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Description of the proton and neutron radiative capture reactions in the Gamow shell model
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We formulate the Gamow shell model (GSM) in coupled-channel (CC) representation for the description
of proton/neutron radiative capture reactions and present the first application of this new formalism for the
calculation of cross sections in mirror reactions 7Be(p,γ )8B and 7Li(n,γ )8Li. The GSM-CC formalism is applied
to a translationally invariant Hamiltonian with an effective finite-range two-body interaction. Reactions channels
are built by GSM wave functions for the ground state 3/2− and the first excited state 1/2− of 7Be/7Li and the
proton/neutron wave function expanded in different partial waves.
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I. INTRODUCTION

The description of nuclear structure and reactions in the
unified theoretical framework is the long-standing challenge
of nuclear theory. The attempts to reconcile the shell model
(SM) with the reaction theory [1,2] inspired the development
of the continuum shell model (CSM) [3] which evolved into
the unified of theory of nuclear structure and reactions [3–7].

The structure of weakly bound states and resonances is
different from that of well bound states. A comprehensive
description of these systems goes beyond standard configura-
tion interaction model such as the SM and requires an open
quantum system formulation of the many-body system. Such
a generalization of the standard SM to describe well bound,
weakly bound, and unbound many-body states is provided by
the Gamow shell model (GSM) [8–10]. GSM offers the most
general treatment of couplings between discrete and scattering
states. The many-body states in GSM are given by the linear
combination of Slater determinants defined in the Berggren
ensemble of single-particle states which consists of Gamow
(resonant) states and the nonresonant continuum.

In this formulation, GSM is the tool par excellence for
studies of the structure of bound and unbound many-body
states and their decays. For the description of reactions,
the GSM has to be formulated in the CC representation.
Recently, the GSM-CC approach has been applied for the
calculation of excited states of 18Ne and 19Na, excitation
functions, and the elastic/inelastic differential cross sections in
the 18Ne(p,p′) reaction at different energies [11,12] (see also
Ref. [13] for the studies of isobaric analog resonances). In this
work, we apply the GSM-CC formalism for the description
of low-energy radiative capture reactions: 7Be(p,γ )8B and
7Li(n,γ )8Li. In light nuclei, GSM-CC can be applied also for
the description of nuclear reactions in the ab initio framework
of the no-core GSM [14] and to heavier projectiles like the α
particle.

The solution of solar neutrino problem requires an un-
derstanding of the 7Be(p,γ )8B proton capture reaction. 8B
produced in the solar interior in this reaction is the principal

source of high energy neutrinos detected in solar neutrino
experiments. At the solar energies (∼20 keV), this cross
section is too small to be directly measurable. For this
reason, the theoretical analysis of this reaction is so important.
On the other hand, whenever the measurement is feasible
(Ec.m. > 150 keV), the exact value of the capture cross section
depends (i) on the normalization obtained indirectly from the
7Li(d,p)8Li cross section, and (ii) on the model-dependent
extrapolation of measured values of the cross section down to
the interesting domain of solar energies.

Proton radiative capture reaction on 7Be is of particular
importance in astrophysics since it is involved in the pp-II
and pp-III reaction chains. Indeed, the relative rates of the
7Be(e−,νe)7Li reaction and the 7Be(p,γ )8B reaction determine
the pp-I/pp-II branching ratio, and thus the ratio of the
neutrino fluxes coming from 7Be and 8B [15]. The 7Be(p,γ )8B
reaction has been studied experimentally by the direct proton
capture [16–26] and the Coulomb dissociation of 8B [27–31].
Theoretical approaches used to describe this reaction include
the potential model [32], the R-matrix approach [33,34], the
shell model embedded in the continuum (SMEC) [35], the
microscopic cluster model [36], and the approach combining
the resonating-group method and the no-core shell model [37].

7Li(n,γ )8Li reaction is the mirror reaction of 7Be(p,γ )8B.
The 7Li(n,γ )8Li reaction cross section at very low energies
provides the essential element of a rapid process of primordial
nucleosynthesis of nuclei with A � 12 in the inhomogeneous
big-bang models [38–41]. Indeed, in the inhomogeneous
big-bang hypothesis, the main reaction chain leading to the
synthesis of heavy elements is [40] 1H(n,γ ) → 2H(n,γ ) →
3H(d,n) → 4He(t,γ ) → 7Li(n,γ )8Li, and then 8Li(α,n) →
11B(n,γ ) → 12B(β−) → 12C(n,γ ) → 13C → · · · , etc., for
heavier nuclei. In this sense, the reaction 7Li(n,γ )8Li is a
key process to bridge the gap of mass A = 8 and to produce
heavy elements. The reaction 7Li(n,γ )8Li has been studied
experimentally [42–45]. Theoretical studies of this reaction
has been done using various potential models [46,47], the
SMEC [35], the microscopic cluster model [48] and the halo
effective field theory approach [49].
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The paper is organized as follows. Section II presents the
general formalism of the GSM-CC approach. In Sec. II A,
we introduce the translationally invariant GSM Hamiltonian
in the cluster-orbital shell model (COSM) variables [50].
The coupled-channel equations of GSM-CC are presented in
Sec. II B. The channel states expansion in Berggren basis and
the calculation of Hamiltonian matrix elements are discussed
in Secs. II C and II D, respectively. In Sec. II E, we discuss
how to orthogonalize the channel states, and Sec. II F presents
the method of solving the GSM-CC equations derived in this
work.

Section III is devoted to the presentation of the nucleon
radiative capture formalism in the context of GSM-CC. In
particular, the method of calculating matrix elements of the
electromagnetic operators is explained in Sec. III A, and the
matrix elements themselves are given in the Appendix.

Results of the GSM-CC calculations are discussed in
Secs. IV and V for 7Be(p,γ )8B and 7Li(n,γ )8Li low-energy
reactions, respectively. Finally, the main conclusions of this
work are summarized in Sec. VI.

II. COUPLED-CHANNEL FORMULATION
OF THE GAMOW SHELL MODEL

A. Hamiltonian of the Gamow shell model

Center-of-mass (c.m.) excitations in SM wave functions are
removed using the Lawson method [51–53]. In the Gamow
shell model (GSM), this method cannot be used because
Berggren states are not eigenstates of the harmonic oscillator
(HO) potential. To avoid spurious c.m. excitations in GSM
wave functions, the GSM Hamiltonian is expressed in the
intrinsic nucleon-core coordinates of the COSM [50]:

Ĥ =
Nval∑
i=1

( �̂p2
i

2μi

+ Uc(r̂i)

)
+

Nval∑
i<j

(
V (�̂ri − �̂rj ) + �̂pi · �̂pj

Mc

)
,

(1)
where Nval is the number of valence nucleons, Mc is the core
mass, and 1/μi = 1/Mc + 1/mi , is the reduced mass of the
ith nucleon. The single-particle (s.p.) potential Uc(r̂), which
describes the field of the core acting on each nucleon, is a
sum of nuclear and Coulomb terms. The nuclear term is given
by a Woods-Saxon (WS) field with a spin-orbit term [9]. The
Coulomb field is generated by a Gaussian density of Zc protons
of the core [9]. V (�̂ri − �̂rj ) in Eq. (1) is the two-body interaction
which splits into nuclear and Coulomb parts. As in the standard
SM, adding and subtracting a one-body mean-field U (r̂i) to the
core Hamiltonian and the two-body interaction, respectively,
allows us to recast the GSM Hamiltonian in the form

Ĥ = Ûbasis + T̂ + V̂res, (2)

where the potential Ûbasis generates the s.p. basis, the kinetic
term is written T̂ and the residual interaction is given by V̂res:

Ûbasis =
Nval∑
i=1

[Uc(r̂i) + U (r̂i)], (3)

V̂res =
Nval∑
i<j

(
V (�̂ri − �̂rj ) + �̂pi · �̂pj

Mc

)
−

Nval∑
i=1

U (r̂i). (4)

In the present studies, we use the Furutani-Horiuchi-Tamagaki
(FHT) finite-range two-body interaction [54,55]:

V (�̂ri − �̂rj ) ≡ Vij = V C
ij + V SO

ij + V T
ij + V Co

ij . (5)

The central potential V C
ij is

V C
ij =

3∑
n=1

V C
0,ne

−βC
n r2(

WC
n + BC

n P σ − H C
n P τ − MC

n P σP τ
)
,

(6)

where r is the distance between particles i and j , βC
n is the

range of Gaussians, P σ and P τ are the spin exchange and
isospin exchange operators, respectively, and WC

n , BC
n , H C

n ,
and MC

n are the exchange parameters. The spin-orbit potential
V SO

ij is

V SO
ij = �L· �S

2∑
n=1

V SO
0,n e−βSO

n r2(
W SO

n − H SO
n P τ

)
, (7)

where �L is the relative orbital angular momentum between
the two particles and �S = �si + �sj where �si , �sj are the spins of
particles i, j . The tensor potential V T

ij is

V T
ij = OT

3∑
n=1

V T
0,ne

−βT
n r2(

WT
n − H T

n P τ
)
, (8)

where

OT =
(

3(�σi ·�r)(�σj ·�r)

r2
− �σi ·�σj

)
r2 (9)

and �σi , �σj are the Pauli matrices. The Coulomb potential in
the FHT interaction is standard.

