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Improving the description of proton-induced one-nucleon removal in intranuclear-cascade models
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It is a well-established fact that intranuclear-cascade models generally overestimate the cross sections for
one-proton removal from heavy, stable nuclei by a high-energy proton beam, but they yield reasonable predictions
for one-neutron removal from the same nuclei and for one-nucleon removal from light targets. We use simple
shell-model calculations to investigate the reasons for this deficiency. We find that a refined description of the
neutron skin and of the energy density in the nuclear surface is crucial for the aforementioned observables, and
that neither ingredient is sufficient if taken separately. As a by-product, the predictions for removal of several
nucleons are also improved by the refined treatment.
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I. INTRODUCTION

Nuclear reactions between high-energy (�150 MeV) nucle-
ons or hadrons and nuclei are usually described by means of
hybrid models consisting of an intranuclear-cascade (INC)
stage followed by a statistical de-excitation stage [1]. In
this framework, the projectile is assumed to initiate an
avalanche of binary collisions with the nucleons of the target,
which can lead to the emission of energetic particles. The
nature of INC models is essentially classical. It is typically
assumed that nucleons are perfectly localized in phase space
and that they are bound by an average, constant potential;
moreover, it is assumed that subsequent elementary collisions
are independent.

Despite the simplicity of such reaction models, it was
proved that they are able to describe a vast array of exper-
imental observables with a very restricted number of free
parameters [2]. However, it was realized some time ago that
these models systematically fail to describe inclusive cross
sections for the removals of few nucleons, for example, [3,4].
This is especially surprising in view of the fact that these
observables are associated with peripheral reactions and
mostly involve collisions between quasifree nucleons; one
would therefore expect the intranuclear cascade to provide an
accurate description of this particular dynamics. This puzzling
result has been known for many years now, but no convincing
explanation has ever been put forward.

Note that, in general, the prediction of the inclusive one-
nucleon-removal cross sections at high energy can reasonably
be tackled only with a two-step dynamical/de-excitation
model. One-nucleon removal, in fact, results from events of a
specific class: (1) few nucleon-nucleon scatterings must take
place, and (2) the residual excitation energies after knockout
must fall within a given window. If one of these conditions
is not verified, removal of several nucleons becomes the
most likely outcome. The models that are usually applied to
the study of knockout reactions [5,6] either do not properly
account for the probability of multiple collisions (condition
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1) or do not account for all the relevant residual states after
knockout (condition 2).

One-nucleon removal, being associated with peripheral
reactions, is certainly sensitive to the details of the description
of the nuclear surface, such as the density profile. Arguably, the
semiclassical initial conditions of INC might be inadequate for
this purpose. The aim of this paper is to investigate the pos-
sibility to accommodate some genuine quantum-mechanical
features of the nuclear surface into INC, by appealing to simple
shell-model calculations and by casting their results in a form
adaptable to INC. We will show to what extent the predictions
of a particular INC model [7] can be thus improved.

Section II gives a brief description of the INC framework,
whose appropriateness for the problem at hand is specifically
discussed in Sec. II B. The experimental data for one-nucleon-
removal cross sections are presented and interpreted in Sec. III.
Our shell-model calculations are described in Sec. IV, while
the refined INC model is introduced in Sec. V. Results of
the calculations with the new model are presented in Sec. VI,
before the conclusions in Sec. VII.

II. INTRANUCLEAR CASCADE

A. Model description

Intranuclear cascade [8] is a class of models that are com-
monly used for the description of proton-induced reactions at
high energy (>150 MeV). In this context it is assumed that the
first stage of the reaction can be described as an avalanche of
independent binary collisions. The INC scheme can be derived
from the usual nuclear transport equations under suitable
approximations [9,10] and its numerical solution can be effi-
ciently tackled on today’s computers. The INC model is essen-
tially classical, with the addition of a few suitable ingredients
that mimic genuine quantum-mechanical features of the initial
conditions and of the dynamics: For instance, target nucleons
are endowed with Fermi motion, realistic space densities are
used, the output of binary collisions is random, and elementary
nucleon-nucleon collisions are subject to Pauli blocking.

At the end of the intranuclear cascade, an excited remnant
is left. This nucleus typically relaxes by emitting low-energy
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particles or, when applicable, by fissioning. The time scale
for the second stage is typically much longer than that for
the first one, which justifies the fact that de-excitation is not
described by INC but by a different class of models which
rely on statistical assumptions about the properties of the
excited remnant. It is essential to couple INC to a de-excitation
model if one wishes to describe the production of cold (i.e.,
observable) reaction residues.

INC approximates the exact dynamics of the nuclear
reaction as a sequence of binary collisions. However, the initial
conditions of the reaction, which typically amount to the
ground state of the target nucleus and which are in principle
also determined by the exact nuclear dynamics, cannot be
determined within the INC approximation. It is therefore
necessary to specify them as an additional model ingredient.

In what follows, we make explicit reference to the Liège
Intranuclear Cascade model (INCL) [11] and the ABLA07 sta-
tistical de-excitation model [12]. The INCL/ABLA07 coupling
is in general quite successful at describing a vast number of
observables in nucleon-induced reactions at incident energies
between ∼60 and 3000 MeV [2]. For technical reasons, the
work described hereafter was performed with the latest C++
version of the INCL code (INCL++ v5.1.14) [7]. For the matter
at hand, INCL++ is essentially equivalent to the reference
INCL4.6 version [11].

The INCL model is peculiar in that it explicitly tracks the
motion of all the nucleons in the system, which are assumed to
move freely in a square potential well. The radius of the well
is not the same for all nucleons, but it is rather a function R(T )
of the nucleon kinetic energy (which is a conserved quantity
in the absence of collisions). The initial nucleon momenta are
uniformly distributed in spheres of radii,

pF (proton) = (2Z/A)1/3pF ,

pF (neutron) = (2N/A)1/3pF ,

with pF = 270 MeV/c. The relation between kinetic energy
and radius of the potential well is such that the space density
distribution is given by a fixed, isospin-independent, suitable
Woods-Saxon parametrization [13].

