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Nuclear moment of inertia as an indicator of the phase transition in a finite system
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The purpose of this article is to derive the analytic expression for the angular-momentum dependence
(I dependence) of the moment of inertia in microscopic mean-field theory for both even-even and odd-mass
nuclei. Based on the constrained Hartree-Fock-Bogoliubov theory, the Coriolis antipairing effect is taken into
account as the second-order perturbation to the BCS basis together with the blocking effect. Instead of integration,
an asymptotic series expansion is applied to the quantity in which finiteness of the nuclear system becomes tangible
in the high-spin region, where the gap parameter � becomes much smaller than the average single-particle level
distance d . As a result, � keeps a small but finite value even for high-spin states, showing that there is no sharp
phase transition in the nucleus. Analytic formulas are derived for the I dependence of the moment of inertia for
different regions of � � d/2 and � < d/2.
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I. INTRODUCTION

In a series of articles [1–4], we have exploited and
implemented the top-on-top model with angular-momentum-
dependent moments of inertia. It reproduces quite well not
only the excitation energy relative to the reference, i.e.,
E∗ − aI (I + 1) with a = 0.0075 MeV and I being the total
angular momentum, but also measured B(E2) and B(M1)
values among triaxial, strongly deformed (TSD) bands in
odd-mass nuclei, i.e., Lu isotopes [5–12] and 167Ta [13], and
also in the odd-odd nucleus 164Lu [14]. The moment of inertia
(MoI) seems to keep its gradual increase, which is associated
with the rotational alignment of spins, along the highly excited
rotational bands far above the yrast region, e.g., TSD bands.
In the top-on-top model, the evolution of the nuclear intrinsic
structure caused by the decrease of the pairing gap is simulated
by the gradual increase of the core MoI as functions of I .

The effect of the pairing correlation on the MoI and the
functional relation of the pairing gap to the rigid-body MoI
are approximately estimated by Bohr and Mottelson [15] and
by Bengtsson and Helgessen [16]. The Coriolis antipairing
(CAP) effect was proposed by Mottelson and Valatin [17],
and the perturbation treatment for this effect has been carried
out by Sano and Wakai [18] for even-even nuclei and by
Sugawara [19] for odd-mass nuclei including the blocking
effect. Later, the self-consistent calculation based on the con-
strained Hartree-Fock-Bogoliubov (CHFB) equation showed
that the phase transition from the superconducting state with
a finite gap value � ( �=0) to the normal state with � = 0
occurs stepwise starting from the decrease of the gap in the
unique-parity high-j level (gapless superconductor) [20].

An attempt has been made to simulate the centrifugal
stretching effect in terms of the β vibration within the
framework of a confined β-soft rotor model [21]. Such a
model stands in sharp contrast with the self-consistent solution
to the CHFB equation, which describes automatically the
centrifugal stretching effect as well as the effect arising from
the pairing interaction. The CHFB solutions have shown that
the CAP effect plays a much more important role in the

evolution of the nuclear structure along the ground bands
than the centrifugal stretching effect. Some examples of the
CHFB result taking into account the pairing interaction and
the quadrupole-quadrupole interaction are shown in Ref. [22].

It has been argued that the projection of the particle num-
ber [23] and/or the projection of the angular momentum [24]
prevents the rapid decrease of � and keeps its finite value
even in high-spin states. In these methods, � is deduced from
the expectation value of the pairing interaction. However, the
original concept of the gap is an order parameter defined in
terms of the quasivacuum expectation value of the product of
two annihilation (or creation) single-particle operators. In this
article, bearing in mind such a problem, we derive analytic
formulas of the functional dependence of the MoI and the gap
on I from the mean-field theory.

In Sec. II, we begin with the CHFB equation and treat
the cranking term as perturbation for the even-even nucleus
with axially symmetric deformation. In Sec. III, we provide
an analytic integral for the MoI formula by an approximation
similar to the one adopted in Refs. [15,16]. In Sec. IV, applying
the same approximation method as used in Sec. III, we relate
I to the gap � (“integral form”). In Sec. V, we propose a
method to perform summation consistent with the finiteness
of the nuclear system, wherein � is much smaller than the level
distance d (“sum form”). In Sec. VI, our formalism is extended
to the odd-mass nucleus. In Sec. VII, we compare the MoI
between even-even and odd-mass cases in both the integral
form and the sum form. In Sec. VIII, the article is concluded.
Some relevant mathematical operations are summarized in
Appendices A, b, and C.