It is convenient to rewrite the FHT interaction using
projection operators on singlet and triplet states of spin and
isospin:

V C(r) = VC
tt f

C
tt (r)πσ

t πτ
t + VC

ts f
C
ts (r)πσ

t πτ
s

+VC
st f

C
st (r)πσ

s πτ
t + VC

ssf
C
ss (r)πσ

s πτ
s , (10)

V SO(r) = �L· �S(VSO
tt f SO

tt (r)πσ
t πτ

t + VSO
ts f SO

ts (r)πσ
t πτ

s

)
, (11)

V T(r) = OT
(VT

tt f
T
tt (r)πσ

t πτ
t + VT

tsf
T
ts (r)πσ

t πτ
s

)
, (12)

where πσ
s , πσ

t are the projection operators on singlet and triplet
states of spin:

πσ
s = 1

4 − �si ·�sj , πσ
t = 3

4 + �si ·�sj ,

P σ = 1
2 + 2�si ·�sj = πσ

t − πσ
s . (13)

Equations (13) have the same form for projection operators
πτ

s and πτ
t on singlet and triplet states of isospin. Functions

fστ (r) in Eqs. (10)–(12) depend on the parameters V
ζ

0,n, W
ζ
n ,

B
ζ
n , H

ζ
n , M

ζ
n , and β

ζ
n , where ζ stands for superscripts C, SO,

and T, which are given in Refs. [54,55]. In this work, we adjust
the coupling constants Vζ

aa′ in Eqs. (10)–(12), where a and a′
are indices of either singlet (s) or triplet (t) states.

B. The coupled-channel equations

Nuclear reactions can be conveniently formulated in the
CC representation of the Schrödinger equation. The first step

034609-2



DESCRIPTION OF THE PROTON AND NEUTRON . . . PHYSICAL REVIEW C 91, 034609 (2015)

to derive the GSM-CC equations is to expand the GSM
eigenstates in the complete basis of channel states {|c〉} ≡
{|cproj; ctarg〉} which contain information about the structure of
the target and the projectile. Indices cproj and ctarg denote the
sets of quantum numbers associated with the projectile and
the target, respectively. The nuclear reaction is then described
by the relative motion of target and projectile nuclei and the
channel parameters, like angular momenta of the target and
the projectile and quantum numbers of the target internal
excitations. In the following discussion, the heavy reaction
participant is called a “target” and the light one a ’“projectile.”
Obviously, the formulation of reaction theory in the GSM-CC
approach does not depend on this arbitrary choice of labels.

The antisymmetric eigenstates of GSM-CC equations,

Â |
〉 = |
〉 =
∑∫
c

∫ ∞

0
dr r2 〈r,c|
〉 |r,c〉 , (14)

where Â is the antisymmetrization operator, can be expanded
using the channel basis states: |r,c〉 = Â(|r〉 ⊗ |c〉). In the
above equation, 〈r,c|
〉 are the antisymmetrized channel wave
functions: 
c(r) ≡ 〈r,c|
〉 ≡ uc(r)r . Hence

|
〉 =
∑∫
c

∫ ∞

0
dr r2 uc(r)

r
|r,c〉 . (15)

GSM-CC equations are obtained by inserting (15) in the
Schrödinger equation and then projecting this equation on a
given channel basis state 〈r ′,c′|. One obtains

∑∫
c

∫ ∞

0
dr r2[Hc′,c(r ′,r) − ENc′,c(r ′,r)]

uc(r)

r
= 0, (16)

where

Hc′,c(r ′,r) = 〈r ′,c′|Ĥ |r,c〉 (17)

and

Nc′,c(r ′,r) = 〈r ′,c′|r,c〉 (18)

are the Hamiltonian matrix elements and the norm matrix
elements in the channel representation, respectively.

C. Channel states expansion in the Berggren basis

In the present studies, any target state |ctarg〉 is an antisym-
metrized state of A − 1 nucleons:

|ctarg〉 =
∑

i

〈
SD(A−1)

i

∣∣ctarg
〉 ∣∣SD(A−1)

i

〉

=
∑

i

ai,ctarg

∣∣SD(A−1)
i

〉
(19)

Slater determinants |SD(A−1)
i 〉 are built using a complete set

of single-particle states of the Berggren ensemble [56] which
includes both resonant states and complex-energy scattering
states. In this work, the Berggren ensemble is generated by the
real single-particle potential Ûbasis acting on valence nucleons,
but the analogous complete set of single-particle states can be
generated by the complex potential as well [57]. This ensemble

is also used to generate the states of the projectile:∣∣φi;cproj

〉 = Â(∣∣φrad
i

〉 ⊗ |cproj〉
)

= Â(∣∣φrad
i

〉 ⊗ |l,s; j,mj 〉
)

(20)

where |φrad
i 〉 and |cproj〉 are radial and angular parts, respec-

tively. In this expression, l is the orbital angular momentum of
the nucleon, s its spin, j is the total angular momentum, and
mj its projection. Hence, the basis state |r,cproj〉 of a projectile
can be written as

|r,cproj〉 =
∑

i

ui(r)

r

∣∣φi;cproj

〉
(21)

where ui(r)/r = 〈φrad
i |r〉. Using Eq. (21), one can write the

channel basis states as

|r,c〉 =
∑

i

ui(r)

r

∣∣φrad
i ,c

〉
, (22)

where |φrad
i ,c〉 = Â(|φrad

i 〉 ⊗ |c〉).

D. Hamiltonian matrix elements

Matrix elements of the Hamiltonian Hc′,c(r ′,r) and the
norm Nc′,c(r ′,r) can be derived using the expansion (22)
which allows us to treat the antisymmetry in the projectile-
target system. In practice, only a finite number of Slater
determinants contribute significantly to the target state, and
thus the antisymmetry between the low-energy target states
and the high-energy projectile states can be neglected in most
cases. The high-energy terms correspond to the channel basis
states with high momentum k or high-i indices i > imax,
where imax depends on the considered channel c. Hence, the
expansion (22) can be split into low- and high-energy parts:

|r,c〉 =
imax−1∑
i=1

ui(r)

r

∣∣φrad
i ,c

〉 + N∑
i=imax

ui(r)

r

∣∣φrad
i ,c

〉

�
imax−1∑
i=1

ui(r)

r

∣∣φrad
i ,c

〉 + N∑
i=imax

ui(r)

r

∣∣φrad
i

〉 ⊗ |c〉 , (23)

where N is the number of discretized continuum states and imax

is the index from which the antisymmetry effects are neglected.
Equivalently, Eq. (23) can be written as

|r,c〉 =
imax−1∑
i=1

ui(r)

r

∣∣φrad
i ,c

〉 + |r〉 ⊗ |c〉

−
imax−1∑
i=1

ui(r)

r

∣∣φi;cproj

〉 ⊗ |ctarg〉 , (24)

where |r〉 ⊗ |c〉 and |φi;cproj〉 ⊗ |ctarg〉 stand for non-
antisymmetrized states. In this particular case (i � imax), the
GSM Hamiltonian (2) splits into Ĥproj and Ĥtarg terms acting
on projectile states |φi;cproj〉 and target states |ctarg〉, respectively.
Moreover,

Ĥproj

∣∣φi;cproj

〉 = Ei,cproj

∣∣φi;cproj

〉
, (25)

Ĥtarg |ctarg〉 = Ectarg |ctarg〉 . (26)
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Matrix elements of the Hamiltonian,

