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The density distributions of 10Be and 11Be nuclei obtained within the quantum Monte Carlo model and the
generator coordinate method are used to calculate the microscopic optical potentials (OPs) and cross sections
of elastic scattering of these nuclei on protons and 12C at energies E < 100 MeV/nucleon. The real part of the
OP is calculated using the folding model with the exchange terms included, while the imaginary part of the OP
that reproduces the phase of scattering is obtained in the high-energy approximation. In this hybrid model of OP
the free parameters are the depths of the real and imaginary parts obtained by fitting the experimental data. The
well-known energy dependence of the volume integrals is used as a physical constraint to resolve the ambiguities
of the parameter values. The role of the spin-orbit potential and the surface contribution to the OP is studied for
an adequate description of available experimental elastic scattering cross-section data. Also, the cluster model,
in which 11Be consists of a n-halo and the 10Be core, is adopted. Within the latter, the breakup cross sections of
11Be nucleus on 9Be, 93Nb, 181Ta, and 238U targets and momentum distributions of 10Be fragments are calculated
and compared with the existing experimental data.
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I. INTRODUCTION

The discovery of halo nuclei [1] has been related to
the measured interaction cross sections of nuclei like 6,8He,
11Li, and Be isotopes with various target nuclei [2–6]. The
evidence of the existence of an extended halo in neutron-rich
nuclei is based on the observed unusually narrow momentum
distribution of a core fragment and enhanced reaction cross
section. The first example was the breakup of 11Li at high
energies [7–10] by observing the large interaction reaction
cross section [2] and the narrow momentum distribution of
9Li in the breakup of 11Li, e.g., in the reaction 11Li + 12C
at E = 800 MeV/nucleon [7]. Here we should mention
also the results of the experiments at lower energies (E =
60 MeV/nucleon) of scattering of 11Li on 9Be, 93Nb, and
181Ta [11] and of 11Li on a wide range of nuclei from 9Be
to 238U [12]. As shown in Ref. [13], not only scattering but
also the breakup of 11Be in the collisions with the target nuclei
93Nb, 181Ta, and 238U play decisive roles when studying the
internal cluster structure of 11Be. Indeed, the narrow peak of
the momentum distributions of the breakup fragments of such
a neutron-rich nucleus reflects the very large extension of its
wave function, compared to that of the core nucleus 10Be,
and thus evidences the existence of the nuclear halo [14–20].
As was concluded in Ref. [18], namely the longitudinal
component of the momentum (taken along the beam or the
z direction) provides the most accurate information on the
intrinsic properties of the halo, being insensitive to details
of the collision and the size of the target. In addition, recent
measurements of the charge radii of 7,9,10,11Be pointed out that
the average distance between the halo neutrons and the 10Be
dense core of the 11Be nucleus is around 7 fm [21]. Thus, the
halo neutron is about three times as far from the dense core as
is the outermost proton because the core itself has a radius of
only 2.5 fm.

An important finding when investigating reactions with
10Be and 11Be nuclei, in particular the 10Be + n breakup of
11Be, is the effect of the deformed 10Be core on the two-body
cluster structure of 11Be. In fact, in the 11Be nucleus the
inversion of the p1/2 and s1/2 orbitals predicted by Talmi
and Unna [22] and confirmed by Alburger et al. [23] leads
to a 1/2+ ground state. Also, the probability of the E1
transition from this ground state to the 1/2− first excited
state of 11Be located at 320 keV excitation energy is the
largest ever measured in light nuclei [24,25]. The effects
of the core deformation on the breakup of 11Be on protons
have been studied in several works. For example, in addition
to a two-body cluster structure with an inert 10Be(0+) core
and a valence neutron used in Ref. [26] in the continuum
discretized coupled-channels (CDCC) calculations of elastic
and inelastic proton scattering on 11Be, the authors have also
discussed the necessity to account for contributions from
configurations involving excited states of the 10Be core to the
10Be + n continuum of 11Be. Crespo et al. [27] have found that
the core excitation p + 10Be(0+

1 ) → p + 10Be(2+
1 ) provides a

significant contribution to the breakup cross section of 11Be
on the proton target at 63.7 MeV/nucleon incident energy.

In the earlier works (e.g., Ref. [28]) the elastic scattering
cross sections of 10,11Be on protons have been calculated
using phenomenological OPs of given forms with numerous
fitting parameters of their real (ReOP) and imaginary (ImOP)
parts. However, in the further calculations the more physically
motivated microscopic folding models were applied (see, e.g.,
Refs. [29–32]). In many works [30–32] the folding procedure
was explored for the real part of the OP. Within the latter
procedure the direct and exchange parts of the ReOP with
effective nucleon-nucleon forces are calculated. At the same
time the OP is usually taken in a phenomenological form.
Many successful applications of this model have been made
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for the proton- and nucleus-nucleus collisions (see, e.g.,
cycles of works [31,33,34]). This model was also explored
in Refs. [35,36] for the scattering of 10,11Be + p, where the
exchange part of the folded ReOP is taken in the form of the
zero-range prescription and the density distribution of 11Be
has the Gaussian-oscillator form. In the recent work [37]
the authors account for the full exchange part of the ReOP,
while the ImOP was calculated using the folding high-
energy approximation (HEA) formula from Refs. [38,39]. In
Refs. [37,40] a surface term to the ImOP was added to improve
the agreement with the data at lower energies.

