8047 & 0.0004 d 171.28 90.7 £ 0.9
107 Ag(a,n)!1%In 492 +0.08h 641.68 26.0+0.8
707.40 2054+ 1.1
937.16 684 +1.9
107 Ag(a,n)!'%" In 69.1 &+ 0.5 min 2129.40 2.154+0.03
2211.33  1.74 £0.03

abundances in the mass range 150 < A < 165. For this reason,
further experimental reaction studies should be performed at
astrophysically relevant energies in order to improve both the
experimental cross section database and the theoretical cross
section calculations.

Although %7 Ag is not a p nucleus and mostly produced by
the s and r processes, in order to further test the reliability
of statistical model predictions in this mass range, the o-
capture cross sections of '’Ag have been measured in the
effective center of mass energy range between 7.79 MeV
and 12.50 MeV using the activation method. These energies
are close to the astrophysically relevant energy range (the
Gamow window) which extends from 5.83 MeV to 8.39 MeV
at 3 GK temperature typical for the y process [41]. The
results were compared with Hauser-Feshbach statistical model
calculations.

Details of the experiment are given in Sec. II. The
experimental results are presented in Sec. IIl A. A comparison
to statistical model calculations and a detailed discussion
is given in Sec. III B. The final section, Sec. IV, provides
conclusions and a summary.

II. EXPERIMENT

Reaction cross sections of '7Ag(a,y)!"'In and
197 Ag(ar,n)"%In have been measured at the laboratory
energies between 8.16 MeV and 13.00 MeV. Since the
reaction products are radioactive and their half-lives are
convenient, the activation method was used to determine
the cross sections. Detailed information about the activation
method can be found, e.g., in [15].

In the case of '“Ag(a,n) the reaction product !''’In
has a long-lived isomeric state. The partial cross sections
leading to the ground as well as the isomeric states can be
determined separately owing to the different decay patterns of
the two states. The decay parameters used for the analysis are
summarized in Table 1.

A. Target preparation

Natural silver and isotopically enriched '7 Ag targets were
produced by vacuum evaporation onto high purity thin alu-
minum foils (from 1.8 wm to 2.5 wm). The backing aluminum
foils were thick enough to stop the heavy reaction products.
Enriched targets were produced from 99.50% isotopically
enriched '“7Ag available in metallic powder form (obtained
from the company ISOFLEX USA, Certificate No: 47-02-
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107-2999). Both natural and enriched Ag metal powders were
evaporated from a molybdenum crucible heated by DC current.
The backing foil was placed 7 cm above the crucible in a holder
defining a circular spot with a diameter of 12 mm on the foil
for Ag deposition.

The target thicknesses were determined with weight mea-
surement. Before and after the evaporation the weight of the
foils were measured with a precision better than 5 g and then
from the difference the Ag areal density could be determined.
Enriched and natural targets were prepared with thicknesses
varying between 410 pg/cm? and 1042 pg/cm?. The targets
were only irradiated once or cooled for more than 20 half-lives
between two subsequent activations of the same target. Reused
targets were checked by y measurement before the second
irradiation to determine any remaining activity.

B. Activations

The targets were irradiated with & beams from the cyclotron
accelerator of MTA Atomki. In total 13 irradiations were
made at different energies between Ej,, = 8.16 MeV and
Eyp = 13.00 MeV laboratory energies. For 11.00 MeV and
11.50 MeV, two irradiations were carried out with enriched
and natural targets to test systematic uncertainty related to
the targets. The results were compatible with each other
(see Table II). Some energies were measured with an energy
degrader foil because the cyclotron could not produce these
beam energies directly (see Table II). Aluminum and nickel
foils were used as energy degraders. The thicknesses of
the energy degrader foils were determined by energy loss
measurement of « particle emitted from a 2*! Am source. In
order to calculate thickness of the degrader foils, THIMET
code [44] was used which takes into account the energy
dependence of stopping power through the degrader foil.

A diagram of the target chamber is shown in Fig. 1.
After the last beam defining aperture the whole chamber was
isolated and used as a Faraday cup to determine the number
of projectiles by charge collection. A suppression voltage of
—300 V was applied at the entrance of the chamber to suppress
the secondary electrons. The beam current was recorded using
a current integrator in multi channel scaling mode in order to
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FIG. 1. (Color online) A schematic drawing of the target cham-
ber used for the irradiations.
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take into account the possible changes in the beam current.
The integrated current was recorded every 10 or 60 s.