Hc′,c(r ′,r) = 〈
φrad

i ′ ,c′∣∣Ĥ ∣∣φrad
i ,c

〉
=

N∑
i,i ′=1

ui ′(r ′)
r ′

ui(r)

r
Hc′,c(i ′,i), (27)

and of the norm,

Nc′,c(r ′,r) = 〈
φrad

i ′ ,c′∣∣φrad
i ,c

〉
=

N∑
i,i ′=1

ui ′(r ′)
r ′

ui(r)

r
Nc′,c(i ′,i), (28)

are evaluated using the expansion (24).
In the calculation of sums in Eqs. (27) and (28), four

cases have to be considered. In the first case, i < imax and
i ′ < imax, the matrix elements are calculated in terms of Slater
determinants to take into account the antisymmetry. In the
second and third cases, i < imax and i ′ � imax and i � imax and
i ′ < imax which are symmetric with respect to the exchange
of i and i ′, the matrix elements are equal to zero because
Berggren states |φi;cproj〉 and |φi ′;cproj〉 with i � imax or i ′ � imax

are orthogonal to all target states. In the last case, i � imax and
i ′ � imax, there is no antisymmetry and only terms with i = i ′
are nonzero. One obtains,

Hc′,c(r ′,r) = − �
2

2μ

(
1

r

∂2(r·)
∂r2

− l(l + 1)

r2
− k2

ctarg

)

× δ(r − r ′)
r2

δc′
targ,ctarg + Vc′,c(r ′,r), (29)

where k2
ctarg

= 2μEctarg/�
2 and the channel-channel coupling

potential Vc′,c(r ′,r) is given by

Vc′,c(r ′,r) = Ubasis(r)
δ(r − r ′)

r2
δc′

targ,ctarg + Ṽc′,c(r ′,r) (30)

with

Ṽc′,c(r ′,r) =
imax∑

i,i ′=1

ui ′(r ′)
r ′

ui(r)

r
Hc′,c(i ′,i)

−
imax−1∑
i=1

ui(r ′)
r ′

ui(r)

r

(
Ei,cprojδc′

targ,ctarg + Ectarg

)
.

(31)

In the same way, for Nc′,c(r ′,r) one obtains

Nc′,c(r ′,r) = δ(r − r ′)
r2

δc′
targ,ctarg + Ñc′,c(r ′,r) (32)

with

Ñc′,c(r ′,r) =
imax∑

i,i ′=1

ui ′(r ′)
r ′

ui(r)

r
Nc′,c(i ′,i)

−
imax−1∑
i=1

ui(r ′)
r ′

ui(r)

r
δc′

targ,ctarg . (33)

E. Orthogonalization of the channel states

The CC formalism leads to a generalized eigenvalue prob-
lem because different channel basis states are nonorthogonal.
The nonorthogonality of channel states comes from the
antisymmetry between the projectile and target states. To
formulate GSM-CC equations as the generalized eigenvalue
problem, one should express Eq. (16) in the orthogonal channel
basis {|r,c〉o}:

o〈r ′,c′|r,c〉o = δ(r ′ − r)

r2
δc′c . (34)

The transformation from the nonorthogonal channel basis
{|r,c〉} to the orthogonal one {|r,c〉o} is given by the overlap
operator Ô such that |r,c〉 = Ô

1
2 |r,c〉o. The CC equations (16)

written in the orthogonal basis are

∑∫
c

∫ ∞

0
dr r2(o〈r ′,c′|Ĥo|r,c〉o

−Eo〈r ′,c′|Ô|r,c〉o)o〈r,c|
o〉 = 0, (35)

where o〈r ′,c′|Ĥo|r,c〉o = 〈r ′,c′|Ĥ |r,c〉, o〈r ′,c′|Ô|r,c〉o =
〈r ′,c′|r,c〉, and o〈r,c|
o〉 = 〈r,c|
〉. The transformation of
this generalized eigenvalue problem into a standard eigenvalue
problem is achieved with a substitution: |�〉 = Ô |
〉. One
obtains:

∑∫
c

∫ ∞

0
dr r2(o〈r ′,c′|Ĥ |r,c〉o − Eo〈r ′,c′|r,c〉o)o〈r,c|�〉 = 0

(36)

with o〈r,c|�〉 = 〈r,c|Ô 1
2 |
〉 ≡ wc(r)r . In the nonorthogonal

channel basis, these CC equations become

∑∫
c

∫ ∞

0
dr r2 〈r ′,c′|Ĥm|r,c〉 wc(r)

r
= E

wc′(r ′)
r ′ , (37)

with o〈r ′,c′|Ĥ |r,c〉o ≡ 〈r ′,c′|Ĥm|r,c〉, where Ĥm=Ô− 1
2 Ĥ Ô− 1

2

is the modified Hamiltonian.
Matrix elements of Ĥm are calculated using the expansion

(24) as described in Sec. II D. In order to have a more precise
treatment of the antisymmetry in the calculation of matrix
elements of Ĥm, we introduce a new operator �̂: Ô− 1

2 = �̂ +
1̂, which is associated with the part of Ô− 1

2 acting on the
low-energy channel states. Then, instead of calculating the
matrix elements of Ĥm directly, it is possible to calculate them
as

Hm = (� + 1̂)H (� + 1̂) = H + H� + �H + �H�. (38)

In this formulation, the non-antisymmetrized terms are taken
into account exactly with the identity operator. Inserting (38) in
CC equations (37) and replacing matrix elements 〈r ′,c′|Ĥ |r,c〉
using (29) and (30), one obtains the CC equations for the
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reduced radial wave functions wc(r)/r:

[
− �

2

2μ

(
1

r

∂2(r·)
∂r2

− l(l + 1)

r2

)
+ V (loc)

c (r)

]
wc(r)

r

δ(r − r ′)
r2

δc′
targ,ctarg +

∑
c′

∫ ∞

0
dr ′ rr ′2 V

(non-loc)
c,c′ (r,r ′)

rr ′
wc′(r ′)

r ′

= (
E − Ectarg

)δ(r − r ′)
r2

wc(r)

r
δc′

targ,ctarg (39)

with the local potential V (loc)
c (r) = Ubasis(r) which may depend on the channel c, and the nonlocal potential

1

r ′r
V

(non-loc)
c′,c (r ′,r) = Ṽc′,c(r ′,r) + 〈r ′,c′|Ĥ �̂|r,c〉 〈r ′,c′|�̂Ĥ |r,c〉 + 〈r ′,c′|�̂Ĥ �̂|r,c〉 . (40)

The radial channel wave functions uc(r)/r are then obtained from the solutions of Eq. (39) using the equation

uc(r)

r
= wc(r)

r
+

∑
c′

∫ ∞

0
dr ′ r ′2 〈r,c|Ô 1

2 �̂Ô
1
2 |r ′,c′〉 wc′(r ′)

r ′ . (41)

F. Solution of the GSM-CC equations

CC equations (39) contain a nonlocal potential which has to be treated using a generalization of the method of the equivalent
potential [12,58]. The basic idea is to find the equivalent local potential V

(eq)
c,c′ (r) and the source term Sc(r) which would replace

local V (loc)
c (r) and nonlocal V

(non-loc)
c,c′ (r,r ′) potentials in Eq. (39). Such an equivalent potential is defined by

V
(eq)
c,c′ (r) = V (loc)

c (r)δc′,c + 1 − Fc′(r)

wc′(r)

∑
c′

∫ ∞

0
dr ′ V (non-loc)

c,c′ (r,r ′)wc′(r ′), (42)

and a corresponding source term is

Sc(r) = Fc′(r)
∑
c′

∫ ∞

0
dr ′ V (non-loc)

c,c′ (r,r ′)wc′(r ′). (43)

Fc(r) in Eqs. (42) and (43) is the smoothing function:

Fc(r) = exp −α

∣∣∣∣wc(r)

w′
c(r)

∣∣∣∣
2(

1 − exp −α

∣∣∣∣w
asymp
c (r)

wc(r)
− 1

∣∣∣∣
2)

(44)

to cancel divergences of the equivalent potential V
(eq)
c,c′ (r) close to the zeros of wc(r). In this expression, w′

c(r) = wc(r)/r , and
w

asymp
c is the asymptotic form of wc(r) when r ∼ 0. Typically, the value of α varies in the interval 10 < α < 100.
With these substitutions, the GSM-CC equations (39) become

∂2wc(r)

∂r2
=

(
l(l + 1)

r2
− k2

c

)
wc(r) + 2μ

�2

(∑
c′

V
(eq, sy)
c,c′ (r)wc′(r) + S(sy)

c (r)

)
, (45)

where k2
c = 2μ(E − Ectarg )/�

2. Equation (45) are solved it-
eratively to determine the equivalent potential, the source
term, and the mutually orthogonal radial wave functions
wc(r). Starting point for solving these equations is provided
by a set of radial channel wave functions {wc(r)} obtained
by the diagonalization of GSM-CC equations (37) in the
Berggren basis of channels. Diagonalization of CC equations
in the Berggren basis was also considered in Ref. [59].
Note that it is numerically more convenient to express the
potential V

(non-loc)
c,c′ (r,r ′) of Eq. (39) in a basis of harmonic

oscillator states, as V
(non-loc)
c,c′ (r,r ′) is short-range. For this,

it is sufficient to replace all occurrences of Berggren basis
functions ui(r)/r by harmonic oscillator states overlaps

〈ui |u(HO)
n 〉 in Eqs. (31) and (33), where |u(HO)

n 〉 is a harmonic
oscillator state.