In our present work, as well as in our previous works
considering processes with exotic He and Li isotopes [41–44],
we use microscopically calculated OPs within the hybrid
model [38]. In the latter the ReOP is calculated by a folding
of a nuclear density and the effective NN potentials [32] (see
also Ref. [45]) and includes both direct and exchange parts.
The ImOP is obtained within the HEA model [46,47]. There
are only two or three fitting parameters in the hybrid model
that are related to the depths of the ReOP, ImOP, and the
spin-orbit part of the OP. Along with some phenomenological
density distributions for He and Li isotopes, we have used in
our works realistic microscopic density obtained within the
large-scale shell model (LSSM) [48,49]. In the present work,
devoted to processes with 10,11Be nuclei, we use the density
distribution for 10Be obtained within the quantum Monte Carlo
(QMC) model [50,51] and also the densities of 10Be and 11Be
obtained within the generator coordinate method (GCM) [52].

The main aim of our work is twofold. First, we study the
elastic scattering of the neutron-rich exotic 10Be and 11Be nu-
clei on protons and nuclei at energies E < 100 MeV/nucleon
using real and imaginary parts of the optical potentials
microscopically calculated in our work. Second, we estimate
important characteristics of the reactions with 11Be, such as
the breakup cross sections and momentum distributions of
fragments in breakup processes. To this end we use the model
in which 11Be consists of a core of 10Be and a halo formed
by a motion of a neutron in its periphery (e.g., Refs. [53–55]).
The latter model is justified by the small separation energy
Sn = 504 ± 6 KeV of a neutron from the ground s1/2 state of
11Be [56] and on the observed quite-large total interaction
cross sections of 11Be with target nuclei caused by the
main contribution from the breakup of 11Be on 10Be and a
neutron. The important role of the periphery is confirmed
also by the experiments on scattering of 11Be on the heavy
nucleus of 208Pb [57], where the prevailing mechanism is the
direct breakup owing to the long-range Coulomb force of the
nucleus. Also we should mention the important observation
of the narrow peak in the momentum distribution of the
10Be fragments at the breakup of 11Be scattering on the 12C
nucleus [13], that is, as mentioned above, a consequence
of the large extension of the wave function of the relative
motion in the 10Be + n system related to the small neutron
separation energy. By means of such a cluster model of 11Be
one can calculate the OPs for scattering of 11Be on protons or
nuclear targets. To this end one should use the known n + p
potential and calculate using the microscopic model the optical
potentials of 10Be + p (or 10Be + A and the n + A potentials).
Then the sum of these potentials is folded with a density

probability of the relative motion of the core 10Be and the
neutron. Also, in the framework of this cluster model one can
calculate the momentum distribution of 10Be fragments from
the breakup reactions 11Be + 9Be, 11Be + 93Nb, 11Be + 181Ta,
and 11Be + 238U, for which experimental data are available.

The structure of the paper is as follows. The theoretical
scheme to calculate microscopically within the hybrid model
the ReOP, the ImOP, the spin-orbit part of the OP, and
the surface component of OP, as well as the results of
the calculations of the elastic scattering cross sections of
10,11Be + p and 10,11Be + 12C, are presented in Sec. II. The
basic expressions to estimate the breakup of 11Be and to
calculate the cross sections and the fragment momentum
distributions of 10Be in the diffraction and stripping processes
of 11Be on 9Be, 93Nb, 181Ta, and 238U are given in Sec. III. The
summary and conclusions of the work are included in Sec. IV.

II. ELASTIC SCATTERING OF 10,11Be ON PROTONS
AND 12C AT E < 100 MeV/NUCLEON

A. Hybrid model of the microscopic optical potential

In the present work we calculate the microscopic OP that
contains the volume real (V F) and imaginary parts (W ) and the
spin-orbit interaction (V ls). This OP is used for calculations
of elastic scattering differential cross sections. We introduce
a set of weighting coefficients NR, NI, Nls

R , and Nls
I that

are related to the depths of the corresponding parts of the
OP and are obtained by a fitting procedure to the available
experimental data. Details of the constructing of the OP are
given in Refs. [30–32,45]. The OP has the form

U (r) = NRV F(r) + iNIW (r)

− 2λ2
π

[
Nls

R V ls
R

1

r

dfR(r)

dr
+ iNls

I Wls
I

1

r

dfI(r)

dr

]
(�l · �s),

(1)

where 2λ2
π = 4 fm2 with the squared pion Compton wave-

length λ2
π = 2 fm2. Let us denote the values of the ReOP and

ImOP at r = 0 by VR[≡ V F(r = 0)] and WI[≡ W (r = 0)].
We note that the spin-orbit part of the OP contains real and
imaginary terms with the parameters V ls

R and Wls
I related to

VR and WI by V ls
R = VR/4 and Wls

I = WI/4, correspondingly.
Here VR and WI (and V ls

R and Wls
I ) have to be negative. The

ReOP V F(r) is a sum of isoscalar (V F
IS) and isovector (V F

IV)
components and each of them has its direct (V D

IS and V D
IV) and

exchanged (V EX
IS and V EX

IV ) parts.
The isoscalar component has the form

V F
IS(r) = V D

IS (r) + V EX
IS (r)=

∫
d3rpd3rt {ρp(rp)ρt (rt )v

D
NN (s)

+ ρp(rp,rp+s)ρt (rt ,rt − s)vEX
NN (s) exp[ıK(r)s/M]},

(2)

where s = r + rt − rp is the vector between two nucleons, one
of which belongs to the projectile and another one to the target
nucleus.