II. PERTURBATION SOLUTION TO CHFB EQUATION
IN EVEN-EVEN NUCLEUS

We consider the case of an axial-symmetrically deformed
even-even nucleus. To develop our discussion as transparently
as possible, we take into account only the pairing interaction
because the effect of the other interactions is assumed to be
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included in the single-particle energy. The CHFB Hamiltonian
is given by

H = H0 − H�,

H0 =
∑

α

(εα − λ)c†αcα − G

4

∑
α,β

c
†
α̃c†αcβcβ̃ , (1)

H� = �xÎx, with Îx =
∑
α,β

(jx)αβc†αcβ,

where εα is the single-particle energy in the deformed field; λ
the chemical potential, which is determined from the constraint
on the particle-number; G the pairing strength; and �x the
Lagrange multiplier (or rotational frequency about the x axis),
which is determined from the constraint on the total angular-
momentum operator Îx . The particle operators describing
the single-particle states in the axial-symmetrically deformed
field are represented by {c†α,cα} and their time-reversed ones
{c†α̃,cα̃}.

The quasiparticle operators {α†
i ,αi} are introduced through

the Bogoliubov transformation:

α
†
i =

∑
α

(Aiαc†α + Biαcα). (2)

We have orthonormality relations as a part of the unitarity
nature of this transformation:∑

α

(A∗
iαAjα + B∗

iαBjα) = δij ,

∑
α

(AiαBjα + BiαAjα) = 0,

(3)∑
i

(AiαA∗
iβ + B∗

iαBiβ) = δαβ,

∑
i

(AiαB∗
iβ + B∗

iαAiβ) = 0.

The CHFB equations are derived through the minimization
of the expectation value of H by the quasivacuum for αi under
the constraint of the first relation in Eq. (3), i.e., δ[〈H 〉 +
1
2

∑
i 	i

∑
α(A∗

iαAiα + B∗
iαBiα)] = 0, where 	i is introduced

as a Lagrange multiplier. Making use of the other relations in
Eq. (3), we get a set of CHFB equations:

	iAiα =
∑

β

[(εα − λ)δαβ − �x(jx)αβ]Aiβ + δαβ̃�Biβ,

(4)
−	iBiα =

∑
β

[(εα − λ)δαβ − �x(jx)αβ]Biβ + δαβ̃�∗Aiβ,

where the pairing gap � is defined by

� = G

2

∑
α

〈cα̃cα〉 = G

2

∑
iα

Aiα̃B∗
iα. (5)

We have neglected the contribution from the pairing interaction
to the self-energy in Eq. (4).

In solving a set of the CHFB equations in Eq. (4),
we deal with the cranking term H� as perturbation to the
BCS solution. The zeroth-order solution to Eq. (4) is given
by the BCS solution, which is obtained from Eq. (4) by
setting �x = 0, Aiα = δiαuα , Biα = δiα̃vα , and 	i = δiαEα(=
δiα

√
(εα − λ)2 + �2). The gap equation in Eq. (5) is reduced

to

� = G

2

∑
α

uαvα,

(6)

u2
α = 1

2

(
1 + εα − λ

Eα

)
, v2

α = 1

2

(
1 − εα − λ

Eα

)
.

Within a framework of the stationary perturbation theory for
a nondegenerate case, we get the first-order and second-order
perturbation solutions and put them into Eq. (5) together with
the zeroth-order expressions given by Eq. (6). Then, up to the
second-order perturbation, the gap equation becomes

� = G

4

∑
α

�

Eα

[
1 − �2

x

∑
β

(jx)2
αβ

Eα + Eβ

(
EαEβ − (εα − λ)(εβ − λ) − �2

EαEβ(Eα + Eβ)
+ (εα − λ)(εα − εβ)

E2
αEβ

)]
.