III. THE RADIATIVE CAPTURE PROCESS

We now discuss the calculation of proton/neutron radiative
capture cross sections using the antisymmetrized initial and
final GSM wave functions. The differential cross section for
a proton or neutron radiative capture can be calculated from
the Fermi golden rule, which relates the cross section to the
matrix elements of a transition operator between an initial
state |i〉 of energy Ei and a final state |f 〉 of energy Ef . The
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differential cross section is given by

dσ

d�γ

= 1

8π

(
kγ

k

)(
e2

�c

)(
μuc

2

�c

)
1

2s + 1

1

2Jtarg + 1

×,
∑

Mi,Mf ,
Mtarg,ML,

P,ms

∣∣∣∣∣
∑
L

iL
√

2π (2L + 1)

(
kL
γ

k

)√
L + 1

L

P

(2L + 1)!!
DL

MLP (ϕγ ,θγ ,0) 〈
f (Jf ,Mf )|M̂L,ML
|�i(Mi)〉

∣∣∣∣∣
2

= 1

8π

(
kγ

k

)(
e2

�c

)(
μuc

2

�c

)
1

2s + 1

1

2Jtarg + 1

∑
Mi,Mf ,

Mtarg,ML,
P,ms

∣∣∣∣∣
∑
L

gL
ML,P (k,kγ ,ϕγ ,θγ ) 〈
f (Jf ,Mf )|M̂L,ML

|�i(Mi)〉
∣∣∣∣∣
2

, (46)

where

gL
ML,P (k,kγ ,ϕγ ,θγ ) = iL

√
2π (2L + 1)

(
kL
γ

k

)

×
√

L+ 1

L

P

(2L+ 1)!!
DL

MLP (ϕγ ,θγ ,0).

(47)

In the above expressions, kγ (in units of fm−1) is the linear
momentum of the emitted photon, kγ = (Ef − Ei)/(�c);
e2/(�c) is the electromagnetic coupling constant; k (in units
of fm−1) is the linear momentum of the incoming proton
in the c.m. reference frame; μuc

2 (in MeV) is the reduced
mass of the projectile; s is the spin of the proton; Jtarg

is the total angular momentum of the target; P = ±1 is
the polarization of the photon; and L and ML are the
multipoles and multipole projections of the photon. Moreover,
DL

MLP (ϕγ ,θγ ,0) is the Wigner D-matrix depending on the

angular variables θγ and ϕγ of the photon, and M̂L,ML
is

the electromagnetic transition operator. The final state |f 〉

corresponds to the GSM-CC state |
f (Jf ,Mf )〉 of a total
angular momentum Jf and a projection Mf . The initial state
|i〉 has a fixed value of the total angular momentum projection
Mi and is denoted |�i(Mi)〉:

|�i(Mi)〉 =
∑
Ji ,ce

ilce eiσlce

√
2lce

+ 1 |
i(Ji,Mi,ce)〉

× 〈
lce

,0,s,ms

∣∣(lce
,s

)
jce

,ms

〉
× 〈

jce
,ms,Jtarg,Mtarg

∣∣(jce
,Jtarg

)
Ji,Mi

〉
, (48)

where |
i(Ji,Mi,ce)〉 is the initial GSM-CC state with a total
angular momentum Ji and entrance channel quantum numbers
ce. Each set of quantum numbers ce corresponds to a different
channel c. This state can be expressed in the channel basis as

|
i(Ji,Mi,ce)〉 =
∑

c

|
i(Ji,Mi,ce)〉c .

Thus, the differential cross section (in units of fm2) is

dσ

d�γ

= 1

8π

(
kγ

k

)(
e2

�c

)(
μuc

2

�c

)
1

2s + 1

1

2Jtarg + 1

×
∑

Mi,Mf ,
P,ms,

Mtarg,ML

∣∣∣∣∣∣
∑
L

gL
ML,P (k,kγ ,ϕγ ,θγ )

∑
Ji ,ce

〈Jf Mf |ML,ML

∣∣(JiMi)ce

〉 〈
lce

0sms

∣∣jce
ms

〉 〈
jce

msJtargMtarg

∣∣JiMi〉
∣∣∣∣∣∣
2

= 1

8π

(
kγ

k

)(
e2

�c

)(
μuc

2

�c

)
1

2s + 1

1

2Jtarg + 1
×

∑
Mi,Mf ,
P,ms,

Mtarg,ML

∑
L,L′,
Ji ,J

′
i ,

ce,c
′
e

(
gL

ML,P (k,kγ ,ϕγ ,θγ )gL′
ML,P (k,kγ ,ϕγ ,θγ )

× 〈Jf Mf |ML,ML

∣∣(JiMi)ce

〉 〈Jf Mf |ML′,ML

∣∣(J ′
i Mi)c′

e

〉 × 〈
lce

0sms

∣∣jce
ms

〉 〈
lc′

e
0sms

∣∣jc′
e
ms

〉
× 〈

jce
msJtargMtarg

∣∣JiMi〉
〈
jc′

e
msJtargMtarg

∣∣J ′
i Mi〉

)
. (49)

The operatorM̂L,ML
separates into an electric partM̂E

L,ML
and

a magnetic part M̂M
L,ML

. Formulas for the operators M̂E
L,ML

and M̂M
L,ML

are given in the Appendix.

Calculation of many-body matrix elements
of the electromagnetic operators

The main difficulty in the calculation of matrix elements
comes from the infinite range of the electromagnetic operators
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and the antisymmetry of the GSM-CC states. Indeed, direct
calculation of these matrix elements in the Berggren basis
is not possible because they diverge even using the exterior
complex scaling method.

If one neglects antisymmetry in the channel state |r,c〉,
|r,c〉 = |r〉 ⊗ |c〉

= |r〉 ⊗ [ |Jtarg,c,Mtarg,c〉 ⊗ ∣∣lc,sc; jc,mjc

〉 ]J

M
, (50)

then the overlap between a bound state or a narrow resonance
and a scattering state converges using the exterior complex-
scaling method. In the above expression, Jtarg,c is the angular
momentum of the target in a channel c with a projection Mtarg,c,
lc is the orbital momentum of the projectile, sc its spin and
jc its total angular momentum with a projection mjc

. The
antisymmetry between the target and the projectile can be
neglected only at large distances because the probability that
the one-body state of the projectile is occupied by the target
nucleon decreases with the target density. In this case, the
action of a given operator ÔL

ML
can be defined by considering

target nucleons as distinguishable from the projectile nucleons:

ÔL
ML

=
∑
i∈A

ÔL
ML

(ri,�i) + ÔL
ML

(rproj,�proj). (51)

The first sum acts only on target nucleons whereas the second
term acts on a projectile. Obviously, this approximation is not
valid for a target in the continuum state.

The calculation of matrix elements of the electromagnetic
operators goes as follows. The matrix elements are expressed
as the sum of a non-antisymmetrized (nas) part and its

complement:

〈
f ||ÔL||
i〉 = 〈
f ||ÔL||
i〉nas + (〈
f ||ÔL||
i〉
− 〈
f ||ÔL||
i〉nas). (52)

The calculation of this complement is achieved by separating
the operator ÔL into a short-range part ÔL

< and a long-range
part ÔL

>. Then the symmetrized and antisymmetrized matrix
elements are

〈
f ||ÔL||
i〉 = 〈
f ||ÔL
<||
i〉 + 〈
f ||ÔL

>||
i〉 , (53)

〈
f ||ÔL||
i〉nas = 〈
f ||ÔL
<||
i〉nas + 〈
f ||ÔL

>||
i〉nas .