As an example, we discuss the phase-space density of
protons in 208Pb, as defined by the INCL initial conditions.
Figure 1 shows the proton kinetic-energy and space distri-
butions as solid black lines: The kinetic-energy distribution
represents a uniform sphere in momentum space, while the
space distribution is the classic Woods-Saxon distribution.
Figure 2(a) illustrates how the kinetic energy correlates with
the radius of the potential well where the protons move. For
a given kinetic energy, the density is constant up to a certain
distance from the center, which is the radius of the potential
well R(T ); beyond this radius, the density vanishes. The
radius of the well increases as the kinetic energy increases
and reaches the radius of the calculation sphere (inside which
the simulation takes place; here about 11 fm) as the kinetic
energy tends to the Fermi energy. The distributions shown in
Fig. 1 are simply projections of Fig. 2(a) on each of the axes
(up to multiplication by appropriate Jacobians).

In substance, the motion of nucleons in the INCL nucleus
is such that the closer they are to the Fermi energy, the farther
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FIG. 1. (Color online) Proton kinetic-energy (a) and space (b)
densities in 208Pb in the standard INCL initial conditions (solid black
lines) and in the refined initial conditions with f = 0.5 (solid red
lines; see Sec. V for the definition of f ). The solid black and red
lines are essentially on top of each other in both panels. One-proton
removal is dominated by impact parameters to the left of the vertical
dotted line in (b). The dashed lines in (a) are the energy distributions
of protons that are found to the right of the dotted vertical line of
(b), for the standard (dashed black line) and refined (dashed red line)
INCL initial conditions.

out they move in space; this trait is inspired by the properties
of classical particle motion in a potential well. Therefore, the
nuclear surface of the nucleus is predominantly populated by
nucleons whose energy is close to the Fermi energy.

B. Appropriateness of INC/de-excitation

As we mentioned in the Introduction, dynamical/de-
excitation models are the only ones that can reasonably
attempt an inclusive description of one-nucleon removal at
high energy. The dynamical stage may be described by
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FIG. 2. (Color online) Space–kinetic-energy density of protons
in 208Pb in the standard INCL initial conditions (a) and in the refined
initial conditions with f = 0.5 (b); see Sec. V for the definition of
f . The dotted vertical lines indicate the region of impact parameters
which dominates one-proton removal. The contour of the colored
shape in (a) represents the inverse of the function R(T ) and is reported
as a solid black line in (b).
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FIG. 3. (Color online) Experimental data for one-proton- (a) and one-neutron-removal cross sections (b) in proton-nucleus reactions above
500 MeV incident energy, as a function of the target mass. Diamonds refer to experimental beam energies between 500 and 750 MeV, while
circles represent energies above 750 MeV. The solid lines represent calculations with INCL/ABLA07 (red), Isabel/ABLA07 (blue), CEM03.03
(cyan), and Geant4’s Bertini model (green) at 1000 MeV. The dashed red lines represent INCL/GEMINI++ calculations at 1000 MeV. The
dotted red lines represent INCL/ABLA07 calculations at 500 MeV. Experimental data taken from Refs. [3,14–24].

INC (as in this paper) or by other models, such as the
Boltzmann-Uehling-Uhlenbeck (BUU) or Vlasov-Uehling-
Uhlenbeck (VUU) approaches [25], or models from the
family of quantum molecular dynamics (QMD) [26–28].
These models are all “INC-like” insofar as they superimpose a
cascade of binary collisions on some kind of particle dynamics.
For the sake of simplicity, in what follows we will always refer
to INC models, but most of our analysis can be generalized to
other classes of dynamical models.

Other kinds of nuclear-reaction models, such as the
distorted-wave Born approximation (DWBA) or distorted-
wave impulse approximation (DWIA) [5,6], are not expected
to be applicable to the description of one-nucleon removal, for
two main reasons.

First, one-nucleon removal must be dominated by events
with few nucleon-nucleon scatterings, perhaps only one. This
ensues from the fact that the average energy transfer in
nucleon-nucleon scattering at high energy is large; therefore,
multiple collisions are liable to lead to many-nucleon removal.
The probability for multiple collisions must therefore be
correctly evaluated. In DWBA and DWIA, rescattering is
modeled as absorption owing to the imaginary part of an
optical potential, which seems far-fetched at the energies
we are concerned with. Analyses of proton spectra from the
continuum have indeed shown that, even in the 200–400 MeV
incident-energy range, it is necessary to go beyond DWIA
insofar as the description of rescattering is concerned [see,
e.g., 29–31]. Finally, the evaluation of rescattering at higher
energies is complicated by the possible production of pions in
the knockout collision.

Second, the one-nucleon-removal cross sections are fed
by knockout reactions leading to all residue states below
the particle-separation energy. In addition, the cross section
can also receive contributions from the continuum, i.e., from
excitation energies above the particle-separation energy. This
is especially true for neutron removal, which can proceed
through the formation of an equilibrated system. The decay of
the latter (and the competition between the various channels) is
accounted for in INC/de-excitation, but not in DWBA/DWIA.

In any case, the INC/de-excitation (dynamical/de-
excitation) approach is the only one which can tackle with the

same (combined) model all residue formation channels, from
one-nucleon-removal channels to deep spallation channels
where a substantial fraction of the target nucleons are removed.

Admittedly, INC suffers for other limitations, the most im-
portant being the semiclassical nature of the initial conditions.
This is reflected, for instance, in the lack of a discrete level
structure. The INC predictions are typically smooth functions
of the reaction parameters (charge, mass, energy,...). However,
it is possible to allow for certain genuine quantum-mechanical
aspects in an effective manner. This is what we propose to
illustrate in Secs. IV and V.

III. ONE-NUCLEON REMOVAL

A. Cross sections

Figure 3 shows the experimental data for one-nucleon
removal in proton-induced reactions at energies �500 MeV,
as a function of the target mass (all targets are close to the
stability valley). Calculations with INCL/ABLA07 at 500
and 1000 MeV are shown for comparison. It is clear that
the model predictions are in the right ballpark for neutron
removal, but they overestimate the proton-removal data by a
factor that can be as large as 3–4 for heavy nuclei. Note that
the experimental data are globally consistent, even though they
have been collected in inverse-kinematics experiments [14–21]
or by off-line gamma spectroscopy [3,22–24].

The role played by de-excitation can be clarified by
comparing calculations with the same INC but different
de-excitation models. Therefore, we performed calculations
with INCL coupled with the GEMINI++ model [32]. The
resulting cross sections (shown in Fig. 3 as dashed red lines)
are within 20% of the INCL/ABLA07 values and indicate that
the influence of de-excitation is somewhat mild. Therefore, it
seems unlikely that de-excitation can be held responsible for
the gross overestimation of proton-removal cross sections.