(7)

This equation can be regarded as a self-consistent equation to
determine � under the influence of the rotational effect [17–
19]. In Sec. IV, applicability of the original perturbation
treatment is checked numerically with a compact expression
in Eq. (24).

The MoI is introduced through the constraint for the
expectation value of Îx by the quasivacuum:

〈Îx〉 = I = Jx�x. (8)

Up to the first-order perturbation, the MoI about the x axis is
given by

Jx =
∑

α,β (εα<εβ )

(jx)2
αβ

Eα + Eβ

(
1 − (εα − λ)(εβ − λ) + �2

EαEβ

)
.

(9)

Here, we mark that the second-order perturbation does not
contribute to Eq. (8) for the even-even case. The appearance
of Eq. (9) is the same as the cranking formula [25,26], but �
and λ deviate from the conventional BCS solution. We discuss
the rotational effect on λ in Sec. IV.

III. GAP DEPENDENCE OF MOMENT OF INERTIA

In Refs. [15,16], under the assumption that only large matrix
elements of jx that appear in the sum of Eq. (9) contribute toJx

with a common excitation energy of δ (= εβ − εα), an analytic
formula for Jx has been derived as a function of J rig

x and �.
Here, the value of δ is given by �(ωy − ωz) [15], with ωy and ωz

being the harmonic oscillator strengths along the y axis and the
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z axis. For a nucleus with A = 160 and deformation parameter
β ∼ 0.3, δ becomes ∼2.3 MeV. However, δ is the energy
distance between two levels connected by jx , and its magnitude
is actually shown to be 1.4–1.5 MeV for i13/2 levels around
β ∼ 0.3 [27], which is less than 2.3 MeV. In the proton shell,
the average of δ for h11/2, g7/2, 2d5/2, 2d3/2, and i13/2 levels
is 2.1 MeV around β ∼ 0.3 [27]. In what follows, choosing
δ = 2.0 MeV we carry out systematic analysis and display
the results in the figures. All the quantities are expressed as
functions of a dimensionless parameter:

ξ = 2�

δ
. (10)

Note that this variable ξ is related to x in Refs. [15,16] by
ξ = 1/x. Based on the approximation method adopted in
Refs. [15,16], the quantity under the sum in Eq. (9) is replaced
by the product of two factors:

Jx
∼=

∑
α,β (εα<εβ )

(jx)2
αβ

〈
EαEβ − (εα − λ)(εβ − λ) − �2

(Eα + Eβ)EαEβ

〉
av

≡ 2
∑

α,β (εα<εβ )

(jx)2
αβ

δ
〈g〉av, (11)

where 〈 〉av denotes an averaged value of the function within
the relevant range of εα . Because εβ − εα = δ, the sum of the
first factor (jx)2

αβ/δ in Eq. (11) gives the expression for the
rigid-body MoI J rig

x [25]:

J rig
x = 2

∑
α,β(εα<εβ )

(jx)2
αβ

εβ − εα

∼= 2
∑

α(εβ=εα+δ)

(jx)2
αβ

δ
. (12)

Hence, Eq. (11) becomes

Jx = J rig
x 〈g〉av. (13)

The function g(x) inside the bracket in Eq. (11) is expressed
in terms of x = εα − λ as

g(x) = δ

2(
√

x2 + �2 +
√

(x + δ)2 + �2)

×
(

1 − x(x + δ) + �2

√
x2 + �2

√
(x + δ)2 + �2

)
. (14)

In estimating the averaged value of g(x), Refs. [15,16] assume
g(x) is sharply peaked around εα = λ − δ/2 in the interval
εmin � εα � εmax. This interval εmax − εmin is expressed as
δ. In Fig. 1, actual behavior of the function g(x) vs x/δ is
shown for ξ = 0.2. Note that the function is symmetric with
respect to x = −δ/2, and it takes finite value within a limited
range of the width δ, i.e., −δ � x � 0. To obtain an analytic
expression for 〈g〉av, we consider a suitable approximation
method in Appendix A. From Eq. (A3) an average value of the
integrand g(x) becomes