(54)

At large distances, the antisymmetry is not crucial and thus
the matrix element 〈
f ||ÔL

>||
i〉 can be approximated by
〈
f ||ÔL

>||
i〉nas. The remaining term is basically a short-
range part which can be expanded in the HO basis. One
obtains:

〈
f ||ÔL||
i〉 = 〈
f ||ÔL||
i〉nas + 〈
f ||ÔL
<||
i〉HO

− 〈
f ||ÔL
<||
i〉HO

nas . (55)

The matrix element 〈
f ||ÔL||
i〉nas is not antisym-
metrized. We may write the operator ÔL [Eq. (51)] as
ÔL

targ + ÔL
proj, where ÔL

targ acts only on the target state and

ÔL
proj on the projectile state. In this case, matrix elements of

the electromagnetic operator acting on target states are

cf
〈
f |∣∣ÔL

targ

∣∣|
i〉ci
=

∫ ∞

0
dr r2 ucf

(r)

r

∫ ∞

0
dr ′ r ′2 uci

(r ′)
r ′ 〈r|r ′〉 〈

lcf
,scf

; jcf
,mjcf

∣∣lci
,sci

; jci
,mjci

〉 〈
JTcf

∣∣∣∣ÔL
targ

∣∣∣∣JTci

〉

= (−1)JTf
+jf +Ji+L

√
(2Jf + 1)(2Ji + 1)

{
JTf

JTi
L

Ji Jf ji

} 〈
JTf

∣∣|ÔL|∣∣JTi

〉
δli lf δjijf

∫ ∞

0
dr ucf

(r)uci
(r),

(56)

where 〈r|r ′〉 = δr,r ′/r2, and ci and cf denote initial and final channels, respectively. No exterior complex scaling is necessary to
calculate the radial overlap in the above expression because uci

(r) is the scattering wave function of a real energy and ucf
(r) is

the bound state wave function. Similarly, matrix elements of the electromagnetic operator acting on the projectile states are

cf
〈
f |∣∣ÔL

proj

∣∣|
i〉ci
=

∫ ∞

0
dr r2 ucf

(r)

r

∫ ∞

0
dr ′ r ′2 uci

(r ′)
r ′ 〈r|r ′〉 〈

JTcf
,MTcf

∣∣JTci
,MTci

〉 〈(
lcf

,scf

)
jcf

∣∣∣∣ÔL
proj

∣∣∣∣(lci
,sci

)
jci

〉

= δTiTf
(−1)JTi

+ji+Jf +L
√

(2Jf + 1)(2Ji + 1)

{
jf ji L
Ji Jf JTi

} 〈
ucf

,
(
lcf

,s
)
jcf

∣∣|ÔL|∣∣uci
,
(
lci

,s
)
jci

〉
. (57)

The antisymmetrized matrix elements 〈
f ||ÔL||
i〉HO
in Eq. (55) are obtained by expressing Berggren basis states in the

HO basis. In this case, the reduced radial wave functions uc(r) can be written as

uc(r)

r
= 〈r|uc〉 →

∑
n

〈r|un〉 〈un|uc〉 =
∑

n

un(r) 〈un|uc〉 = 〈
r
∣∣uHO

c

〉 = uHO
c (r)

r
, (58)

where |un〉 is the radial HO state and the channel state |r,c〉 can be expressed as

|r,c〉 = Â(|r〉 ⊗ |c〉) = Â
((∑

n

〈un|r〉 |un〉
)

⊗ |c〉
)

=
∑

n

〈un|r〉 |un,c〉 =
∑

n

uHO
n (r)

r
|un,c〉 (59)
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with |un,c〉 = [â†
n,jc,mjc

|Jtarg,c,Mtarg,c〉]J
M

. Hence, the CC rep-
resentation of initial and final states in HO basis is

|
〉HO =
∑∫
c

∑
n

〈
un

∣∣uHO
c

〉 |un,c〉 (60)

and the antisymmetrized matrix elements of the electromag-
netic operator are

HO〈
f ||ÔL||
i〉HO =
∑
ci ,cf

∑
ni ,nf

〈
uHO

ci

∣∣uni

〉 〈
unf

∣∣uHO
cf

〉

× [ 〈
JTcf

∣∣ ânf ,jcf

]J

M
ÔL

ML

[
â
†
ni ,jci

∣∣JTci

〉]J

M
.

(61)

HO expansion is hereby justified by the fact that the target
states are localized.

The last many-body matrix element in Eq. (55),
HO〈
f ||ÔL||
i〉HO

nas , is calculated using Eqs. (56) and (57) and
replacing uc(r) by uHO

c (r) [see Eq. (58)].

IV. RESULTS OF GSM-CC CALCULATIONS
FOR THE 7Be( p,γ )8B REACTION

GSM-CC calculations are done in COSM coordinates but
the radiative capture cross section is expressed in the c.m.
reference frame. The initial energy is E

(COSM)
i = E

(COSM)
proj +

E
(COSM)
T , where E

(COSM)
i , E

(COSM)
proj , and E

(COSM)
T are the total

energy, the projectile energy, and the GSM target binding
energy, respectively. All energies are calculated in the COSM
coordinate system. The link between the projectile energies in
COSM and c.m. reference frames is given by

E
(COSM)
proj = E

(c.m.)
proj

A

A − 1
= �

2
(
k

(c.m.)
proj

)2

2mp

A

A − 1
, (62)

where k
(c.m.)
proj is the linear momentum of the projectile. Energy

conservation implies that the final energy is E
(COSM)
i =

E
(COSM)
f + Eγ , where E

(COSM)
f is the compound system bind-

ing energy in the COSM frame of reference, and Eγ = kγ �c
is the photon energy which does not depend on the chosen
reference frame.

Resonances in the spectrum of a composite A-nucleon
system correspond to the peaks in the radiative capture
cross section at the c.m. energy, Ec.m. = E

(A)
i [GSM-CC] −

E
(A−1)
0 [GSM]. Here E

(A)
i [GSM-CC] is the GSM-CC energy

of the resonance i in the nucleus A, and E
(A)
0 [GSM] is the

GSM ground state energy of the target nucleus (A − 1).
The cross section for a final state of the total angular

momentum Jf is

σJf
(Ec.m.) =

∫ 2π

0
dϕγ

∫ π

0
sin θγ dθγ

dσJf
(Ec.m.,θγ ,ϕγ )

d�γ
(63)

and the total cross section is thus

σ (Ec.m.) =
∑
Jf

σJf
(Ec.m.). (64)

TABLE I. Parameters of the WS potential of the 4He core used
in the GSM and GSM-CC description of 7Be and 8B.

Parameter Protons Neutrons

a 0.65 fm 0.65 fm
R0 2.0 fm 2.0 fm
Vo(l = 0) 61.5 MeV 70.6735 MeV
Vso(l = 0) 0 MeV 0 MeV
Vo(l = 1) 44.3967 MeV 70.6734 MeV
Vso(l = 1) 7.80188 MeV 7.86276 MeV
Vo(l = 2) 44.3967 MeV 0 MeV
Vso(l = 2) 7.80188 MeV 0 MeV

In practice, one often shows the astrophysical factor

S(Ec.m.) = σ (Ec.m.)Ec.m.e
2πη, (65)

which removes the exponential dependence of the cross section
at low energies due to the Coulomb barrier. η in Eq. (65) is the
Sommerfeld parameter, η = (mZ1Z2)/(�2k), where Z1 and Z2

are the proton numbers of the projectile and target nuclei.

A. Parameters of GSM calculations in 7Be and 8B

The model space in 7Be and 8B is limited by the core of
4He. The core is described by a WS potential (see Table I) for
each considered partial wave: l = 0, 1, and 2. The radius of
the Coulomb potential is rc = 2.8 fm. To determine Berggren
ensemble, one calculates first the single-particle bound and
resonance states of the basis generating WS potential for all
chosen partial waves (l,j ). Then, for each (l,j ), one selects
the contour L+

lj in a fourth quadrant of the complex k plane.
All (l,j )-scattering states in this ensemble belong to L+

lj . The
precise form of the contour is unimportant providing that all
selected single-particle resonances for a given (l,j ) lie between
this contour and the real k axis for R(k) > 0. For each (l,j ),
the set of all resonant states and scattering states on L+

lj forms
a complete single-particle basis.

