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Wave functions of the Q · Q interaction in terms of unitary 9- j coefficients
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We obtain wave functions for two protons and two neutrons in the g9/2 shell expressed as column vectors
with amplitudes D(Jp,Jn). When we use a quadrupole-quadrupole interaction (Q · Q) we get, in many
cases, a very strong overlap with wave functions given by a single set of unitary 9-j coefficients—U9j =
〈(jj )2j (jjJB |(jj )Jp (jj )Jn )I 〉. Here JB = 9 for even IT = 0 states. For both even and odd T = 1 states we take
JB equal to 8 whilst for odd I , T = 0 we take JB to be 7. We compare the Q · Q results with those of a more
realistic interaction.
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I. INTRODUCTION

In previous works, the problem of maximum JT = 0
pairing was addressed [1–3] and comparisons were made with
J = 0T = 1 pairing. In the course of these works it was found
that, to an excellent approximation, some wave functions of the
maximum-J pairing Hamiltonian were very close to single sets
of unitary 9-j coefficients. In this work we wish to disengage
this simple result from the complexities of the maximum-J
pairing problem. To this end, we consider better Hamiltonians
than maximum J and show that the results hold there as well,
and we make comparisons with wave functions obtained from
the simple Q · Q interaction as well as from a more realistic
interaction CCGI [4]. The calculations are for two protons and
two neutrons in the g9/2 shell, i.e., 96Cd.

II. OVERLAPS OF Q · Q AND CCGI WITH U9 j

To facilitate comparisons of the two interactions, we add
constants so that the J = 0 matrix elements are zero for both
interactions. The ten matrix elements from J = 0+ to J = 9+
are then

Q · Q: 0, 0.1222, 0.3485, 0.6515, 0.9848, 1.2879, 1.4849,
1.4849, 1.1818, 0.4546;

CCGI: 0, 0.8290, 1.6500, 1.8770, 2.2170, 2.3018, 1.6049,
2.3830, 1.8019, 2.5270, 0.9150.

The J = 0 values are −1.0000 and −2.3170 MeV, re-
spectively. Of course the Q · Q interaction can be multiplied
by a positive constant without changing the overlaps. We
first compare the overlaps of wave functions obtained with
the popular Q · Q interactions with wave functions that are
basically single sets of U9j coefficients. This interaction has
the nice feature of having attractive J = 0+, 1+, and 9+
two-body matrix elements. For even I we compare the yrast-
state wave functions of Q · Q with those of the U9j ’s, i.e.,
N〈(jj )Jmax (jj )JB |(jj )Jp (jj )Jn〉I , where in the g9/2 shell Jmax =
2j = 9. To compare with yrast T = 0 even I states of Q · Q we
take JB = 2j = 9. The normalization N is close to

√
2. More

precisely, N (9)−2 = 1/2 − 1/2〈(jj )9(jj )9|(jj )9(jj )9〉 [1].
We show in Table I the following overlaps: (ψ , U9j ) for

both Q · Q and CCGI [4].
Note the very strong overlaps for I = 0+, 2+, 4+, and 6+

and then the sudden drop to almost zero overlap for I = 8+

and the small overlap of 0.3635 for I = 10+. In selected cases
we consider overlaps with the next excited states, e.g., T =
0, I = 8+ and 10+. The results were 0.9505 for I = 8+ and
0.8540 for I = 10+. In other words, for I = 8+ we can, to a
good approximation, identify the simple U9j wave function
with the first exited state rather than the ground state. For
I = 10+ there is fragmentation. For I = 12+ and 14+ we get
poor overlaps of 0.6586 and 0.8374, respectively. However,
for I = 16+ we get a perfect overlap. But this case is trivial.
There is only one I = 16+ state with Jp = 8 and Jn = 8.

We next briefly consider the other (J,T ) combinations. If
the wave function amplitudes are D(Jp,Jn)I then we have
D(Jn,Jp) = (−1)(I+T )D(Jp,Jn) where T is the isospin. Thus,
for even IT = 1 and for odd IT = 1 we take JB = 8 while
for odd IT = 0 we take JB = 7. Note that there are no I =
0T = 1 states in this model space and that all I = 1 states
have isospin T = 1.

Referring to Table I we here note the (J,T ) states of these
other combinations with overlap greater than 0.9: (2,1), (4,1),
(6,1), (3,0), (5,0), (3,1), (5,1).

There is also the special case (14,1); here there is a perfect
overlap because there is only one state of this configuration.
Except for the last case, we get the best overlaps for the
lowest angular momenta. Note that we cannot associate U9js
with T = 2 states. Those are double analogs of states of
four identical nucleons and the wave functions are uniquely
constrained by the Pauli principle.