〈g〉av = 2

ρδ

∫ 0

−δ/2
ρ[g(x) + g(x − δ)]dx

= 1 − ξ 2 ln

(
1 +

√
1 + ξ 2

ξ

)
+ 19

90
ξ 2, (15)

-1.5 -1 -0.5 0 0.5

x δ

0.2

0.4

0.6

0.8

1

g
x

FIG. 1. Behavior of g(x) in Eq. (14) as a function of x(= εα − λ)
for ξ (= 2�/δ) = 0.2.

where ρ is the single-particle level density given by 1/d with d
being the average spacing between doubly degenerate single-
particle levels.

In Ref. [15], the average of g(x) is calculated from the
integral over the extended region from −∞ to ∞ divided by
the finite interval δ:

〈g〉av = 1

ρδ

∫ ∞

−∞
ρg(x)dx

= 1 − ξ 2√
1 + ξ 2

ln

(
1 +

√
1 + ξ 2

ξ

)
. (16)

Except for 19ξ 2/90, Eq. (15) coincides with Eq. (16), if
higher orders in ξ 2 are neglected. In Ref. [16] the integral
is approximated by an area of the triangle with its height of
g(x = −δ/2) and its base of 2δ:

〈g〉av = 1

(1 + ξ 2)3/2
. (17)

According to three alternative estimates, 〈g〉av is given by
Eq. (15), (16), or (17). In Fig. 2, we compare Jx as functions
of ξ (0 � ξ � 0.8) calculated for three cases with J rig

x =
68 MeV−1. The upper dotted line labeled “BH” represents
Eq. (17), the lower dashed line labeled “BM” Eq. (16), and the

0 0.2 0.4 0.6 0.8

ξ

30

40

50

60

70

M
oI
M
eV

1

BM
BH

FIG. 2. Comparison of the MoI as functions of ξ for three cases
with different 〈g〉av and a common J rig

x = 68 MeV−1. Equation (17)
is represented by BH (dotted line), Eq. (16) by BM (dashed line), and
Eq. (15) by the solid line in the middle of BH and BM.
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middle solid line Eq. (15). The three lines well overlap each
other.

IV. THE I DEPENDENCE OF THE PAIRING GAP IN AN
EVEN-EVEN NUCLEUS (INTEGRAL FORM)

To deal with Eq. (7) analytically, we adapt the same
technique as used in deriving Eq. (15). At first we rewrite
Eq. (7) in a symmetric form so as to limit the sums over the
states α and β to the region of εα < εβ , and we introduce
a common excitation energy δ = εβ − εα as in the previous
section. The nontrivial solution of � obeys the following
equation [18,19]:

4

G
=

∑
α

1

Eα

− �2
x

∑
α,β (εα<εβ )

(jx)2
αβ

×
[
EαEβ − (εα − λ)(εβ − λ) − �2

E2
αE2

β(Eα + Eβ)

+ δ2 �2 − (εα − λ)(εβ − λ)

(Eα + Eβ)E3
αE3

β

]
, (18)

where Eβ contains εβ = εα + δ. The first term in the right-
hand side of Eq. (18) is estimated as [28]

∑
α

1

Eα

∼=
∫ S/2

−S/2

2ρdx√
x2 + �2

= 4ρ sinh−1

(
S

2�

)
, (19)

where ±S/2 are the cutoff energies. A factor 2 before ρ in the
integral comes from the degeneracy of Eα and Eα̃ . Similarly
to in Sec. III, the second term in Eq. (18) is estimated as the
product of (jx)2

αβ and the averaged value of the rest. Because
εβ takes the limited value εα + δ, the double sum is reduced
to a single sum over εα . Thus, we replace the quantity in the
square bracket, i.e., [· · · ] in Eq. (18), with its average value:

�2
x

∑
α (εβ=εα+δ)

(jx)2
αβ

1

δ

∫ δ/2

−3δ/2
f (x)dx. (20)

The integrand f (x) is given by

f (x) = 1

(Ex + Ex+δ)ExEx+δ

×
[

1 − x(x + δ) + �2

ExEx+δ

+ δ2 �2 − x(x + δ)

(ExEx+δ)2

]
, (21)

where Ex = √
x2 + �2 and Ex+δ =

√
(x + δ)2 + �2. In

Fig. 3 we show the behavior of f (x) for � = 0.1 MeV and
δ = 1 MeV, which is symmetric with respect to x = −δ/2
and has a meaningful nonzero value within the limited region
−3δ/2 � x � δ/2.