In the first term of the right-hand side of Eq. (2) the densities
of the incident particle ρp and the target nucleus ρt are sums
of the proton and neutron densities. In the second term ρp and
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ρt are the corresponding one-body density matrices. In our
work we use for them the approximations for the knock-on
exchange term of the folded potential from Refs. [58,59] (see
also Refs. [41,43]). In Eq. (2) K(r) is the local momentum
of the nucleus-nucleus relative motion and vD

NN and vEX
NN

are the direct and exchange effective NN potentials. They
contain an energy dependence usually taken in the form
g(E) = 1 − 0.003E and a density dependence with the form
for the CDM3Y6 effective Paris potential [32],

F (ρ) = C[1 + αe−βρ(r) − γρ(r)], (3)

with C = 0.2658, α = 3.8033, β = 1.4099 fm3, and
γ = 4.0 fm3. The effective NN interactions vD

NN and vEX
NN

have their isoscalar and isovector components in the form of
M3Y interaction obtained within g-matrix calculations using
the Paris NN potential [31,32]. The isovector components V F

IV
of the ReOP can be obtained by exchanging in Eq. (2) the sum
of the proton and neutron densities in ρp(t) with their difference
and using the isovector parts of the effective NN interaction.
In the case of the proton scattering on nuclei, Eq. (2) contains
only the density of the target nucleus.

The ImOP can be chosen either to be in the form of the
microscopically calculated V F (W = V F) or in the form WH

obtained in Ref. [38,39] within the HEA of the scattering
theory [46,47]:

WH(r) = − σ̄N

2π2

E

k

∫ ∞

0
j0(kr)ρp(q)ρt (q)fN (q)q2dq. (4)

In Eq. (4) ρ(q) are the corresponding form factors of the
nuclear densities, fN (q) is the amplitude of the NN scattering
and σ̄N is the averaged over the isospin of the nucleus total
NN scattering cross section that depends on the energy. The
parametrization of the latter dependence can be seen, e.g., in
Refs. [41,60]. We note that to obtain the HEA OP [with its
imaginary part WH in Eq. (4)] one can use the definition of the
eikonal phase as an integral of the nucleon-nucleus potential
over the trajectory of the straight-line propagation and has
to compare it with the corresponding Glauber expression for
the phase in the optical limit approximation. In the suggested
scheme we use the nuclear densities and NN cross sections
known from other sources and also the already-used NN

potentials and amplitudes. In this way, the only free parameters
in our approach are the parameters N that renormalize the
depths of the OPs components. In the spin-orbit parts of the
OP the functions fI(r) (i = R,I ) correspond to Woods-Saxon
(WS) forms of the potentials with parameters of the real and
imaginary parts VR, WI, RI, aI [fR(r,RR,aR) and fI(r,RI,aI)],
as they are used in the DWUCK4 code [61] and applied for
numerical calculations. We determine the values of these
parameters by fitting the WS potentials to the microscopically
calculated potentials V F (r) and W (r).

B. Results of calculations of elastic scattering cross sections

In the calculations of the microscopic OPs for the scattering
of 10,11Be on protons and nuclei, we used realistic density
distributions of 10Be calculated within the QMC model [50,51]
and of 10,11Be from the generator coordinate method [52].
In general, the QMC methods include both variational and
Green”s function Monte Carlo methods. In our case, within the
QMC method the proton and neutron densities of 10Be have
been computed with the AV18+IL7 Hamiltonian [51]. As far
as the GCM densities are concerned, in Ref. [52] the 10Be wave
functions are defined in the harmonic oscillator model with all
p-shell configurations. The 11Be wave functions are described
in terms of cluster wave functions, relative to 10Be and to the
external neutron. Thus, both microscopic densities effectively
account for the nonordinary nuclear structure peculiarities
of 10,11Be [26,27] and their use is physically justified. The
QMC and GCM densities are given in Fig. 1. It can be seen
that they have been calculated with enough accuracy up to
distances much larger than the nuclear radius. In both methods
the densities of 10Be occur quite similarly up to r ∼ 3.5 fm
and a difference between them is seen in their asymptotics.
In the calculations of the OPs for 10,11Be + 12C the density
of 12C was taken in symmetrized Fermi form with radius
and diffuseness parameters c = 3.593 fm and a = 0.493 fm,
respectively [62]. The results of the calculations are compared
with the available experimental data. All calculations of elastic
scattering using the obtained OPs are performed by using the
DWUCK4 code [61].

1

10-8

10-6

10-4

10-2

 0  2  4  6  8

ρ(
r)

 [f
m

-3
]

r [fm]

10Be

proton GCM
neutron GCM
proton QMC
neutron QMC

1

10-8

10-6

10-4

10-2

 0  2  4  6  8  10

ρ(
r)

 [f
m

-3
]

r [fm]

11Be

proton GCM
neutron GCM

FIG. 1. (Color online) Point-proton (normalized to Z = 4) and point-neutron (normalized to N = 6 and N = 7, respectively) densities of
10Be and 11Be obtained in the GCM [52] and in the QMC method [50,51].
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1. Elastic scattering cross sections of 10,11Be + p

On the basis on the scheme presented in Sec. II A, we
calculated the elastic scattering cross sections of 10,11Be + p
and compared them with the available experimental data.

It is accepted that the elastic scattering of light nuclei is
rather sensitive to their periphery, where transfer and breakup
processes also take place. Therefore, investigating the elastic
scattering, one must bear in mind that virtual nonelastic contri-
butions can also take part in the process. It has been pointed out
in our previous papers [42,43], as well as in Refs. [36,37,40],
that the inclusion of a surface imaginary term to the OP
[Eq. (1)] leads to a better agreement with the experimental
data. As is known, this contribution can be considered to be
the so-called dynamical polarization potential, which allows
one to simulate the surface effects caused by the latter. In
fact, the imaginary part of the ls term in our OP [see Eq. (1)]
plays effectively this role. However, sometimes one needs to
increase the absorption in the surface region and thus, one adds
a derivative of the ImOP (surface term),

W sf(r) = −iN sf
I r

dW (r)

dr
, (5)

where N sf
I is also a fitting parameter.