We also show in Fig. 3 the results of calculations that
we have performed with other INC models. The results of
Isabel [33], in coupling with ABLA07, are qualitatively similar
to the INCL results and exhibit the same defect for proton
removal. Geant4’s Bertini-like cascade [34] is quite different
inasmuch as it yields somewhat correct predictions for proton
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removal, but it badly underestimates neutron removal. Finally,
CEM03.03 [35] yields very low proton-removal cross sections
(of the order of 0.1 mb for A > 130) and underestimates
neutron removal by roughly a factor of two.

The calculations presented in Fig. 3 globally demonstrate
that INC models have difficulty in correctly predicting the
inclusive one-nucleon-removal cross sections. No model is
able to describe proton- and neutron-removal cross sections on
all targets. This is somewhat surprising on two counts. First,
one-nucleon-removal cross sections are among the largest
isotopic cross sections, they are only modestly influenced by
de-excitation, and they vary slowly with the target mass and the
projectile energy; thus, they represent an excellent test bench
for INC models, but they seem to have attracted little attention
so far. Second, one-nucleon-removal reactions are typically
dominated by very peripheral impact parameters, which probe
regions of the nucleus with large mean free path (low density);
in addition, the collision partners are somewhat localized in
the nuclear surface, i.e., they are loosely bound. One would
expect the INC approximation to be fully justified under these
conditions. The failure illustrated by Fig. 3 suggests that INC
models might be affected by a fundamental defect.

There are other remarkable features of the INC failure. One
might expect even more conspicuous mispredictions for the
removal of a larger number of nucleons, but one instead finds
that the models can generally reproduce most of the isotopic
distributions somewhat well (see the isotopic distributions
in Sec. VI and Ref. 2). This should be understood as a
consequence of the larger excitation energies associated with
the emission of several nucleons. Because large excitation
energies can be realized in numerous ways, some averaging
takes place and the predictions become less sensitive to the
details of the initial conditions. At the same time, it should
be stressed that discrepancies do seem to increase for the
removal of, e.g., several protons from stable nuclei [4]. This
is consistent, inasmuch as the constraints on the excitation
energy in that case are even stricter than for one-proton
removal, as evidenced by the smallness of the associated cross
sections.

Note that the experimental cross sections do not seem very
sensitive to the reaction parameters, such as the beam energy
and the target species. This suggests that the details of the level
structure of the individual nuclides involved do not play an
important role. Therefore, it might be possible to amend INC
and describe these observables, but it is probably necessary to
go beyond the naive semiclassical model of the nuclear surface.
We will do so in Secs. IV and V, but we first need to clarify the
mechanism that leads to proton and neutron removal within
the INC framework.

B. Removal mechanism

Let us first concentrate our attention on proton removal.
The analysis of the INC/de-excitation calculations indicates
that proton removal is dominated (about 90% of the cross
section) by events with only one proton-proton collision.
The two protons leave the nucleus, which, however, retains
some excitation energy. If only one collision takes place, the
excitation energy is simply given by the depth of the proton

hole, i.e., the difference between the Fermi energy and the
initial energy of the ejected proton. In any case, the excitation
energy remaining at the end of the cascade is evacuated during
the de-excitation phase.

Note that, for most β-stable, nonfissile nuclei, particle
emission at low excitation energy is largely dominated by
neutron evaporation (for the sake of illustration we neglect
light nuclei, for which proton and α evaporation can become
competitive against neutron evaporation). If the excitation
energy is lower than the neutron separation energy Sn, no
particle can be evaporated and the energy will be evacuated
as gamma rays. This is also true at energies slightly larger
than Sn, as long as gamma-ray emission outcompetes neutron
evaporation; thus, the effective neutron-evaporation threshold
S∗

n is slightly larger than Sn. Therefore, the proton-removal
channel is populated if and only if exactly one proton was
ejected during INC and the excitation energies at the end of
the cascade lie below S∗

n . If the excitation energy allows for
neutron evaporation, the final residue will be lighter (target
minus one proton minus x neutrons).

The observations above highlight two important aspects.
First, the proton-removal cross section is extremely sensitive
to the excitation energy left in the nucleus after the ejection
of a proton during INC. More precisely, the cross section is
determined by the probability that the ejection of a proton
during INC deposits an excitation energy smaller than S∗

n .
Second, there is a subtle difference between proton and neutron
removal. Neutron removal can be realized in two ways: either
as a neutron ejection during INC followed by no evaporation
(this is analogous to the proton-removal mechanism), or as no
neutron ejection during INC followed by evaporation of one
neutron. In the latter scenario it is of course required that the
incoming proton undergoes at least one binary collision and
that it succeeds in escaping from the target; some conditions
on the excitation energy also apply.

In either case, the fate of the de-excitation stage is
essentially determined by the excitation energy at the end of
INC and by the neutron separation energies in the region of
the nuclide chart around the target. In this sense, our results
are essentially independent of the choice of the de-excitation
model, as far as all of them employ very similar separation
energies for stable nuclei. The second-order dependence on
the de-excitation model (see the ABLA07/GEMINI++ differ-
ence) can be ascribed to differences in the neutron-gamma
competition, i.e., by slightly different values of the effective
neutron-evaporation thresholds S∗

n .
It is clear then that the smallness of the excitation energy

at the end of INC, especially in the proton-removal case,
is the crucial element that determines one-nucleon-removal
cross sections. Comparison with the experimental data (Fig. 3)
seems to suggest that INCL largely underestimates the
excitation energy associated with the ejection of a proton.
Similar remarks have been made about “cold fragmentation”
in peripheral nucleus-nucleus reactions [36]. It was found that
the excitation energy predicted by the abrasion model needs
to be multiplied by roughly a factor of two to explain the cross
sections for the removal of one or more protons. Given the
simple nature of the abrasion model, however, the generality
of this conclusion is unclear.
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Some important remarks are due at this point. Although
INCL and Isabel are in quantitative disagreement with the
experimental data (Fig. 3), they correctly capture the overall
dependence on the target mass. Bertini and CEM03.03, on
the other hand, yield trends that are sensibly different from
the experimental ones. This seems to point to the existence
of two classes of models and might be correlated with the
presence of an intermediate pre-equilibrium stage in Bertini
and CEM03.03. Because one-nucleon removal is essentially
a surface process, it is somewhat sensitive to the geometrical
arrangement of the first nucleon-nucleon collision. Treating
one of the collision partners as a pre-equilibrium exciton
amounts to discarding all information about its localization
in configuration space. This probably entails lower emission
probabilities and higher excitation energies compared to
a full INC treatment, and might explain CEM03.03’s low
proton-removal cross sections.