In addition, in order to monitor target stability during
the irradiation, an ion-implanted Si detector was placed into
the target chamber at 165° relative to the beam direction. The
elastic backscattering spectra were continuously taken and
there were no substantial background peaks besides Ag and
Al observed in the spectra. If there is no target deterioration
then the ratio of the number of backscattered particles to
those of incoming particles should be constant in time. Target
stability was regularly checked and no target deterioration was
observed during the irradiations. Because the target stability
could not be monitored when an energy degrader foil was
used, the beam current was limited to 800 nA in these cases.
This value was tested before the experiment using a natural
target and found that there was no target deterioration. The
beam stop was placed 10 cm behind the target from where no
backscattered particles could reach the particle detector. The
beam stop was directly water cooled during the irradiation. The
typical current was between 150 nA and 800 nA. The length
of irradiation was chosen in the range of 1.5 h—19.8 h based on
the longest half-life of the activation products and the expected
cross section. Due to the steeply decreasing cross sections at
low beam energies, longer irradiation time was applied at the
lowest energies to obtain sufficient statistics.

C. y counting and analysis

After each irradiation the target was taken from the reaction
chamber and placed into a low-background counting setup to
measure the '''In and ''°In activities produced through the
197 Ag(a, )" In and '7 Ag(a,n)''%In reactions, respectively.
According to the actual count rate of the reaction products the
target was placed at a distance of 10 cm or 1 cm from the end
cap of a HPGe detector having 100% relative efficiency. To
reduce the room background the HPGe detector was placed
into 47 commercial 10 cm thick lead shield with 1 mm
cadmium and 1 mm copper layers.

As an example, Fig. 2 shows an off-line y-ray spectrum
taken after a 8.7 h long irradiation with an o beam of 10.00
MeV for a counting time of 16.5 h indicating the y lines used
for cross-section measurements (Table I).

Owing to the very different half-lives of the reaction
products (2.8047 d, 4.92 h, and 69.1 min) and the different
expected cross sections, the counting periods were segmented
into several parts. The y spectra were stored regularly in every
10 min near the beginning of the counting and in every 30 min
after 1 h. The ratio of the cross sections of %7 Ag(a,n)!'%In
to '97Ag(er,y)'"'In reactions is about 30 at 10.5 MeV and
about 95 at 12.5 MeV. At the beginning of the counting the
spectra were thus dominated by the intense y radiations from
the 19 Ag(ar,n)''%In decay products. The measurement of the
activity of the '“” Ag(ar,y)'"'In reaction product was therefore
started only after about 6 h when the activity of at least the ''°In
isomeric state decreased substantially. The reaction product
of the % Ag(a,y)"''In reaction has a short lived (7.7 min)
isomeric state decaying completely by isomeric transition (IT)
to the ground state. Starting the y counting for this reaction
several hours after the end of the irradiation guarantees that
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FIG. 2. (a) Low and (b) high energy parts of the y spectrum
taken after an 8.7 h irradiation of a target with a 10 MeV o beam.
The y lines used for analysis are indicated on the spectrum. The other
peaks are from either laboratory background or the other y transitions
(1 Channel =0.204 keV).

this short lived isomer has decayed completely to the ground
state and hence the total cross section can be obtained.

The product of the '’ Ag(a,y)!''In reaction emits two
strong y lines at 171.28 keV and 245.35 keV with relative
intensities of 90.7% and 94.1%, respectively. But there are
contributions to the 245.35 keV peak from other decays. First,
the («,y) reaction product '''In decays to !''Cd which has an
isomeric state with a half-life of 48.50 min. This state decays
with IT to the ground state and emits a 245.395 keV y ray.
When natural targets are used, ' Cd is also produced by the
109 Ag(a,d)"'!Cd reaction above the threshold (10.552 MeV).
A second contribution to the 245.35 keV peak comes from
the '"’In isotope which is produced by the '®Ag(a,n)'*In
reaction when natural targets are used (see Fig. 3). The energy
of the y line is 244.8 keV and it cannot be distinguished from
the 245.35 keV transition. There is no data for the gamma
intensity of this line in literature [45—47] but the cross section
is rather high (according to theoretical calculation with e.g. the
NON-SMOKER code [48], for 12.21 MeV center of mass energy
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FIG. 3. Decay of the isotopes produced on natural silver targets
by « irradiation.
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the cross section is 43.26 mb). Because of these contributions
only the 171.28 keV y line was used for the cross section
calculation.