By choosing JB = 8, we get a spectacular overlap of 0.9990
for the lowest I = 1+, T = 1 state. Equally impressive for the
I = 3+, T = 1 state, the overlap is 0.9997. Choosing JB = 7
we get for the I = 3+, T = 0 an overlap of 0.9939 and for
I = 5+, T = 0 we get 0.9125. For values of I beyond I = 5,
however, things begin to erode just as they do for large even I .

In general, we get better overlaps with Q · Q than we do
with the more realistic CCGI. The values for T = 0, I = 0
are respectively 0.9996 and 0.9451. For I = 1, T = 1 they are
0.9990 and 0.8369. This may be due in part to the fact that
Q · Q has a more attractive Jmax matrix element than CCGI
does.

But there are some surprises. For J = 12+ and 14+
we get much better results for CCGI than for Q · Q. The
(Q · Q,CCGI) values are (0.6590, 0.9807) for I = 12+ and
(0.8370, 0.9722) for I = 14+. As discussed in Ref. [5] the
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TABLE I. Overlaps.

J T [Q · QU9j ] Non-yrast [CCGI, U9j ] Non-yrast
Q · Qa Q · Qb CCGIa CCGIb

0 0 0.9996 0.9451
2 0 0.9999 0.9817
4 0 0.9986 0.9178
6 0 0.9871 0.8034
8 0 0.0481 0.9505 0.2315 0.0488
10 0 0.3635 0.8540 0.6399 0.7591
12 0 0.6590 0.5884 0.9806
14 0 0.8374 0.9722
16 0 1 1
2 1 0.9975 0.8870
4 1 0.9870 0.8850
6 1 0.9061 0.6319
8 1 0.0568 0.2027
10 1 0.3366 0.2711
12 1 0.7746 0.3916
3 0 0.9939 0.9912
5 0 0.9125 0.3329
7 0 0.7536 0.7607
9 0 0.3021 0.3925
1 1 0.9990 0.8369 0.5357
3 1 0.9974 0.9541
5 1 0.9634 0.9315
7 1 0.3120 0.6317
9 1 0.1055 0.1318

J = 0+, T = 1 matrix element is not involved in these high-
spin states. The more relevant comparison here is between
the Jmax = 9 matrix element and the one with J = 2. With
Q · Q the J = 2 and J = 7 matrix elements are 0.3482 and
0.4546. Hence J = 2 is more attractive than J = 9. In contrast
with CCGI [4] the respective numbers are 1.6500 and 0.9140.
Hence with CCGI the J = 9 matrix element is more attractive
than J = 2.

III. COMPARISON WITH E( Jmax)

Previously we had studied the overlaps of U9j with wave
functions of the E(Jmax) interaction [5], i.e., an interaction
in which all two-body matrix elements vanish except for
the ones with J = 2j . This interaction can only occur only
between a neutron and a proton. Studying this interaction gave
us the idea that the above set of U9j coefficients could, in

many cases, be excellent approximations to wave functions
that result from more realistic interactions. Indeed, the single
U9j 〈(jj )9(jj )JB |(jj )Jp (jj )Jn〉I , with both Jp and Jn even
is an exact eigenfunction of E(9) for two protons and two
neutrons in the g9/2 shell. Indeed, we get perfect overlap in
the following cases with the Jmax interaction: I = 0, T =
0 (JB = 9), I = 1, T = 1 (JB = 8), I = 2, T = 1 (JB = 8),
and I = 3, T = 0 (JB = 7). Although for I = 2, T = 0 a
single U9j is not an eigenstate, to an excellent approximation
the lowest two I = 2+ states have JB = 9 and JB = 7.

However, the E(Jmax) interaction taken by itself does not
give a reasonable spectrum. One of the sturdiest results in
nuclear structure is that all even-even nuclei have I = 0 ground
states. However with an attractive E(9) interaction the lowest
state has I = 16+.

The Q · Q interaction has a much more reasonable spec-
trum, with an I = 0+ ground state for even-even nuclei. A
priori it is not clear that single U9js could be reasonable ap-
proximations to the eigenfunctions of Q · Q. The two-particle
matrix elements of this interaction are strongly attractive not
only for J = Jmax but also for J = 0 (even more so) and J = 1.
For this reason, it is more significant that the simple sets of
U9js noted above have high overlaps with wave functions
arising from Q · Q, at least for low spins. On the other hand,
without the study of the E(Jmax) interaction we would never
have guessed that a set of U9js existed which were close to
wave functions of realistic interactions.

IV. CLOSING REMARKS

In closing, we note that we have obtained an interesting
result for a system of two protons and two neutrons in a single
j shell. We find that, with the Jmax and Q · Q interactions,
states of low total angular momentum are spectacularly well
described by a single unitary 9-j coefficient. With more
realistic interactions the overlaps, although not quite as good,
are still greater than 0.9 in many cases. It is of course well
known that 9-j coefficients are building blocks which could
be used to construct wave functions, but the surprise here is
that the unitary 9-j coefficients are themselves in many cases
very close to the exact wave functions.
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