The results for the elastic 10Be + p and 11Be + p scattering
cross sections are given in Figs. 2 and 3, respectively, and
compared with the data at energies 39.1 MeV/nucleon [63] and
59.4 MeV/nucleon [28] for 10Be and 38.4 MeV/nucleon [63]
and 49.3 MeV/nucleon [28] (see also Ref. [64]) for 11Be. In
general, our analysis points out that more successful results
are obtained in the case when the ImOP is taken from HEA:
W (r) = WH(r) [Eq. (4)]. We note that in the fitting procedure
of the theoretical results to the data for elastic scattering cross
sections for 10,11Be + p (and also for 10,11Be + 12C) there
arises an ambiguity in the choice of the optimal curve among
many of them that is close to the experimental data. Owing to
this we impose a physical constraint, namely choosing those
ReOPs and ImOPs that give volume integrals that have a
correct dependence on the energy. The volume integrals have
the forms

JV (E) = − 4π

ApAt

∫
drr2[NRV F(r)], (6)

J
(a)
W (E) = − 4π

ApAt

∫
drr2[NIW (r)], (7)

J
(b)
W (E) = − 4π

ApAt

∫
drr2

[
NIW (r) − N sf

I r
dW (r)

dr

]
, (8)

where Ap and At are the mass numbers of the projectile and the
target, respectively. In Eq. (8) we added also the integral over
the surface term of the OP (5). It is known [65] that the volume
integrals (their absolute values) for the ReOP decrease with the
increase of the energy, while for the ImOP they increase up to a
plateau and then decrease. The values of the N parameters from
the fitting procedure and after imposing the mentioned con-
straint are given in Table I. It can be seen that the tendency (the
decrease of JV and the increase of JW ) is generally confirmed.

The calculated differential cross sections of 10Be + p
elastic scattering at energies 39.1 and 59.4 MeV/nucleon

are presented in Fig. 2. First, it is seen from the top panels
that the inclusion of only the volume OP is not enough to
reproduce reasonably well the data in the small-angle region.
Then, after adding the spin-orbit component to the OP the
agreement with the data becomes better, in particular for the
angular distributions calculated using the GCM density at
energies 39.1 and 59.4 MeV/nucleon for angles less than
20◦ and 30◦, correspondingly, as illustrated in the middle
panels of Fig. 2. However, a discrepancy at larger angles
remains. At the same time for the cross sections with the
account for the ls interaction and using the QMC density we
obtain fairly good agreement with the data at both energies
and only a small discrepancy is seen at small angles at energy
59.4 MeV/nucleon. Further improvement is achieved when
both ls- and surface terms are included in the calculations. In
this case, as can be seen from the bottom panels of Fig. 2,
the discrepancy between the differential cross sections for the
GCM density and the experimental data at larger angles is
strongly reduced.

In general, the account for the spin-orbit term in the volume
OP gives a trend of an increase of the cross sections at larger
angles, which seems to be related with the change of the form
of the total OP at its periphery. If we evaluate the quantities
of the two densities of 10Be on the basis of the values of the
parameter NR (comparing which ones are closer to unity), our
conclusion is that in the calculations without an ls interaction
the GCM density works better, while in the case with an
ls term in the OP the QMC density gives better results.
A fair agreement between the calculated 10Be + p angular
distributions and the experimental data is obtained only when
both ls and surface contributions to the OP are included.

In Fig. 3 elastic cross sections for the scattering of
11Be on protons at energies 38.4 and 49.3 MeV/nucleon
applying the fitting procedure for the parameters N are
given and compared with the empirical data. All of them are
calculated using GCM density of 11Be. The different curves
drawn in Fig. 3 correspond to those given in Fig. 2 with
accounting for different contributions to the OP. One can see a
discrepancy at small angles (θ < 30◦) that seems to be related
to the contributions from the surface region of interactions,
where breakup processes play an important role. Similarly to
the results for the 10Be + p elastic scattering cross sections
(see Fig. 2), the account for both spin-orbit and surface terms to
the OP leads to a better agreement with the 11Be + p data in the
region of small angles. In Table I are given the corresponding
values of the parameters NR and NI, whose values deviate from
unity by about 20%–30%, which points out that the hybrid
model for the OP can be used successfully in such calculations.

We would like to emphasize the fact that when considering
the case of the total OP [Eqs. (1) and (5)], the values of
the parameters NI drop down sufficiently in comparison with
their values coming out from the two other cases. They are
compensated in most cases by the nonzero values of Nls

R , Nls
I ,

and N sf
I parameters. Here we would like to note that the ls term

used in our calculations (with both real and imaginary parts)
plays a similar role as the surface term applied in Ref. [37],
where, however, the imaginary ls term is disregarded. From
our analysis made for the elastic scattering of 10Be and 11Be on
protons, we conclude also that the surface imaginary part of the
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FIG. 2. 10Be + p elastic scattering cross sections. (Top) Without ls term; (middle) with ls term; (bottom) with both ls and surface
terms. Solid lines: calculations with GCM density of 10Be; dashed lines: calculations with QMC density of 10Be. Experimental data for
39.1 MeV/nucleon and 59.4 MeV/nucleon are taken from Refs. [63] and [28], respectively.

OP is less necessary to fit the data of proton elastic scattering on
the stable nucleus 10Be, but it is important to have an agreement
with the proton elastic-scattering data of the halo nucleus 11Be.
This is mainly attributable to the specific halo structure of the
11Be density distribution and its large rms radius.