In the case of the 7 Ag(a,n)''°In reaction high intensity
y lines at 657 keV and 884 keV are common for the decay
of the isomeric and ground states. Therefore they were not
used for the analysis. Unique y lines with high intensity
for the '%In(e,n)''%1In reaction are at 641.68 keV, 707.40
keV, and 937.16 keV, and for the %7 Ag(a,n)!'%"In reaction
at 2129.40 keV and 2211.33 keV. These lines were chosen to
determine separately the partial cross sections to the ground
and isomeric states.

D. Detector efficiency calibration and true coincidence
summing corrections

Absolute efficiency calibration of the detection system was
done at 10 cm detector-target distance at which the true
coincidence summing effect is negligible. Calibrated *’Na,
54Mn, 37Co, %9Co, %Zn, 133Ba, and 37Cs sources were used
for the efficiency measurement. The efficiency at 171.28 keV
was determined by using a fourth-order polynomial fitted
to the calibration y lines in the energy range from 122.1
keV to 1332.5 keV. For the '"7Ag(a,n)!"’In case, y lines
are located between 642.68 keV and 2211.33 keV. In this
energy range the efficiency curve has power-law like behavior,
therefore in log-log scale linear fit used between 276.4 keV and
1332.5 keV energies and then extrapolated to higher energies
in order to find the efficiency at 2129.40 keV and 2211.33 ke V.
The validity of the linear extrapolation was checked with an
uncalibrated *°Co source emitting high energy y rays.

The efficiencies at the 1 cm geometry used for some of
the cross-section measurements was determined by scaling
the measured efficiencies at 10 cm. In order to find a scaling
factor for all studied y rays, one of the natural target was
irradiated at 12.50 MeV laboratory energy and counted both
at 10 cm and 1 cm. Taking into account the lengths of the
two countings and the time elapsed between them, scaling
factors were determined which include both the difference
in efficiency and the true coincidence summing effect in the
decay of the studied In isotopes [23,49].

III. RESULTS AND DISCUSSION
A. Measured cross sections

The '7Ag(a,y)"'In and 7 Ag(e,n)''°In reaction cross
sections have been measured in the laboratory energies range
between 8.16 MeV and 13.00 MeV, which includes a part of
the astrophysically relevant energy range. Laboratory energies
have been converted into effective center-of-mass energies
(ES" ) that correspond to beam energies in the target at which
half of the yield of the full target thickness is obtained [50].
The experimental cross section results for '’” Ag(a, ) 'In and
107 Ag(ar,n)1%In reactions are presented in Table II and Figs. 4
and 5. Previous results from Baglin [51] and Stelson [52]
are also included in the figures. For '7 Ag(ar,y)'!'In reaction,
disagreement with Baglin [51] is not understood, but the
comparison with theory makes the Baglin values very unlikely.
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TABLE II. Measured cross sections of the '’ Ag(er,y)!''In and
197 Ag(or,n)'1°In reactions.

Ebeam E°T Cross section [ub]

[MeV] [MeV] 07 Ag(ar,y)!"'In 107 Ag(a,n)''%In
8.16° 7.79 £0.08 0.61£0.07

8.51%P 8.16 +0.08 1.52+0.16

9.00* 8.57+0.06 2.41+£0.25 75+13
9.50* 9.07 £0.06 5.34+0.54 51.6t4.5
10.00° 9.554+0.09 123+1.3 235+ 16
10.50° 10.05 £0.09 26.3+£2.7 804 + 56
11.00* 10.52 £0.07 50.1£5.1 1990 £+ 131
11.00 10.57 +£0.07 52.1+53 2059 + 148
11.50* 11.00 £0.07 97.14+9.7 5467 £ 354
11.50 11.04 £0.07 95.9+10.0 5417 £ 365
12.00 11.51+0.07 162+ 16 12568 + 803
12.50 12.00 £0.07 243 £25 24567 + 1552
13.00 12.50+0.08 325+34 37066 + 2338

“Measured with enriched target.
"Measured with an energy degrader foil.