In the present case, valence nucleons can occupy the
0p3/2 and 0p1/2 discrete single-particle states and sev-
eral nonresonant single-particle continuum states on dis-
cretized contours: L+

s1/2
, L+

p1/2
, L+

p3/2
, L+

d3/2
, and L+

d5/2
. Each

contour consists of three segments joining the points:
kmin = 0.0, kpeak = 0.15 − i0.14 fm−1, kmiddle = 0.3 fm−1

and kmax = 2.0 fm−1, and each segment is discretized with
10 points. Hence, GSM and GSM-CC calculations are done
in 152 shells: 31 p3/2 and p1/2 shells, and 30 s1/2, d3/2, and
d5/2 shells. The GSM basis is truncated so as to reduce the
size of the GSM Hamiltonian matrix. For this, the occupation
of p3/2 and p1/2 scattering states in basis Slater determinants
is limited to two particles, while the occupation of s1/2, d5/2,
and d3/2 scattering states is limited to one particle only. The
latter truncation is justified by the fact that GSM target states
virtually only consists of p3/2 and p1/2 states, s1/2, d5/2, and
d3/2 states occurring only in the partial wave decomposition
of the proton or neutron projectile.

Parameters of the Hamiltonian, which were adjusted to
reproduce binding energies of low-lying states in 7Be and 8B,
are given in Table II. In GSM calculations, the ground state
of 7Be is bound with respect to 4He by 9.378 MeV, close to
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TABLE II. Parameters of the FHT interaction in
GSM and GSM-CC calculations in 7Be and 8B. The
superscripts C, SO, and T stand for central, spin-orbit,
and tensor, respectively, and the indices “s” and “t”
stand for singlet and triplet.

Parameter Value (MeV)

VC
t,t 4.00906

VC
s,t −3.22579

VC
s,s 2.22077

VC
t,s −9.51008

VSO
t,t −1448.32

VSO
s,t 0

VT
t,t 15.3946

VT
s,t −15.4834

the experimental value Eexp = 9.304 MeV. Reaction channels
in GSM-CC calculations are obtained by the coupling of the
ground state 3/2− and the first excited state 1/2− of 7Be with
the proton partial waves: s1/2, p1/2, p3/2, d3/2, and d5/2.

Discrete states of a composite system 8B are 2+
1 bound

state, and 1+
1 , 3+

1 , 1+
2 resonances. Missing reaction channels

in GSM-CC lead to a small difference between GSM and
GSM-CC energies for these states. To correct this deficiency,
the channel-channel coupling potentials Vc,c′ in GSM-CC
have been adjusted for each considered state of 8B. The
new potentials are Ṽc,c′ = c(Jπ )Vc,c′ , where the multiplicative
corrective factors are c(2+

1 ) = 1.0133, c(1+
1 ) = 1.0602, and

c(3+
1 ) = 1.0233.

B. The astrophysical S factor for the 7Be( p,γ )8B reaction

The description of electromagnetic transitions requires
effective charges for proton and neutron. For E1 transitions,
the standard values are [60]

e
p
eff = e

(
1 − Z

A

)
, en

eff = −e
Z

A
, (66)

where Z and A are the proton number and the total number of
nucleons, respectively. The standard values for E2 transitions
are

e
p
eff = e

(
1 − Z

A
+ Z

A2

)
, en

eff = −e
Z

A2
. (67)

There are no effective charges for M1 transitions. In the
present work, we use these standard values for E1 and E2
effective charges. One should keep in mind, however, that
the effective charges extracted experimentally often show
significant deviations from the standard values [61].

The proton separation energy in the ground state of 7Be is
Sp = 5.6 MeV. The final nucleus 8B has one weakly bound
state 2+

1 below the proton emission threshold. The experimen-
tal proton separation energy in this state, Sp = 0.1375 MeV,
agrees well with the calculated value S(th)

p = 0.137 MeV. The
1+

1 and 3+
1 resonance peaks should be seen in M1 transitions.

The 1+
1 resonance could also be seen in E2 transitions.
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FIG. 1. Plot of the E1 astrophysical factor for the 7Be(p,γ )8B
reaction. The solid line represents the exact, fully antisymmetrized
calculation with both the ground state J π = 3/2−

1 and the first excited
state J π = 1/2−

1 of the 7Be target included. The dashed line shows
results of the calculations if the first excited state of 7Be is omitted.
For more details, see the description in the text.

All relevant E1, M1, and E2 transitions from the initial
continuum states (Ji = 1+,2+,3+) in 8B to the final bound
state Jf = 2+ state have been included. Figures 1–3 show the
separate contributions to the total S factor in the 7Be(p,γ )8B
reaction: SE1 for E1 transitions (Fig. 1), SM1 for M1
transitions (Fig. 2), and SE2 for E2 transitions. The solid
lines in Figs. 1–3 show results of the fully antisymmetrized
GSM-CC calculations with both ground and first excited states
of the 7Be target included. The dashed lines in these figures
correspond to GSM-CC calculations neglecting the 1/2− first
excited state in 7Be.
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FIG. 2. The same as in Fig. 1 but for the M1 transitions. The two
peaks correspond to the 1+

1 and 3+
1 resonances of 8B.
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FIG. 3. The same as in Fig. 1 but for the E2 transitions. The two
peaks correspond to the 1+

1 and 1+
2 resonances of 8B.

There is no resonant contribution in E1 transitions. In-
cluding the first excited state of the target lowers SE1 by
less than ∼ 5% for Ec.m. < 2.5 MeV. In contrast, the M1
contribution to the S factor increases significantly in the
region of 1+

1 resonance if the excited state of the target
is included (see Fig. 2). One can see 1+

1 and 3+
1 reso-

nances of 8B at Ec.m. = 0.79 MeV and Ec.m. = 2.34 MeV,
respectively. These resonances are observed experimentally
at Ec.m. = 0.632 MeV and Ec.m. = 2.182 MeV, respectively.
The E2 transitions contribute little to the S factor. SE2 is ∼10−3

smaller than SE1, and SM1 and increases by less than ∼ 10%
for c.m. energies in the region of 1+

1 and 1+
2 resonances. The

resonance 1+
2 has not yet been seen experimentally.

The calculated total S factor is compared with the exper-
imental data [22,26] in Fig. 4. Below Ec.m. = 1 MeV, the
agreement with the data is good if both the ground state
of 7Be and its first excited state are included. The value of
the S factor at zero energy, SGSM−CC(0), is 23.214 b eV
and the slope, ∂S/∂Ec.m.|Ec.m.=0, is 37.921 b. The accepted
experimental value of the S factor is 20.9 ± 0.6 b eV, slightly
below the GSM-CC results.

At higher energies, GSM-CC results overshoot the ex-
perimental data. This feature could be due to the absence
of higher lying discrete and continuum states of the 7Be
target in the channel basis. Indeed, in the present case, GSM
and GSM-CC calculations with uncorrected channel-channel
coupling potentials Vc,c′ do not give the same spectra and
binding energies of 7Be and 8B, and the small multiplicative
correction factors are necessary.

The long-wavelength approximation simplifies the calcula-
tion of matrix elements of the electromagnetic transitions. The
quality of this approximation and the role of the antisymmetry
of initial and final states is tested in Figs. 5 and 6. Only the
ground state of 7Be is taken into account. To correct GSM-CC
calculations for the missing channels in this case, the channel-
channel coupling potentials Vc,c′ have been slightly corrected:
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FIG. 4. (Color online) Plot of the total astrophysical factor for the
7Be(p,γ )8B reaction. Data are taken from Refs. [22,26]. The solid
line represents the exact, fully antisymmetrized calculation including
both the ground state J π = 3/2−

1 and the first excited state J π = 1/2−
1

of the 7Be target. Calculations neglecting the first excited state of
the target are shown with the dashed line. For more details see the
description in the text.