For a more complete analysis of the elastic scattering
cross sections, we extend the incident energy region to lower
energies in the example of the scattering of 10Be on protons
that has been recently studied by Schmitt et al. [66]. Moreover,
this could be a test of our hybrid model at low energies. In
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FIG. 3. 11Be + p elastic scattering cross sections. Calculations are performed with GCM density of 11Be. Solid line, OP with both ls and
surface terms [Eqs. (1) and (5)]; dashed line, OP with ls term [Eq. (1)]; dotted line, the volume part of OP from Eq. (1). Experimental data for
38.4 and 49.3 MeV/nucleon are taken from Refs. [63] and [28], respectively.

Ref. [66] proton energies of 6, 7.5, 9, and 10.7 MeV were
selected to measure the elastic scattering cross sections for
protons with 10Be beams in inverse kinematics to provide
constraints on optical potentials for reaction studies with light
neutron-rich nuclei. The calculated results for the differential
cross sections, shown as a ratio to Rutherford scattering, are
given and compared with the data [66] in Fig. 4 for energies
of 7.5 and 10.7 MeV. The values of the N parameters from
the fitting procedure and the corresponding total reaction cross

sections and volume integrals are listed in Table II. The results
shown in Fig. 4 when including in the calculations only the
ls term demonstrate a fairly good agreement with the data.
The values of the parameters NR deduced from the fitting
procedure for both energies in the case of GCM density of 10Be
are quite large, which indicates the specific peculiarities of the
elastic scattering at low energies, accounting for the spin-orbit
term. We also calculated the 10Be + p elastic scattering cross
sections at the same proton energies, taking into account the

TABLE I. The renormalization parameters NR, NI, Nls
R , Nls

I , and N sf
I , the total reaction cross sections σR (in mb), and the volume integrals JV ,

J
(a)
W , and J

(b)
W (in MeV.fm3) as functions of the energy E = 39.1 and 59.4 MeV/nucleon for the 10Be + p and E = 38.4 and 49.3 MeV/nucleon

for the 11Be + p elastic scattering.

Nucleus Model E NR NI Nls
R Nls

I N sf
I σR JV J

(a)
W J

(b)
W

10Be GCM 39.1 0.983 0.267 0.000 0.000 0.000 292.12 389.408 116.600 116.600
without ls and QMC 1.153 0.295 0.000 0.000 0.000 311.36 411.344 130.806 130.806
surface terms GCM 59.4 1.001 0.802 0.000 0.000 0.000 341.18 333.739 263.540 263.540

QMC 1.188 0.856 0.000 0.000 0.000 356.98 354.606 283.464 283.464
10Be GCM 39.1 1.493 0.492 1.000 0.476 0.000 372.50 591.440 216.480 216.480
with ls and QMC 1.163 0.318 0.557 0.000 0.000 323.96 414.911 141.004 141.004
without surface GCM 59.4 1.294 0.804 0.190 0.000 0.000 355.29 431.427 264.197 264.197
terms QMC 1.014 0.527 0.940 0.000 0.000 287.68 302.669 174.516 174.516
10Be GCM 39.1 0.995 0.266 0.095 0.082 0.004 298.65 394.161 117.040 122.321
with ls and QMC 1.194 0.260 0.075 0.025 0.018 333.71 425.971 115.286 139.235
surface terms GCM 59.4 0.970 0.000 0.365 1.000 0.373 400.26 323.404 0.000 367.802

QMC 1.043 0.281 0.000 1.000 0.270 389.27 311.325 93.053 361.343
11Be GCM 38.4 0.824 0.659 0.000 0.000 0.000 459.05 339.388 293.493 293.493
without ls and 49.3 0.793 0.805 0.000 0.000 0.000 423.52 296.301 301.184 301.184
surface terms
11Be GCM 38.4 0.787 0.799 0.000 0.507 0.000 458.63 324.148 355.844 355.844
with ls and 49.3 0.793 0.867 0.123 0.316 0.000 426.85 296.301 301.184 301.184
without surface
terms
11Be with GCM 38.4 0.849 0.106 0.102 0.380 0.152 493.01 349.685 47.208 269.903
ls and surface 49.3 0.801 0.000 0.213 0.394 0.200 436.46 299.280 0.000 246.162
terms
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FIG. 4. 10Be + p elastic scattering cross sections as a ratio to Rutherford scattering at proton energies of 7.5 MeV (left) and 10.7 MeV
(right). The solid and dashed lines show the results with QMC and GCM density of 10Be, respectively, and with ls term in OP. The dotted lines
show the QMC results obtained by accounting for both the ls and surface terms in OP. Experimental data are taken from Ref. [66].

surface term [Eq. (5)]. In this case, only the QMC density of
10Be was tested, which has been also used in Ref. [37], where
the two other energies of 6 and 9 MeV were considered. The
results illustrate that the inclusion of the surface contribution
does not affect the good agreement obtained without it. Here
we note that in Ref. [66] no single optical potential had been
found to reproduce well the proton elastic scattering data over
this range of energies. At the same time, a deviation of the
results of our model with both densities beyond 55◦ is seen
from the left panel of Fig. 4. Therefore, it would be desirable to
measure the elastic channel in this angular range to constrain
the p −10 Be optical potential.