For completeness sake, one should also remark that the
two classes of models may also be characterized by the nature
of the INC stage. On the one hand, Bertini and CEM03.03
are “spacelike” INC models, i.e., they sequentially track
cascading nucleons until either they escape or their energy
falls below a given level. On the other hand, INCL and Isabel
are “timelike” INC models, i.e., they simultaneously track all
cascading nucleons according to a global clock. Nevertheless,
one would not expect important differences between these two
approaches for reactions involving such a small number of
cascading nucleons. It is doubtful to us that this element can
explain the contrasting cross-section trends.

Finally, note that there are other ingredients which could in
principle affect the one-nucleon-removal cross sections, such
as the cross section of the first nucleon-nucleon collision,
its kinematics, the parameters of the nuclear-density function
(radius and diffuseness), the value of the Fermi momentum, the
depth of the nucleon potential well, the height of the Coulomb
barrier assumed in INC and in de-excitation, and the separation
energies during the INC stage. We have verified that reasonable
changes in these ingredients either have a negligible effect on
the calculated one-nucleon-removal cross sections or degrade
the agreement for neutron removal.

It is worthwhile at this point to summarize the statement
of the problem and our motivation. One has a somewhat
successful semiclassical model for spallation reactions, which
can describe with the same ingredients channels resulting from
the ejection of few particles, as well as those corresponding
to the emission of a substantial part of target nucleons. This
model seems to clearly fail on a few channels, basically the
one-nucleon-removal channels. We gave arguments indicating
that this is from the fact that these channels correspond to a
single-scattering mechanism leaving the target with a small
excitation. We pointed out that the semiclassical nature of the
model is too crude to give proper control of this excitation
energy. In the following, we will illustrate a method to cure
the deficiencies of INC on this point.

IV. SHELL-MODEL STUDY OF THE NUCLEAR SURFACE

We mentioned at the end of Sec. II A that the nuclear surface
in the INCL initial conditions is predominantly populated by
nucleons whose energy is close to the Fermi energy. The

ejection of one such nucleon during INC results in little
excitation energy for the cascade remnant. The considerations
in the previous section cast some suspicion upon this aspect.

In the quantum-mechanical square-well problem, the den-
sity outside the well does not vanish, even for states close to
the bottom of the well. This means that there is a nonzero
probability to find deeply bound particles outside the well,
and eject them. This genuine quantum phenomenon is missing
in the naive INC nuclear picture, as illustrated by Fig. 2(a).
However, a word of caution is due. In a purely quantum-
mechanical treatment, the surface diffuseness is at least partly
from the penetration of the nucleon wave functions into the
classically forbidden region; in spite of this, the INC initial
conditions typically do account for a realistic diffuseness
of the nuclear surface (e.g., the space density of the INCL
model is a realistic Woods-Saxon distribution), although this
is entirely enforced by a classical correlation between the
particle position and energy. The failure of the INC initial
conditions is therefore more subtle. It does not concern the
presence of the tail of the spatial density but rather its energy
density.

Another detail that is usually neglected in the INC picture is
the presence of neutron (or proton) skins in certain nuclei. It is,
for instance, somewhat well ascertained that 208Pb exhibits a
neutron skin thickness (defined as the difference of the neutron
and proton root-mean-square radii) of about 0.2 fm [37]. For
grazing collisions, this means that the local neutron density
is several times larger than the proton density, leading to an
enhanced probability for collisions on neutrons.

We have estimated the magnitude of both the effects above
with a simple shell-model calculation. We assumed a central
Woods-Saxon nuclear potential with a spin-orbit term and a
Coulomb term for the protons [38]. We numerically solved
the radial part of the Schrödinger equation and determined the
radial eigenfunctions Ri

nj (r) and the eigenvalues Ei
nj of the

bound states (here i = p,n). The single-particle energies Ei
nj

in 208Pb correctly reproduce the energies of the lowest-lying
particle-hole states in 207,209Pb and 207Tl, 209Bi.

A. Space densities

To keep the notation simple, we drop the i superscript from
our formulas and we consistently refer to protons (the formulas
for neutrons can be straightforwardly recovered). We assume
that the shells are filled from the bottom of the well up to the
Fermi level. The latter may be partly empty if the nucleus is
not proton-magic. The occupation numbers gnj are given by

gnj =
⎧⎨
⎩

2j + 1 if Enj < EF

Z − ∑
Enj <EF

gnj if Enj = EF

0 if Enj > EF

.

Here EF denotes the Fermi energy. We construct the radial
density profiles,

ρnj (r) = 4πr2|Rnj (r)|2,
and the densities,

ρ(r) =
∑
nj

gnjρnj (r).
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FIG. 4. (Color online) Proton (red) and neutron (blue) densities
for 208Pb. The thin solid lines represent the result of the shell-model
calculation, while the thick dashed lines are Woods-Saxon fits. The
fit parameters are given in Table I. All curves include the Jacobian
factor 4πr2.

The resulting proton and neutron densities are shown in
Fig. 4. At each position we can also construct the presence
probabilities,

pnj (r) = gnjρnj (r)/ρ(r). (1)

We would like to use the shell-model proton and neutron
densities as inputs for our INC calculation; however, the
particle densities in INCL cannot be given by an arbitrary
function, so we must somehow adapt the shell-model densities.
We choose to fit them with Woods-Saxon distributions (shown
in Fig. 4 as dashed lines). The best-fit parameters are indicated
in Table I and show that the shell-model densities for 208Pb
exhibit a neutron skin, although its thickness is slightly larger
than the experimentally accepted value; this is a well-known
defect of mean-field calculations [39]. The calculations for
40Ca instead yield a thin proton skin.

We thus decouple the INCL parameters describing the
neutron space density from those describing the proton space
density. We choose not to modify the proton densities (because
they are already given by fits to the experimental charge radii),
but we adjust the neutron parameters by the amounts indicated
in the last column of Table I.

B. Energy density of the nuclear surface

We have explained in the previous section that the outcome
of single-collision cascades is sensitive to the energy of the
ejected nucleon. For a given position, the shell model provides

TABLE I. Optimal parameters for Woods-Saxon densities fitting
the results of shell-model calculations. The “skin/halo” values are
differences of the neutron and proton parameters. All values are in
fm.

Neutrons Protons Skin/halo

40Ca R0 3.57 3.64 −0.08
a 0.49 0.51 −0.02

208Pb R0 6.98 6.71 0.26
a 0.55 0.46 0.09

a decomposition of the local density in terms of the various
shells [Eq. (1)].