Ṽc,c′ = c(Jπ )Vc,c′ , and the multiplicative corrective factors are
c(2+

1 ) = 1.0122, c(1+
1 ) = 1.0668, and c(3+

1 ) = 1.0225.
At low energies (Ec.m. < 1.5 MeV), neither the long-

wavelength approximation nor the antisymmetrization in the
calculation of E1 transition matrix elements change the results
significantly (see Fig. 5). Both approximations become worse
at higher energies but even at Ec.m. = 2.5 MeV the error is
only ∼10%.
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FIG. 5. Plot of the E1 astrophysical factor for the 7Be(p,γ )8B
reaction. The solid line represents the exact, fully antisymmetrized
calculation. The calculations in the long-wavelength approximation
are represented by the dashed and dotted lines in the fully anti-
symmetrized and non-antisymmetrized cases, respectively. For more
details, see the description in the text.
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FIG. 6. The same as in Fig. 5 but for the M1 transitions. The two
peaks correspond to the 1+

1 and 3+
1 resonances of 8B.

The astrophysical factor for M1 transitions is shown in
Fig. 6. The antisymmetrization of the initial and final states
lowers the value of SM1 by a factor ∼2 at the resonance peaks.
The long-wavelength approximation does not change SM1.

V. RESULTS OF GSM-CC CALCULATIONS
FOR THE 7Li(n,γ )8Li REACTION

A. Parameters of GSM calculations in 7Li and 8Li
7Li(n,γ )8Li is the mirror reaction of 7Be(p,γ )8B and will

be described in the same model space. The WS potential of 4He
core is given in Table III. The radius of the Coulomb potential
is rc = 2.8 fm. Valence nucleons occupy 0p3/2 and 0p1/2

discrete single-particle states and nonresonant single-particle
continuum states on discretized contours: L+

s1/2
, L+

p1/2
, L+

p3/2
,

L+
d3/2

, and L+
d5/2

. Each contour consists of three segments

joining the points: kmin = 0.0, kpeak = 0.15 − i0.14 fm−1,
kmiddle = 0.3 fm−1, and kmax = 2.0 fm−1, and each segment
is discretized by 10 points.

Parameters of the FHT Hamiltonian in 7Li and 8Li are
given in Table IV. In GSM, the ground state of 7Li is bound by
11.228 MeV with respect to 4He, i.e., close to the experimental

TABLE III. Parameters of the WS potential of 4He core used in
the GSM and GSM-CC description of 7Li and 8Li nuclei.

Parameter Protons Neutrons

a 0.65 fm 0.65 fm
R0 2.0 fm 2.0 fm
Vo(l = 0) 71.0752 MeV 43.6438 MeV
Vso(l = 0) 0 MeV 0 MeV
Vo(l = 1) 71.0752 MeV 43.6438 MeV
Vso(l = 1) 7.90622 MeV 7.84517 MeV
Vo(l = 2) 0 MeV 43.6438 MeV
Vso(l = 2) 0 MeV 0 MeV

TABLE IV. Parameters of the FHT interaction for
GSM and GSM-CC calculations in 7Li and 8Li. For
more details, see the caption of Table II.

Parameter Value (MeV)

VC
t,t 4.03185

VC
s,t −4.95286

VC
s,s 2.23361

VC
t,s −7.63465

VSO
t,t −1456.55

VSO
s,t 0

VT
t,t 15.4822

VT
s,t −15.5716

value (Eexp = 10.948 MeV). Reaction channels are obtained
by the coupling of the ground state 3/2− and the first excited
state 1/2− of 7Li with the proton partial waves: s1/2, p1/2, p3/2,
d3/2, and d5/2.

Discrete states of a composite system 8Li are 2+
1 and

1+
1 bound states, and 3+

1 resonance. To correct for missing
reaction channels in GSM-CC calculations, the channel-
channel coupling potentials Vc,c′ have been modified and
new potentials are Ṽc,c′ = c(Jπ )Vc,c′ , with c(2+

1 ) = 1.03705,
c(1+

1 ) = 1.04805, and c(3+
1 ) = 1.03205.

B. 7Li(n,γ )8Li cross section

The neutron separation energy in the ground state of 7Li
is Sn = 7.25 MeV. The final nucleus 8Li has two bound
states Jπ = 2+

1 and 1+
1 below the neutron emission threshold.

The calculated neutron separation energy from the ground
state and the first excited states are S(th)

n = 2.032 MeV and
S(th)

n = 1.052 MeV, respectively, in excellent agreement with
the experimental data. The 3+

1 resonance peak can be seen both
in M1 and E2 transitions.
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FIG. 7. The same as in Fig. 1 but for the 7Li(n,γ )8Li reaction.
For more details, see the description in the text.
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FIG. 8. The same as in Fig. 1 but for M1 transitions in the
7Li(n,γ )8Li reaction. The peak corresponds to the 3+

1 resonance in
8Li.

Figures 7–9 show the E1, M1, and E2 cross sections for
7Li(n,γ )8Li reaction. The solid lines in Figs. 7–9 show results
of the fully antisymmetrized GSM-CC calculations with both
ground and first excited states of 7Li included. The dashed lines
in these figures correspond to GSM-CC calculations neglecting
the 1/2− first excited state in 7Li. Including the first excited
state of the target lowers the E1 contribution to the neutron
radiative capture cross section by ∼20% for Ec.m. < 1 MeV.

The M1 contribution to the cross section increases by
∼25% in the region of 3+

1 resonance if the excited state
of the target is included (see Fig. 8). One can see that the
calculated 3+

1 resonance is at the experimental value of energy
Ec.m. = 0.223 MeV.

E2 transitions contribute very little to the neutron radiative
capture cross section. The E2 contribution is three orders of
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FIG. 9. The same as in Fig. 8 but for the E2 transitions. The two
peaks correspond to the 3+

1 and 1+
2 resonances of 8Li.
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FIG. 10. (Color online) Plot of the total cross section for the
7Li(n,γ )8Li reaction. Data are taken from Ref. [62]. The solid line
represents the exact, fully antisymmetrized calculation. Calculations
in the long-wavelength approximation are represented by the dashed
and dotted lines in the antisymmetrized and non-antisymmetrized
cases, respectively. For more details see the description in the text.

magnitude smaller than E1 and M1 contributions. The role of
the excited state of the target is very important. It increases
the contribution from E2 transitions by a factor ∼3 in the
region of 3+

1 resonance. At the 1+
2 resonance, the excited state

enhances the E2 contribution by about one order of magnitude.
The calculated energy of this resonance is lower than seen
experimentally.

The total neutron radiative capture cross section is com-
pared with the experimental data [62] in Fig. 10. GSM-CC
calculation underestimates the data of Imhof et al. [62]. The
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FIG. 11. The same as in Fig. 5 but for the 7Li(n,γ )8Li reaction.
For more details, see the description in the text.
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FIG. 12. The same as in Fig. 11 but for the M1 transitions. The
peak corresponds to the 3+

1 resonance in 8Li.

extrapolation of the calculated neutron radiative capture cross
section at low Ec.m. is done using the expansion

σ (Ec.m.) = 4.541√
Ec.m.

− 2.360 + 3.387
√

Ec.m., (68)

which yields σ (GSM-CC) = 25.41 μb at Ec.m. = 25 keV.
The long-wavelength approximation and the role of the

antisymmetry of initial and final states in the calculation of
matrix elements of the electromagnetic transitions is tested in
Figs. 11 and 12. Only the ground state of 7Li is taken into
account in these tests. To correct GSM-CC calculations for
the missing channels in this case, the channel-channel cou-
pling potentials Vc,c′ have been corrected: Ṽc,c′ = c(Jπ )Vc,c′ ,
and the multiplicative corrective factors are c(2+

1 ) = 1.038,
c(1+

1 ) = 1.0594, and c(3+
1 ) = 1.032.

At low energies (Ec.m. < 1.2 MeV), neither the long-
wavelength approximation nor the antisymmetry of initial and
final states in the calculation of E1 transition matrix elements
change results significantly (see Fig. 11). Also M1 transition
matrix elements are insensible to the long wavelength ap-
proximation (see Fig. 12). In contrast, the antisymmetrization
is essential, decreasing the M1 contribution to the neutron
radiative capture cross section by a factor ∼ 4 in the region of
3+

1 resonance.

VI. CONCLUSIONS

The GSM in the coupled-channel representation opens a
possibility for the unified description of low-energy nuclear
structure and reactions using the same Hamiltonian. While
both GSM and GSM-CC can describe energies, widths, and
wave functions of the many-body states, the GSM-CC can in
addition yield reaction cross sections. Combined application
of GSM and GSM-CC to describe energies of resonant states
allows us to test the exactitude of calculated cross sections for
a given many-body Hamiltonian.