2. Elastic scattering cross sections of 10,11Be + 12C

The elastic scattering cross sections of 10,11Be + 12C (their
ratios to the Rutherford one) calculated within the hybrid
model at the same energies as for 10,11Be + p scattering are
given in Figs. 5 and 6 and compared with the experimental
data (see also Ref. [64]). In comparison with the case of
10,11Be + p, the experimental data [28,63] for the scattering
on 12C demonstrate more developed diffractional picture on
the basis of the stronger influence of the Coulomb field. It can
be seen in Fig. 5 that in both cases of calculations of OPs with

QMC or GCM densities the results are in a good agreement
with the available data. It is seen also from the figures that it
is difficult to determine the advantage of the use for the ImOP
W = WH or W = V F, because the differences between the
theoretical results start at angles for which the experimental
data are not available. The values of the parameters NR and NI

(the depths of ReOP and ImOP) are given in Table III. From
the comparison of these values, when GCM or QMC densities
are used, one can see that in the case of GCM densities the
values of the parameters are closer to unity. In this way, we may
conclude that, as in the 10Be + p case without ls term of OP,
the GCM density can be considered as a more realistic one.

III. BREAKUP REACTIONS OF 11Be

A. The 10Be + n model of 11Be

In this section we consider the characteristics of breakup
processes of the 11Be nucleus, namely diffraction and stripping
reaction cross sections and the momentum distributions of the
fragments. We use a simple model in which 11Be consists of a
core of 10Be and a halo of a single neutron (see, e.g., Ref. [54]).
In this model the density of 10Be has to be given. As in Sec. II
we use the QMC [50] and GCM [52] density distributions
of 10Be. The hybrid model is applied to calculate the OP of

TABLE II. The renormalization parameters NR, NI, Nls
R , Nls

I , and N sf
I , the total reaction cross sections σR (in mb), and the volume integrals

JV , J
(a)
W , and J

(b)
W (in MeV fm3) as functions of the proton energy E = 7.5 and 10.7 MeV for the 10Be + p elastic scattering.

Nucleus Model E NR NI Nls
R Nls

I N sf
I σR JV J

(a)
W J

(b)
W

10Be GCM 7.5 2.287 0.473 0.000 0.425 0.000 906.19 1215.283 527.749 527.749
with ls and QMC 1.244 0.056 0.065 0.103 0.000 330.03 603.634 62.966 62.966
without surface GCM 10.7 2.232 1.129 0.000 0.759 0.000 804.23 1144.742 1151.009 1151.009
terms QMC 1.915 0.247 0.963 0.307 0.000 722.54 895.179 253.766 253.766
10Be QMC 7.5 1.483 0.000 0.442 0.208 0.044 306.28 719.605 0.000 148.453
with ls and QMC 10.7 1.354 0.098 0.178 1.000 0.193 636.50 632.936 100.685 695.676
surface terms
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FIG. 5. 10Be + 12C elastic scattering cross sections. Solid lines, W = WH ; dashed lines, W = V F . (Left) Calculations with GCM density
of 10Be; (right) calculations with QMC density of 10Be. Experimental data for 39.1 and 59.4 MeV/nucleon are taken from Refs. [63] and [28],
respectively.

the interaction of 10Be with the target, as well as OP for the
n + target interaction. In the final step of the procedure the
sum of these potentials is folded with the respective density
distribution corresponding to the relative motion wave function
of the clusters in 11Be. The latter is obtained by solving the
Schrödinger equation with the WS potential for a particle with
a reduced mass of two clusters. The parameters of the WS

1
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E=38.4A MeV
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W=VF

1
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/d

σ R
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E=49.3A MeV

W=WH

W=VF

FIG. 6. 11Be + 12C elastic scattering cross sections. Solid lines,
W = W H; dashed lines, W = V F. For 11Be GCM density was used.
Experimental data for 38.4 and 49.3 MeV/nucleon are taken from
Refs. [63] and [28], respectively,

potentials are obtained by a fitting procedure, namely, to reach
the neutron separation energy Sn = 504 ± 6 KeV. They have
the following values for 2s state in which the valence neutron
in 11Be is mainly bound (see Refs. [16,67]): R = 2.7 fm, a =
0.52 fm, and V0 = 61 MeV. The rms radius of the cluster
formation is obtained to be 6.87 fm.

The s state (l = 0, n = 1,2) of the relative motion of two
clusters has the form

φ
(n)
00 (s) = φ

(n)
0 (s)

1√
4π

, n = 1,2. (9)

The corresponding density distribution is the probability of
both clusters to be at a mutual distance s:

ρ
(n)
0 (s) = ∣∣φ(n)

00 (s)
∣∣2 = 1

4π

∣∣φ(n)
0 (s)

∣∣2
. (10)

Within the 10Be + n cluster model, to calculate the 11Be
breakup in its collision with the protons and nuclear targets,
one should calculate two OPs of 10Be + p (or A) and n + p
(or A) scattering:

U (b,n)(r) = V (b,n) + iW (b,n)

=
∫

dsρ(n)
0 (s)

{
U (n)

c [r + (1/11)s]

+U (n)
n [r − (10/11)s]

}

= 2π

∫ ∞

0
ρ

(n)
0 (s)s2ds

×
∫ 1

−1
dx

{
U (n)

c [
√

r2 + (1s/11)2 + r(2/11)sx]

+U (n)
n [

√
r2 + (10s/11)2 − r(20/11)sx]

}
. (11)

In Eq. (11) r − (10/11)s ≡ rn and r + (1/11)s ≡ rc give the
distances between the centers of each of the clusters and
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TABLE III. The renormalization parameters NR and NI, the total reaction cross sections σR (in mb), and the volume integrals JV and JW

(in MeV fm3) as functions of the energy E = 39.1 and 59.4 MeV/nucleon for the 10Be + 12C and E = 38.4 and 49.3 MeV/nucleon for the
11Be + 12C elastic scattering.