To estimate the energy density of the surface, we assume
that the probability that a collision ejects a nucleon from a
given shell is proportional to the local density of the shell
orbital. Furthermore, we neglect rearrangement of the other
nucleons in the Fermi sea after the collision; this amounts to
assuming that the excitation energy of the hole is simply given
by the depth of the hole:

E∗
nj = EF − Enj , (2)

where nj are the quantum numbers of the hole. Putting all the
pieces together, we assume that a collision at position r creates
a hole of excitation energy E∗

nj [Eq. (2)] with probability pnj (r)
[Eq. (1)].

We can characterize the properties of the nuclear surface by
studying the probability that the excitation energy associated
with the hole does not exceed the neutron separation energy,
which reads

PE∗<Sn
(r) =

∑
nj

pnj (r)�(Sn − E∗
nj ),
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FIG. 5. (Color online) Probability that a proton (a) or neutron
(b) hole in 208Pb results in an excitation energy smaller than the
shell-model neutron separation energy, as a function of the distance
of the hole from the center of the nucleus. The dashed line denotes the
result of the shell-model calculation. Solid lines represent the INCL
initial conditions for different values of the fuzziness parameter f

(defined in Sec. V). The standard condition corresponds to f = 0.
One-proton removal is dominated by impact parameters to the left of
the vertical dotted lines (see text).
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where � is the Heaviside function. From our discussion in
Sec. III B it should be clear that this quantity has a very
important bearing on one-nucleon-removal cross sections.

The probabilities for the standard INCL initial conditions
are plotted in Fig. 5 as red solid lines, as functions of the
distance of the hole from the center of the nucleus. Note that
the probability for shallow (E∗ < Sn) holes becomes equal to
1 beyond a certain radius. As illustrated by Fig. 2(a), this is
from the fact that there is a strict minimum kinetic energy for
nucleons that are found beyond a given radius.

Analysis of the INC shows that the impact-parameter
distribution of events with only one INC collision peaks
around 7.78 fm and has a root-mean-square (rms) deviation of
0.99 fm. The dotted lines in Fig. 5 are set at r = (7.78 −
0.99) fm = 6.79 fm and are meant as a guide to the eye.
Roughly speaking, most single-collision reactions take place
to the right of the dotted lines. The same lines are also drawn
on Figs. 1(b) and 2.

It is clear from the results displayed in Fig. 5 that the
standard INCL initial conditions are quite different from the
results of the shell-model calculation: In the surface region,
the standard INCL probability to punch a shallow hole in the
Fermi sea is sensibly larger than its shell-model counterparts,
which seems to confirm that the excitation energy associated
with the ejection of a proton is underestimated by INCL.

V. REFINEMENT OF THE INITIAL CONDITIONS

We mentioned in Sec. II A that an INCL nucleon moves
in a square-well potential whose radius R(T ) depends on
the nucleon kinetic energy. The function R(T ) is uniquely
determined by the choice of the space density ρ(r) and by the
assumption that nucleon momenta are uniformly distributed in
the Fermi sphere. We have shown above that this construction
results in excitation energies for one-collision reactions
that are much smaller than those resulting from the shell
model and, arguably, than those suggested by the available
experimental data.

We refine the INCL initial conditions by allowing fluc-
tuations in R(T ). We introduce a fuzziness parameter f
(0 � f � 1) and a fuzzy square-well radius R(T ; f ). The
precise definition of R(T ; f ) is reported in the appendix, so
we limit our exposition to its most important properties: First,
R(T ; f ) is a random variable. Second, for f = 0 fluctuations
are suppressed and we recover the standard sharp correlation:

R(T ; 0) = R(T ).

Third, for a given value of T , fluctuations in R(T ; f ) are
small if f is close to zero and they are large if f is close
to one. Fourth, the fluctuations are constructed in such a
way that the space density is still given by ρ(r) and the
momentum density is still given by a uniform Fermi sphere.
The construction of the fuzzy INCL nucleus is analogous to
the standard preparation algorithm [13]. The only difference
is that the radius of the square-well potential is no longer in
one-to-one correspondence with the nucleon energy.

The phase-space structure of the fuzzy initial conditions
is illustrated by Fig. 2(b), which refers to protons in 208Pb
with fuzziness parameter f = 0.5. Contrary to Fig. 2(a), we

see that the density does not drop sharply to zero. Instead,
protons of a given kinetic energy can sometimes be found at
much larger distances than in the standard initial conditions
[Fig. 2(a)]. The kinetic-energy and space distributions, i.e.,
the projections of Fig. 2(b), are shown in Fig. 1 as red lines.
By construction, the kinetic-energy and space distributions
are almost indistinguishable from those of the standard initial
conditions. The fluctuations in one of the variables disappear
when integrating over the full domain of the other one. Note,
however, that different results are obtained if one limits the
integration domain to some subrange. This is illustrated by the
dashed lines in Fig. 1(a), which represent the kinetic-energy
distributions of protons found “in the surface,” i.e., to the right
of the vertical dotted line in Fig. 1(b). The distribution of the
standard initial conditions vanishes below a certain energy,
while the fuzzy initial conditions extend much deeper in the
Fermi sea.

The fuzzy initial conditions introduce additional energy
fluctuations for the nucleons found at a given position.
Figure 5 indeed demonstrates that the probability of punching
a shallow surface hole decreases for increasing fuzziness,
i.e., for increasing fluctuations. No value of the fuzziness
parameter yields a good fit to the shell-model result, even if
one limits oneself to the surface region. There is some degree
of subjectivity in the choice of the best-fit values, which are
taken to be f = 0.5 for protons and f = 0.3 for neutrons. For
40Ca (not shown), the best-fit value was taken to be f = 0.3
for both protons and neutrons.

Summarizing, we have refined the INCL initial conditions
in two respects. First, we have included the possibility of
introducing a neutron skin, as described in Sec. IV A. Second,
we have introduced fuzzy initial conditions, which increases
energy fluctuations in the nuclear surface and boosts the
probability for deep-nucleon removal in surface collisions.
In the framework of the shell model, this effect is genuinely
quantum mechanical and it is from the penetration of the wave
function in the classically forbidden region.