In this work, we have presented in detail the GSM in
the coupled channel representation and applied it to the
description of the low-energy proton and neutron radiative
capture processes on mirror targets 7Be and 7Li, respec-
tively. The interaction between valence nucleons in this
calculation was modeled by the finite-range two-body FHT
interaction.

The convergence of GSM-CC calculations has been
checked by comparing GSM and GSM-CC results for 8B and
8Li states. In a given single-particle model space, the GSM-CC
calculation with the reaction channels which are constructed
using selected many-body states of the target nucleus (7Be or
7Li in our case), can be considered reliable if the GSM-CC
eigenvalues for a combined system (8B or 8Li in our case)
approximate well the results of a direct diagonalization of the
GSM Hamiltonian matrix in the same single-particle model
space. In such a case, the configuration mixing in GSM-CC
and GSM wave functions are equivalent and one does not need
to include additional states of the target nucleus to reach the
many-body completeness in the GSM-CC calculation. Only
in this case, the unified description of nuclear structure and
reactions with the same many-body Hamiltonian and the same
model space is reached. In the studied case, the GSM and
GSM-CC spectra were close but not identical, so the small
renormalization of the channel-channel coupling potentials
was necessary to compensate for the missing channels made
of the higher-lying discrete and/or continuum states of the
target. In the reactions involving heavier nuclei and/or higher
c.m. energies, the number of channels is such that the
unified description of structure and reactions with the same
Hamiltonian is simply not conceivable.

There are two important aspects in this GSM-CC calcu-
lations which have been studied carefully. The first one is
the antisymmetry of initial and final states in the calculation of
matrix elements of the electromagnetic operators. It was found
that the antisymmetry is crucial in M1 transitions in the region
of resonances. At energies of astrophysical importance, the
error introduced by neglecting the antisymmetry is, however,
small. The second aspect is the role of the excited state 1/2− of
the target. At Ec.m. ∼ 0, the radiative capture cross sections in
7Be(p,γ )8B and 7Li(n,γ )8Li reactions are slightly impacted
by the excited state of the target. However, in the region of
resonances and at higher energies the excited 1/2−

1 state in
7Be and 7Li turns out to be crucial. As compared to the
7Be(p,γ )8B reaction, the 7Li(n,γ )8Li reaction is less sensitive
to the first excited state of the target but more sensitive to
the antisymmetry of initial and final states in the calculation
of matrix elements of electromagnetic transition operators.
The long-wavelength approximation in the transition matrix
elements changes mainly the E1 contribution to the radiative
capture cross section.
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APPENDIX: MATRIX ELEMENTS OF THE ELECTROMAGNETIC TRANSITION OPERATORS

The matrix elements related to electric and magnetic transitions will be considered with and without the long-wavelength
approximation. The operators involving the exact and approximate electromagnetic field can be found in Ref. [63], whose matrix
elements can be derived straightforwardly from the Wigner-Eckhart theorem and standard manipulations of gradients of spherical
harmonics coupled to angular momenta [64]. The operator M̂L,ML

separates into electric M̂E
L,ML

and magnetic M̂M
L,ML

parts:

M̂E
L,ML

=
∑

i

ei

(2L + 1)!!

(L + 1)kL
γ

[
S ′

L(kγ r̂i) + kγ r̂i

2
SL(kγ r̂i)

]
Ŷ L

ML
(�i) +

∑
i

ei

(2L + 1)!!

(L + 1)kL
γ

�c

2mpc2
gs

i

[
SL(kγ r̂i)

r̂i

]
(�̂li · �̂si)Ŷ

L
ML

(�i),

(A1)

M̂M
L,ML

= �c

2mpc2

∑
i

(2L + 1)!!

(L + 1)kL
γ

[
gl

i
�∇i

(
SL(kγ r̂i)

kγ r̂i

Ŷ L
ML

(�i)

)
· �̂li + gs

i
�∇i

(
S ′

L(kγ r̂i)Y
L
ML

(�i)
) · �̂si

]

+ �c

2mpc2

∑
i

(2L + 1)!!

(L + 1)kL
γ

gs
i (kγ SL(kγ r̂i))

(�̂si · �uri

)
Ŷ L

ML
(�i)

= − �c

2mpc2

∑
i

(2L + 1)!!

(L + 1)kL
γ

gl
i

√
L + 1

2L + 1

(
S ′

L(kγ r̂i) −
(

L + 1

r̂i

)
SL(kγ r̂i)

kγ r̂i

)
[ŶL+1(�i) ⊗ �̂li]

L

ML

+ �c

2mpc2

∑
i

(2L + 1)!!

(L + 1)kL
γ

gl
i

√
L

2L + 1

(
S ′

L(kγ r̂i) +
(

L

r̂i

)
SL(kγ r̂i)

kγ r̂i

)
[ŶL−1(�i) ⊗ �̂li]

L

ML

− �c

2mpc2

∑
i

(2L + 1)!!

(L + 1)kL
γ

gs
i

√
L + 1

2L + 1

[(
L(L + 1)

(kγ r̂i)2 − 1

)
SL(kγ r̂i) −

(
L

r̂i

)
S ′

L(kγ r̂i)

]
[ŶL+1(�i) ⊗ �̂si]

L

ML

+ �c

2mpc2

∑
i

(2L + 1)!!

(L + 1)kL
γ

gs
i

√
L

2L + 1

[(
L(L + 1)

(kγ r̂i)
2 − 1

)
SL(kγ r̂i) +

(
L + 1

r̂i

)
S ′

L(kγ r̂i)

]
[ŶL−1(�i) ⊗ �̂si]

L

ML

+ �c

2mpc2

∑
i

(2L + 1)!!

(L + 1)kL
γ

gs
i (kγ SL(kγ r̂i))

(�̂si · �uri

)
Ŷ L

ML
(�i), (A2)

where i runs over all considered nucleons and �̂li and �̂si are the orbital and spin angular momenta, respectively. In the above
expression, Ŷ L

ML
(�) is a spherical harmonics, SL is the Ricatti-Bessel function, r̂i and �i are radial and angular coordinates of

the nucleon i, and �uri
= �̂ri/r̂i . Moreover, ei is the dimensionless charge of the nucleon i (ei = 1 for a proton and 0 for a neutron),

gs
i is the dimensionless magnetic spin moment of the nucleon i (gs

i = 5.5857 for a proton and −3.8263 for a neutron), mpc2 (in
units of MeV) is the mass of the proton, and gl

i is the dimensionless magnetic orbital momentum of the nucleon i times L + 1
(gl

i = 2 for a proton and 0 for a neutron).
In the long-wavelength approximation, the expressions (A1) and (A2) become

M̂E
L,ML

=
∑

i

ei r̂
L
i Ŷ L

ML
(�i), (A3)

M̂M
L,ML

= �c

2mpc2

∑
i

[
gl

i

L + 1
�∇i

(
r̂L
i Ŷ L

ML
(�i)

) · �̂li + gs
i
�∇i

(
rL
i Y L

ML
(�i)

) · �̂si

]

= �c

2mpc2

∑
i

√
L(2L + 1)r̂L−1

i

gl
i

L + 1
[ŶL−1(�i) ⊗ �̂li]

LML + �c

2mpc2

∑
i

√
L(2L + 1)r̂L−1

i gs
i [ŶL−1(�i) ⊗ �̂si]

LML .

(A4)

Equations (A1)–(A4) have been written in such a way that only one-body operators appear in each summation. Matrix elements
of these operators are calculated in a standard way using the Wigner-Eckhart theorem.
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N. Fedoseyev, U. Köster, Y. Nir-El, G. Haquin, H. W. Gäggeler,
R. Weinreich, and the ISOLDE Collaboration, Phys. Rev. Lett.
90, 022501 (2003).

[24] L. T. Baby, C. Bordeanu, G. Goldring, M. Hass, L. Weissman, V.
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Böttcher, D. Cortina, A. Förster, M. Gai, H. Geissel, U. Greife,
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E. Grosse, N. Iwasa, P. Koczoń, B. Kohlmeyer, R. Kulessa, H.
Kumagai, N. Kurz, M. Menzel, T. Motobayashi, H. Oeschler,
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