Nucleus Model E W NR NI σR JV J
(a)
W

10Be GCM 39.1 W H 0.939 0.708 104.539 255.156 283.037
V F 0.816 0.465 105.958 221.733 126.355

59.4 W H 1.013 1.010 101.052 238.122 302.581
V F 0.884 0.577 102.635 207.798 135.633

10Be QMC 39.1 W H 0.888 0.620 105.332 245.613 249.769
V F 0.782 0.434 106.878 216.294 120.041

59.4 W H 0.970 0.887 101.616 231.953 267.782
V F 0.849 0.534 103.035 203.019 127.694

11Be GCM 38.4 W H 0.769 0.711 127.123 216.879 287.235
V F 0.708 0.521 126.825 199.676 146.937

49.3 W H 0.820 0.883 124.406 213.754 300.193
V F 0.743 0.574 123.302 193.682 149.628

the target, and s = s1 + s2 = (10/11)s + (1/11)s determines
the relative distance between the centers of the two clusters.
s1 and s2 are the distances between the centers of 11Be and
each of the clusters, correspondingly. The respective OPs for
the 10Be + A and n + A scattering are calculated within the
microscopic model of OP from Sec. II A.

In the case of the 11Be breakup on the proton target, the
n + p potential is taken in the form [68] (in MeV)

U (n)
n = vnp = v(r)(1 + iγ ), (12)

with

v(r) = 120e−1.487r2 − 53.4e−0.639r2 − 27.55e−0.465r2
,

(13)
where γ = 0.4.

For calculations of breakup cross sections and momentum
distributions of fragments in the 10Be + n breakup model we
give here briefly the eikonal formalism, namely the expressions
of the S matrix (as a function of the impact parameter b),

S(b) = exp

[
− i

�v

∫ ∞

−∞
U (

√
b2 + z2)dz

]
, (14)

where

U = V + iW (15)

is the OP. For negative V and W one can write

S(b) =
[

cos

(
1

�v

∫ ∞

−∞
|V |dz

)
+ i sin

(
1

�v

∫ ∞

−∞
|V |dz

)]

× exp

[
− 1

�v

∫ ∞

−∞
|W |dz

]
, (16)

and, correspondingly,

|S(b)| = exp

[
− 1

�v

∫ ∞

−∞
|W |dz

]
. (17)

In our case W is the imaginary part of the microscopic OP
[Eq. (11)]. |S(b)|2 gives the probability that after the collision
with a proton (z → ∞) (in the 11Be + p scattering), the cluster
c or the neutron with impact parameter b remains in the elastic

channel (i = c,n):

|Si(b)|2 = exp

[
− 2

�v

∫ ∞

−∞
dz

∣∣∣WI(
√

b2 + z2)
∣∣∣
]
. (18)

The probability of a cluster being removed from the elastic
channel is (1 − |S|2). The probability of the case when both
clusters (c and n) leave the elastic channel is (1 − |Sn|2)(1 −
|Sc|2). As shown in the next section, Eqs. (14)–(18) take part
in the calculations of the diffraction breakup and stripping
reaction cross sections.

B. Momentum distributions of fragments

The necessary quantity to calculate the diffraction breakup
and absorption scattering cross sections (differential and total)
and momentum distributions is the probability function of the
k-momentum distribution of a cluster in the system of two
clusters as a function of the impact parameter b [16]:

d3P�(b,k)

dk
= 1

(2π )3

∣∣∣∣
∫

dsφ∗
k(s)�(b,r⊥)φ(n)

00 (s)

∣∣∣∣
2

. (19)

In Eq. (19) �(b,r⊥) is given by the products of two S
functions Sc and Sn [Eqs. (14)–(18)] of the core 10Be and the
neutron, φk(s) is the continuum wave function, k is the relative
momentum of both clusters in their center-of-mass frame, and
the vector r⊥ is the projection of the relative coordinate s
between the centers of the two clusters on the plane normal to
the z axis. The bound-state wave function φ00 of the relative
motion of two clusters is given for the s state by Eq. (9). As to
the wave function in the final state φk, we neglect its distortion
and, thus, replace it with j0(ks) in the case of the s state. Then,
following Ref. [16], the probability function has the form

d2P�(b,k)

dkLdk⊥
= k⊥

16π3k2

∣∣∣∣
∫

ds

∫
d(cos θs) g(s) sin (ks)

×
∫

dϕs�(b,r⊥)

∣∣∣∣
2

, (20)
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where

�(b,r⊥) = Sc(bc)Sn(bn) (21)

and g(s) = sφ
(n)
0 (s), φ

(n)
0 being given by Eq. (9).

Hence, the diffraction breakup cross section has the form

(
dσ

dkL

)
diff

=
∫ ∞

0
bndbn

∫ 2π

0
dϕn

∫ ∞

0
dk⊥

d2P�(k,b)

dkLdk⊥
.

(22)

In Eq. (22) d2P�(b,k)/dkLdk⊥ is given by Eq. (20). The
integrals over bn and ϕn mean integration over the impact
parameter bn of the neutron with respect to the target.

The cross sections of the stripping reaction when the
neutron leaves the elastic channel is [16]

(
dσ

dkL

)
str

= 1

2π2

∫ ∞

0
bnd bndϕn[1 − |Sn(bn)|2]

×
∫

ρdρdϕρ |Sc(bc)|2

×
[∫ ∞

0
dz cos(kLz)φ0(

√
ρ2 + z2)

]2

. (23)

Equation (23) is obtained when the incident nucleus has spin
equal to zero and for the s state of the relative motion of
two clusters in the nucleus with s = rc − rn, ρ = bc − bn,
s = ρ + z, and

bc =
√

s2 sin2 θ + b2
n + 2sbn sin θ cos(ϕ − ϕn) (24)

coming from bc = bn + b, where b = s sin θ is the projection
of s on the plane normal to the z axis along the straight-line
trajectory of the incident nucleus.