VI. RESULTS

We turn now to the analysis of the results of the refined INC
model. Table II shows how the neutron skin and the surface
fuzziness affect the one-nucleon-removal cross sections in
p+40Ca and p+208Pb. Unfortunately, no experimental data
are available for p+40Ca at 1 GeV. There is one experiment
at 763 MeV by Chen et al. [14], but the resulting cross
sections [σ−1p = (54.7 ± 7.9) mb; σ−1n = (29.8 ± 6.4) mb]
are in sensible disagreement with the cross sections measured
by the same group at lower energies and with the values
suggested by the systematics of Fig. 3. Therefore, we compare
our calculations with the values measured by the same group
at the next lowest energy, 565 MeV.

Several observations are due. First, the introduction of the
neutron skin in 208Pb boosts the neutron-removal cross section,
as expected. This is, however, undesired because the cross
section calculated by standard INCL is already in moderate
excess of the experimental value. Second, surface fuzziness
suppresses the cross sections for both channels. This is true
both for 40Ca and 208Pb. Third, neither effect is sufficient to
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TABLE II. Cross sections for one-nucleon removal in p-nucleus
reactions, with the following model variants: (a) standard, (b) standard
plus skin, (c) standard plus surface fuzziness, (d) standard plus skin
and surface fuzziness. All values are in mb. Experimental data are
taken from Refs. [14,20]. Note that the small proton skin in 40Ca has
very little impact on the results [(a) � (b) and (c) � (d)].

565-MeV p+40Ca 1-GeV p+208Pb

−1p −1n −1p −1n

(a) 54.6 46.4 59.5 82.1
(b) 54.6 44.6 50.9 112.0
(c) 47.6 40.5 42.1 63.4
(d) 47.3 38.2 33.6 83.8
Expt. 39.6 34.4 17.6 63.7

±7.2 ±7.7 ±0.5 ±9.6

compensate for the overestimation of the proton-removal cross
section in 208Pb if considered alone.

When the two refinements are simultaneously applied to
208Pb, the effect of surface fuzziness for neutron removal
almost exactly compensates the effect of the neutron skin,
and the final result (83.8 mb) is very close to the value
calculated with standard INCL (82.1 mb), which is within two
standard deviations (about 30%) of the experimental value.
The proton-removal cross section, on the other hand, is reduced
by almost a factor of two, which brings it much closer to the
experimental datum, but not quite in agreement with it.

The results for 40Ca are qualitatively similar. We observe
that the cross sections are essentially insensitive to the addition
of the very thin proton skin; surface fuzziness, on the other
hand, reduces both cross sections by roughly the same amount
(about 15%–20%) and brings them in better agreement with
the experimental data.

The excitation curves for one-nucleon removal are shown
in Fig. 6. The refined predictions are globally similar to the
standard ones for neutron removal; for proton removal, the
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FIG. 6. (Color online) Excitation function for neutron- (blue) and
proton-removal (red lines) cross sections in p+208Pb, as calculated
with the standard INCL version (dashed lines) and with the refined
treatment of the nuclear surface (solid lines). Experimental data are
taken from Refs. [19,20].
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FIG. 7. (Color online) Mass distribution of the residues produced
in 1-GeV p+208Pb. The standard INCL calculation (black) is
compared to the refined calculation (red) and to the experimental
data [20,40].

excitation function is roughly rescaled as a whole by a factor
of ∼0.6. This brings the prediction in better agreement with
the trend shown by the experimental data.

The global effect of neutron skin and surface fuzziness
is partially illustrated by Fig. 7, which shows the mass
distribution of the residues produced in 1-GeV p+208Pb. It
is clear that, except for the A > 170 region, the refined INCL
calculation is globally very similar to the standard result. The
fact that the fission peak is essentially unmodified suggests that
neutron skin and surface fuzziness globally do not influence
much the nature of the cascade remnants. Nevertheless, the
refined treatment sensibly ameliorates the cross sections for
the heaviest residues (A > 170), which were slightly too low
in standard INCL.

Insight can be gained by examining the isotopic
distributions for the heaviest residues, which are depicted in
Fig. 8. Apart from the cross sections for one-proton (207Tl)
and one-neutron removal (207Pb), the largest differences
between the standard and the refined calculations concern
the isotopes of Pb and Bi, which are highlighted (in linear
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FIG. 8. (Color online) Isotopic distributions of the Z = 76–83
residues produced in 1-GeV p+208Pb. The standard INCL calculation
(black) is compared to the refined calculation (red) and to the
experimental data [20,40].
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FIG. 9. (Color online) Same as Fig. 8, for Z = 81–83, in the
linear scale.

scale) in Fig. 9. Lead and bismuth isotopes are, respectively,
fed by reactions such as (p,p xn) and (p,xn), although the
contribution from pionic channels [such as (p,π+ xn)209−xPb]
is in general not negligible at all. The refined treatment of the
surface considerably improves the predictions for these cross
sections. Somewhat surprisingly, the cross sections for the
heaviest measured Bi residues (A = 205–208) are degraded.
Note, however, that the production of these residues imposes
constraints on the cascade outcome that are even stricter than
for one-nucleon removal: The excitation energy deposited
in the cascade remnant must be very small, but in addition
the incoming proton must be absorbed. This results in cross
sections (∼mb) which are much smaller than those for one-
nucleon removal (∼50 mb) and which are even more sensitive
to the details of the initial conditions and of the dynamics.
Generally, however, surface fuzziness and neutron skin
considerably improve the cross sections for Pb and Bi isotopes.
This should be seen as a by-product of the model refinement
which strengthens our confidence in the new treatment.

The new description of the surface might also influence
other observables; for instance, one might expect an effect on
the emission patterns of particles from peripheral collisions.
This is illustrated by the double-differential cross sections for
neutron production from 1.2-GeV p+Pb shown in Fig. 10. To
highlight the effect of the new surface description, we only
show angles below 30◦ and energies above 800 MeV [the
effect is much smaller in the rest of the neutron momentum
space; in general, it is also smaller for outgoing protons
than for outgoing neutrons (not shown)]. The peak at the
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FIG. 10. (Color online) Double-differential cross sections for the
production of neutrons in 1.2-GeV p+Pb, as calculated with the
standard INCL version (black lines) and with the refined treatment
of the nuclear surface (red lines). Experimental data are taken from
Ref. [41].

high-energy end of the 0◦ and 10◦ spectra is from quasielastic
charge-exchange scattering of the incoming proton off a
neutron in the target. The refined treatment of the surface
leads to a broadening of the quasielastic peak, which can
easily be understood as a consequence of the increased energy
fluctuations of the target surface nucleons. However, the effect
is minor, and it is surely insufficient to reconcile the calculation
with the experimental data. This well-known disagreement
has been known for quite some time [13] and is probably not
specific to the INCL model. Note, however, that the shape
and position of the quasielastic peak are sensitive at least
to the beam profile, the beam energy distribution, the target
thickness, and the detector angular acceptance. None of these
aspects is realistically modeled in our calculations.