Cross Section (ub)
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e

FIG. 4. (Color online) Measured cross section of '“Ag(a,y)
compared to theory using the SMARAGD code [64] (see text for details).
Previous results from Baglin [51] are also included in the figure.
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FIG. 5. (Color online) Measured cross section of '°7Ag(a,n)
compared to theory using the SMARAGD code [64] (see text for details).
Previous results from Stelson [52] are also included in the figure.
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TABLE III. Partial cross sections of the '’ Ag(a,n) reaction
leading to the ground and isomeric states of '°In.

Ebeam Ec Cross section [ub]

[MeV [MeV] H0fTn (4.92h)  1"In (69.1 min)
9.00* 8.57£0.06 0.254+0.03 73+1.3
9.50* 9.07 £0.06 2.8+0.2 48.8+4.4
10.00° 9.554+0.09 157+£1.0 219+ 16
10.50° 10.05£0.09 582435 745 £ 55
11.00% 10.52 £0.07 170+ 11 1821 £130
11.00 10.57 £0.07 175+ 11 1883 £+ 148
11.50* 11.00 £ 0.07 518 £31 4949 £ 352
11.50 11.04 £0.07 506 + 31 4911 +363
12.00 11.51 £0.07 1494 +90 12443 4886
12.50 12.00 £ 0.07 2904 £ 176 21663 + 1542
13.00 12.50 £0.08 4668 + 281 32398 +2321

#Measured with enriched target.
"Measured with an energy degrader foil.

For '97Ag(a,n)''%In reaction, the agreement is good with
Stelson [52] but our energy range is much wider.

The uncertainty of the measured cross sections comprise the
following partial components added quadratically: counting
statistics (between 0.6% and 14.0%), detection efficiency (7%)
(including the conversion factor between the two counting
geometries), decay parameters (less than 3.1%), and target
thickness (7%). The uncertainty of the beam energy is
governed by the energy loss in the targets determined with
the SRIM code [53] (between 0.6% and 1%), uncertainties
in the energy degrader foil thickness (1%) and the energy
calibration and stability of the cyclotron (0.5%). In order to
check systematic uncertainties, measurements at 11 MeV and
11.5 MeV energies were carried out with two different targets.
The cross section results of the two measurements are in a
good agreement (Table II).

The (a,n) reactions on '’ Ag populate the ground state
(Tyj, = 4.92 h) and isomeric state (T, = 69.1 min) of
10T, Partial cross sections leading to these two states are
listed separately in Table III. The total cross section of the
197 Ag(ar,n)"%In reaction was determined by summing the
partial cross sections. In those cases where the cross section
was determined based on the counting of more than one y line
(see Table I), the final cross section quoted in the tables and
shown in the figures were obtained by weighted average.

B. Comparison with Hauser-Feshbach predictions

The Hauser-Feshbach model of compound nuclear reac-
tions makes use of averaged widths describing particle or pho-
ton emission from the formed compound nucleus [10,54,55].
These averaged widths comprise sums over transition widths
connecting the compound state and individual final states,
determined by computing transmission coefficients from the
solution of a time-independent Schrodinger equation for each
transition energetically possible and allowed by quantum
mechanical selection rules [54,55]. In addition to binding
energies of the involved nuclei, optical potentials and low-
lying, discrete excited states have to be known for the
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FIG. 6. (Color online) Sensitivity of the '’ Ag(a,)!!'In reaction
cross sections to variations in various averaged reaction widths as
function of energy [56]. The cross sections are insensitive to a
variation of the proton width across the shown energy range.

calculation of averaged particle widths, and the y-strength
function, discrete excited states, and nuclear level density enter
the computation of the y width.

For a correct interpretation of the differences between data
and predictions, it is necessary to study the sensitivities of the
cross sections to the calculated averaged widths which, in turn,
depend on different nuclear properties. These sensitivities are
not only different for different reaction types but they are also
energy dependent and, in consequence, variations of certain
nuclear properties may have different impact on the resulting
cross sections at lower and higher energy. Sensitivities as a
tool to understand the origin of discrepancies between data
and theory have been thoroughly discussed in [56] and have
been used in previous investigations similar to the present one
(e.g., see [30-33,35,57-60]).