In the end of this section we note that the real and imaginary
parts of the OPs taking part in Eq. (11) and in the S matrices
[Eqs. (14)–(18)] are used for calculations of the cross sections
[Eqs. (19)–(24)] in the cases of scattering and breakup of 11Be
on protons and nuclei that will be considered in the following
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FIG. 7. Cross sections of diffraction breakup and stripping reac-
tion in 11Be + 9Be scattering at E = 63 MeV/nucleon. Experimental
data are taken from Ref. [13].
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FIG. 8. The same as Fig. 7, but for 11Be + 93Nb scattering.

part of our work. They are calculated microscopically within
the hybrid model given in Sec. II A.

C. Results of calculations of breakup reactions

In this section we perform calculations of the breakup cross
sections of 11Be on the target nucleus 9Be and heavy nuclei,
such as 93Nb, 181Ta, and 238U, and compare our results with the
available experimental data [13]. The densities of these heavy
nuclei needed to compute the OPs are taken from Ref. [69]. The
diffraction and stripping cross sections (when a neutron leaves
the elastic channel) for reactions 11Be + 9Be, 11Be + 93Nb,
11Be + 181Ta, and 11Be + 238U are calculated from Eqs. (22)
and (23). The obtained results are illustrated in Figs. 7, 8, 9,
and 10, respectively. We note the good agreement with the
experimental data from light and heavy breakup targets. The
obtained cross sections for the diffraction and stripping have
a similar shape. The values of the widths are around 50 MeV,
in agreement with the experimental ones. Our results confirm
the observations (e.g., in Refs. [11,12]) that the width almost
does not depend on the mass of the target and, as a result, it
gives information basically about the momentum distributions
of two clusters. Here we note that owing to the arbitrary units
of the measured cross sections of the considered processes it
was not necessary to renormalize the depths of our OPs of the
fragment-target nuclei interactions.
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FIG. 9. The same as Fig. 7, but for 11Be + 181Ta scattering.
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FIG. 10. The same as Fig. 7, but for 11Be + 238U scattering.

IV. CONCLUSIONS

In the present work the hybrid model is applied to study
characteristics of the processes of scattering and reactions of
10Be and 11Be on protons and nuclei. In the model, the ReOP
is calculated microscopically in a folding procedure of the
densities of the projectile and the target with effective NN
interactions related to the g matrix obtained on the basis of the
Paris NN potential. The ReOP includes both the direct and
the exchange terms. The ImOP is calculated microscopically
as the folding OP that reproduces the phase of scattering
obtained in the high-energy approximation. The only free
parameters in the hybrid model (N ) are the coefficients that
correct the depths of the ReOP, ImOP, and the spin-orbit parts
of OP. Their values are obtained by a fitting procedure to the
experimental data whenever they exist. Additionally, in some
cases the surface absorption is accounted for by including
another term to the OP that requires one more fitting parameter.
The density distributions of 10Be obtained within GCM and
QMC microscopic methods and of 11Be from GCM are used.
The OPs resulting within the hybrid model are applied to
calculate characteristics of various processes.

The results of the present work can be summarized as
follows.

(i) Elastic scattering cross sections of 10Be and 11Be on
protons and 12C are calculated using the microscopic OPs
for energies E < 100 MeV/nucleon and compared with the
existing experimental data. To resolve the ambiguities of the
magnitudes of the depths of the OPs, the well-established
energy dependence of the respective volume integrals of the
OPs is taken into account. The theoretical approach gives
a good explanation of a wide range of empirical data on
the 10,11Be + p and 10,11Be + 12C elastic scattering. It was

established that the values of the coefficients NR (depths of
ReOP) obtained by fitting procedure are close to unity. The
correction of the ImOP by factor NI is in some cases larger, e.g.,
for 10Be + p at energy E = 39.1 MeV/nucleon in the case
when the spin-orbit (ls) component is not accounted for. The
inclusion of a surface term to the OP leads to a better agreement
with the experimental elastic scattering cross-section data. We
conclude that, in general, the hybrid model for microscopic
calculations of the OPs gives the basic important features of
the scattering cross sections and can be recommended and
applied to calculate more complex processes such as breakup
reactions, momentum distributions of fragments, and others.

(ii) Apart from the usual folding model, we use another
folding approach to consider the 11Be breakup by means of the
simple 10Be + n cluster model for the structure of 11Be. Within
this folding model we construct the OP of the interaction of
10Be with the target, as well as the n + target interaction.
Using the cluster OPs 10Be + p (or A) and n + p (or A) the
corresponding functions Sc and Sn (S matrices) for the core
and neutron within the eikonal formalism are obtained.

(iii) The calculated Sc and Sn functions are used to get
results for the longitudinal momentum distributions of 10Be
fragments produced in the breakup of 11Be on different targets.
This includes the breakup reactions of 11Be on 9Be, 93Nb,
181Ta, and 238U at E = 63 MeV/nucleon, for which a good
agreement of our calculations for the diffraction and stripping
reaction cross sections with the available experimental data
exist. The obtained widths of about 50 MeV/c are close to
the empirical ones. Future measurements of such reactions are
highly desirable for the studies of the exotic 11Be structure.
The accurate interpretation of the expected data requires more
refined theoretical approaches, for instance, that of Ref. [70]
within the CDCC method and its extensions to study the effects
of the dynamic core excitation, especially its large contribution
to nuclear breakup in the scattering of halo nuclei.
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