In summary, we have seen that the proton-removal cross
section in 1-GeV p+208Pb can be reduced by about a factor
of two by taking into account the presence of the neutron
skin and the surface fuzziness. However, the refined value is
still in excess of the experimental one by another factor of
two. One might wonder if the results we have obtained can be
significantly improved by refining the calculation of the wave
functions and of the energy levels (by using, e.g., the Hartree-
Fock or Hartree-Fock-Bogoliubov methods) [42]. In keeping
with the approach described above, we would then need to fit
the refined probability curves with our fuzziness parameter.
However, we have performed a phenomenological exploration
of the parameter space and we have verified that our choice is
close to optimal. It is discouraging to learn that little can be
gained by refining the wave functions. Remember, however,
that even the optimal fuzziness values do not reproduce the
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shell-model calculations very well (Fig. 5). In this sense there
is probably margin for improvement in further refinement of
the INCL initial conditions, which are manifestly not flexible
enough to fit the shell-model calculations.

We wish to add a short comment about the universality
of the failure of INC to appropriately describe one-nucleon-
removal cross sections. The introduction of a neutron skin
can be seen as a straightforward extension of the standard
INC initial conditions; however, we have shown that it is not
sufficient to improve the one-nucleon-removal cross sections.
Surface fuzziness, on the other hand, goes definitely beyond
the standard INC initial conditions. The reduction of the cross
sections is ultimately from the increase of the excitation energy
associated with the knock-out of surface nucleons during the
INC phase. Equivalently, surface nucleons in standard INCL
are too close to the Fermi energy to result in deep holes. The
larger is the nucleon energy; the largest is the volume spanned
by the trajectory: This assumption is absolutely natural because
it draws from the behavior of classical particles. It is therefore
likely to figure in all INC models where the motion of the
individual target nucleons is explicitly followed.

The discussion above does not apply to intranuclear
cascades that model the Fermi sea as a continuous medium
(e.g., Isabel). In this case, however, collisions in low-density
regions are dealt with by assuming a reduced value of the
Fermi momentum (so-called local Fermi momentum) on top
of a reduced depth of the potential well. Insofar as the depth of
the holes that can be punched in the surface is concerned, the
net result is the same: The holes lie quite close to the Fermi
surface and yield somewhat small excitation energies. In this
sense, the failure of INC can be described as universal, i.e.,
independent of the specific model incarnation.

Reaction models such as Bertini and CEM03.03 require
further discussion. We have seen that they are also unable
to consistently reproduce the experimental data (Fig. 3),
but the disagreement is qualitatively different from models
such as INCL and Isabel. There are prominent differences
between these classes of models: most notably, (i) Bertini and
CEM03.03 are “spacelike” INCs, while INCL and Isabel are
“timelike” INCs; and (ii) Bertini and CEM03.03 include an
intermediate pre-equilibrium stage, whereas INCL and Isabel
are directly coupled to statistical de-excitation. It is tempting
to ascribe the different behavior of the two model classes to
one or both of these elements. We suggest that the use of pre-
equilibrium might be responsible for the different behavior.
As we discussed above, pre-equilibrium models carry no
information about the localization of excitons in configuration
space. Of course this is justifiable if the nucleon wavelength
is sufficiently large; nevertheless, the approximation might be
too crude for the description of grazing collisions such as those
described in the present paper.

VII. CONCLUSIONS

In conclusion, we have shown that INC/de-excitation
models universally fail to describe the cross sections for
one-nucleon removal in reactions induced by high-energy
protons. This shortcoming is somewhat serious, because
INC/de-excitation models are the only viable choice for the

description of these observables. We have used simple shell-
model calculations as a guidance for refining the description
of the surface in the INC initial conditions. We believe we
have presented strong arguments indicating that the reason for
this deficiency lies in the presence of neutron skins in heavy,
stable nuclei, and in the description of the energy density
of the nuclear surface. The refined model, as it is defined
here, introduces no fitting parameters and yields encourag-
ing predictions: The one-nucleon-removal cross sections are
substantially improved, but are still in disagreement with the
experimental values for heavy targets. As a by-product, the
isotopic cross sections for the removal of up to several nucleons
are also improved by the refined treatment. Still, further work
is necessary to achieve closer agreement with the experimental
data on heavy nuclei. In the future it will also be necessary to
generalize and systematize our approach to any nucleus, magic
or nonmagic.
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APPENDIX A: DEFINITION OF THE FUZZY
ENERGY-RADIUS CORRELATION

We start by reporting the standard definition of the function
that associates the radius of the square potential well to the
nucleon kinetic energy in INCL. The original equation [13]
[Eq. (4)] is an implicit definition formulated in terms of the
nucleon momentum p:(

p

pF

)3

= −4π

3A

∫ R̃(p)

0
r3 dρ(r)

dr
dr;

here pF is the Fermi momentum, A is the mass number
of the nucleus, and ρ(r) is the assumed space density. We
have slightly modified the notation in Ref. [13] to read
R̃(p). In relation to the function R(T ) that we used in
the main text of this paper, it should be understood that
R(T ) = R̃(

√
T (T + 2m)). For conciseness’ sake, we omit the

indication of the nucleon isospin.

1. Standard algorithm

The standard INCL algorithm for assigning positions and
momenta to a nucleon proceeds as follows:

(i) Draw a random momentum �p from the uniform
Fermi sphere; the vector direction is isotropic and the
absolute value is

p = pF u1/3,

where u is a uniform random number from the [0,1]
interval.

(ii) Compute the associated radius R̃(p).
(iii) Draw a random position from a uniform sphere of

radius R̃(p).
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This algorithm trivially results in the following phase-space
density [see Fig. 2(a)]:

dn

d3�rd3 �p = A
�(R̃(p) − r)

(4π/3)R̃(p)3

�(pF − p)

(4π/3)p3
F

, (A1)

where � represents the Heaviside step function. It was proven
in Ref. [13] that Eq. (A1) has the appropriate marginal
distributions:

dn

d3�r =
∫

dn

d3�rd3 �pd3 �p = ρ(r); (A2a)

dn

d3 �p =
∫

dn

d3�rd3 �pd3�r = A
�(pF − p)

(4π/3)p3
F

. (A2b)

2. Independent algorithm

The standard algorithm assigns a unique potential radius
to nucleons with a given momentum. An extreme alternative
would be to make the potential radius completely independent
of the momentum. This can be achieved as follows:

(i) Draw a random momentum p from the uniform Fermi
sphere:

p = pF u1/3.