In general, the cross sections may be sensitive to several
properties at a given energy. In this case, it is an advantage to
have consistent data for two or more reaction channels at the
same energy. Here, we are able to simultaneously consider
(o,y) and (o,n) data which allows to reduce ambiguities.
The sensitivity factors of the cross sections of both reactions
to variations in the averaged widths are shown in Figs. 6
and 7. A sensitivity factor —1 < s < 1 implies the cross
section changing by a factor f = |s|(v — 1)+ 1, when the
corresponding width is changed by a factor of v [56,61]. For
s > 0, the original cross section has to be multiplied by f
whereas for s < 0 it has to be divided by f. This means that a
negative sensitivity shows that the cross section will change in
the opposite direction than the width, i.e., it will increase when
the width decreases and vice versa. As can be seen in Figs. 6
and 7, the cross sections of both reactions are sensitive to the
o width in the same manner across the investigated energy
range but the sensitivity to neutron and y widths are different
and opposite. Both reactions are insensitive to a change of the
proton width at the shown energies.

It should be noted that astrophysically relevant energies
are located below the («,n) threshold and therefore the
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FIG. 7. (Color online) Same as Fig. 6 but for ' Ag(c,n)'"°In.

astrophysically interesting width is the o width. This led to the
series of investigations to better constrain this width at low en-
ergy, as mentioned in Sec. I. It was found that the previous data
could be described using an energy-dependent modification of
the o width which only acts at low energy [14,27,32,35,57,59].
The o width was calculated using the well-known optical
potential by [62] with one modification: the depth of the
volume imaginary part W was made energy-dependent. It has
to approach the value given in [62] (25 MeV) at high energy
but has to be shallower at energies below the Coulomb barrier
energy Ec. A Fermi-type function was used to achieve this:

. 25
T + o(09Ec—E2,, )/ag

MeV. (1

In previous work, the value ag for the “diffuseness” of
the Fermi-type function has been found to be between 2 and
5 MeV, depending on the reaction. Using such a modified,
effective optical potential it remains an open question whether
the modification is really due to a required change in the
optical potential, which affects the total reaction cross section,
or due to the neglection of direct processes in the entrance
channel [63].

Here, we use a similar approach to be able to reproduce
the experimental data. Figures 4 and 5 compare calculations
performed with the SMARAGD code [64] with the data. It can
be seen that the prediction using the optical potential by [62]
(labeled “Theo”) follows the («,n) data quite well except at
the lowest measured energy. On the other hand, the energy
dependence of the («,y) data is reproduced well but the
calculation gives cross sections which are about 2-3 times
too large.

As found in Figs. 6 and 7, at the upper end of the measured
range, the («,n) reaction is only sensitive to the o width. Since
the data are reproduced at these energies, the o widths have to
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be accurately predicted there. At the same energies the («,y)
reaction is sensitive not only to the « width but also to the y
and neutron widths. Since these widths have exactly the op-
posite impact on the cross sections, only the change in the
ratio g =1I', /T, of average y width I, to average neutron
width I, can be determined from the requirement to reproduce
the («,y) data simultaneously with the («,n) data. Rescaling
q by a factor of 0.5 shifts the predicted cross sections down
and excellent agreement with the experimental («,)) cross
sections is achieved at the higher energies.

Even with the adjusted ratio g, cross sections at the lowest
measured energies remain overpredicted. According to the
sensitivities, the only way to mend this is to alter the o
width. The « width, however, describes well the data at higher
energies and therefore an energy-dependent modification is
required. We chose the same parametrization as used in
previous work and given in Eq. (1). We found that the best
fit to the data can be obtained with ag = 5 MeV. The resulting
excitation functions are also shown in Figs. 4 and 5 and labeled
“Theo (mod)”. These results are fully consistent with previous
investigations, where a similar axy was found and a similar
rescaling of the y width relative to the neutron width was
necessary.

IV. SUMMARY AND CONCLUSION

The 107Ag(oc,y)mln and 107Ag(oz,n)“OIn reaction cross
sections have been measured in the effective center of mass
energies between 7.79 MeV and 12.50 MeV, with the aim
to extend the available database for improving predictions of
the averaged o widths at low energy. Experimental results
were compared with Hauser-Feshbach statistical model calcu-
lations. It was found that an energy-dependent modification
of the o width and a rescaling of the y- to neutron-width
ratio is necessary. This is completely consistent with previous
works. This finding confirms the applicability of the previously
suggested parametrization of the optical « 4+ nucleus potential
also at mass numbers lower than studied so far.
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