(ii) Draw another, uncorrelated uniform random number
v and define a momentumlike variable p′:

p′ = pF v1/3.

(iii) Use p′ to compute the potential radius R̃(p′).
(iv) Draw a random position from a uniform sphere of

radius R̃(p′).

It is easy to prove that the independent algorithm yields the
following phase-space density,

dn

d3�rd3 �p = ρ(r)�(pF − p)

(4π/3)p3
F

. (A3)

Because Eq. (A3) factorizes in a space part and a momentum
part, it is trivial to show that it yields the same marginal
distributions as Eq. (A1), viz. Eq. (A2).

3. Fuzzy algorithm

The two algorithms above can be seen as limiting cases of
the following:

(i) Draw a random momentum p from the uniform Fermi
sphere:

p = pF u1/3. (A4a)

(ii) Draw another correlated uniform random number v
and define a momentumlike variable p′:

p′ = pF v1/3. (A4b)

(iii) Use p′ to compute the potential radius R̃(p′).
(iv) Draw a random position from a uniform sphere of

radius R̃(p′).

The crucial difference with respect to the independent
algorithm is that the random numbers u and v are correlated,

i.e., they are drawn from some joint distribution function
g(u,v).

The phase-space density generated by the fuzzy algorithm
is

dn

d3�rd3 �p = A
�(pF − p)

(4π/3)p3
F

∫ 1

0
dv g(u,v)

�(R̃(p′) − r)

(4π/3)R̃(p′)3
, (A5)

where it is understood that p and p′ are, respectively, functions
of u and v through Eq. (A4). Note that the standard algorithm
is recovered for

g(u,v) = δ(u − v),

while the independent algorithm results from

g(u,v) = 1

(remember that u,v ∈ [0,1]).
The marginal space and momentum distributions can be

shown to be

dn

d3�r = −
∫ ∞

r

dr ′ dρ(r ′)
dr ′ · gv

((
R̃−1(r ′)

pF

)3)
, (A6a)

dn

d3 �p = A
�(pF − p)

(4π/3)p3
F

· gu(u), (A6b)

where R̃−1 is the inverse function of R̃ and gu and gv are the
marginal distributions of g:

gu(u) =
∫ 1

0
dv g(u,v),

gv(v) =
∫ 1

0
du g(u,v).

Equation (A6) demonstrates that the fuzzy algorithm generates
the appropriate marginal space and momentum distributions
[Eq. (A2)] if and only if the marginals of g are uniform:

gu(u) = 1, gv(v) = 1.

a. Construction of the joint distribution g(u,v)

Having characterized the conditions for recovering the
correct space and momentum distributions, we now show
how to construct a joint distribution on the unit square with
uniform marginals. We would like the u − v correlation to
be continuously “tunable” between the two extreme cases of
the standard and the independent algorithm. We therefore
introduce a fuzziness parameter f and denote the joint
distribution as g(u,v; f ).

There are several solutions to this deceptively simple
problem. The one we have adopted in INCL, in a nutshell,
consists in generating two correlated normal deviates (which
can be done with a simple algorithm) and mapping them to
the unit square using the inverse of the normal cumulative
distribution function. The method is a simple application of
the theory of copulas [43].

In detail, we start out with a bivariate standard normal
distribution with correlation coefficient c, which can explicitly
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be written as

h(w,z; c) = 1

2π
√

1 − c2
η(w,z; c),

η(w,z; c) = exp

[
− w2 + z2 − 2cwz

2(1 − c2)

]
.

Both w and z are standard normal variables:∫
h(w,z; c)dz = 1√

2π
exp(−w2/2), (A7a)

∫
h(w,z; c)dw = 1√

2π
exp(−z2/2). (A7b)

It is easy to show (by factorization) that sampling from
h(w,z; c) can be performed as follows: First sample w from
a standard normal distribution, then sample z from a normal
distribution with mean cw and variance 1 − c2. We finally
define

u = 
(w), v = 
(z),

where 
(x) is the cumulative distribution function of the
standard normal distribution. This maps the standard normal
random variables (w,z) onto the (open) unit square mapped
by (u,v). Because w and z are standard normal variables
[Eq. (A7)], u and v are uniform over the unit interval.

The variables w and z are not independent; therefore,
neither are u and v. However, we were unable to derive a closed
expression for the correlation coefficient of g(u,v; f ). We
identify the fuzziness parameter f with 1 − c, so that for c = 0
(uncorrelated variables) we have f = 1 (full fuzziness) and for
c = 1 (perfect correlation) we have f = 0 (no fuzziness). The
joint distribution can be shown to be

g(u,v; f ) =
[√

f (2 − f ) η

(

−1(u),
−1(v);

1

1 − f

)]−1

.

The construction can be straightforwardly generalized to
any other initial joint distribution h(w,z) for which a simple
sampling algorithm exists.
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FIG. 11. (Color online) Mean (a) and root-mean-square devia-
tion (b) of the probability distribution for the fuzzy well radius,
as functions of the nucleon kinetic energy, for different values of
the fuzziness parameter f . The rms deviation vanishes for f = 0
(standard algorithm).

b. Definition of the fuzzy radius

We conclude by reporting the explicit definition for the
function R(T ; f ) that we used in the text:

R(T ; f ) = R̃(
√

T (T + 2m); f ).

Here R̃(p; f ) must be understood as a random variable. Based
on the description of the fuzzy algorithm above, the probability
that R̃(p; f ) assumes the value ξ , for a given momentum p,
can be written as

dP (ξ < R̃(p; f ) � ξ + dξ )

dξ

= g(u,v; f )
dv

dp′
dp′

dR̃(p′)

= 3p′2

R̃′(p′) p3
F

g((p/pF )3,(p′/pF )3; f ), (A8)

where it should be understood that p′ = R̃−1(ξ ; f ).
As an illustration, Fig. 11 shows the mean and root-

mean-square deviation of the probability distribution given
by Eq. (A8), for different values of the fuzziness parameter f .
It is worth stressing that not only the rms but also the mean
values depend on f ; it is clear that it must be so because for
f = 1 we must recover the independent algorithm, in which
the well radius is independent of the nucleon energy.
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