Analytic integration for an approximated f (x) is performed
in Appendix B. Using the quantity F̄ in Eq. (B3) together with
Eqs. (19) and (12), we rewrite Eq. (18) as

1

Gρ
= sinh−1

(
S

2�

)
− �2

x

J rig
x

8δ2ρ
F̄ , (22)

-1.5 -1 -0.5 0 0.5

x δ

-20

0

20

40

60

f
x

M
eV

3

FIG. 3. Behavior of f (x) in Eq. (21) as a function of x(= εα − λ)
with � = 0.1 MeV and δ = 1 MeV.

where

F̄ = 16(1 − ξ 2) ln

(
1 +

√
1 + ξ 2

ξ

)
+ 319

27
ξ 2 − 371

45
. (23)

Now, making use of Eq. (8) for �x = I/Jx and Eq. (13),
we rewrite Eq. (22) up to the second order in ξ as

�

S
∼ e−z, with z = 1

Gρ
+ I 2F̄

8δ2ρJ rig
x 〈g〉2

av

. (24)

We introduce �0, which is the gap value at I = 0 (�x =
0), and define ξ0 ≡ 2�0/δ = (2S/δ) exp[−1/(Gρ)] wherein
parameters S and G are included. Note that the existence of
many single-particle levels are in principle taken into account
through ξ0. This stands in contrast to the cases of numerical
analysis with a limited number of single-particle levels [18,19].
Comparing the last term in Eq. (24) at ξ = ξ0 with 1/(Gρ) for
G = 0.14 MeV [28], we find that applicability of the original
perturbation expansion is limited to I < 25.

We express Eq. (24) in an alternative form:

ξ = ξ0 exp

[
− I 2

8δ2ρJ rig
x

(
F̄

〈g〉2
av

)]
. (25)

Introducing a band-head angular momentum I0, and replacing
I by I − I0, we solve Eq. (25) with respect to I − I0 as a
function of ξ :

I − I0 =
[

8δ2ρJ rig
x

ln(ξ0/ξ )〈g〉2
av

F̄

]1/2

. (26)

In this equation, we carry out the definite integral for both
〈g〉av in Eq. (15) and F̄ in Eq. (23). We refer to both Eqs. (15)
and (26) as the “integral form.” This solution is illustrated
in Fig. 4 with the following parameter set: ρ = 2.5 MeV−1,
J rig

x = 68 MeV−1, δ = 2.0 MeV, and ξ0 = 0.8. Figure 4 shows
that ξ vanishes at the critical angular momentum of Ic − I0 ∼
18. Even if the other expression for 〈g〉av like in Eq. (16) or
Eq. (17) is adopted, a similar result is obtained, because the
behaviors of three kinds of MoI are quite similar as shown
in Fig. 2.
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FIG. 4. The angular momentum I measured from band head I0

calculated from Eq. (26) as a function of ξ (= 2�/δ). The parameters
are given in the text.

Another constraint is required for the particle number N up
to the second-order perturbation:

N =
∑

α

v2
α + �2

x

2

∑
α,β

(jx)2
αβ

Eα + Eβ

[
εα − λ

Eα(Eα + Eβ)

×
(

1 − (εα − λ)(εβ − λ) + �2

EαEβ

)
− �2(εα − εβ)

E3
αEβ

]
.

(27)

The second term in Eq. (27) is rewritten in a symmetric form
so as to limit the sum over states α and β to the region of
εα < εβ = εα + δ. Then, Eq. (27) becomes

N =
∑

α

v2
α + �2

x

2

∑
α<β(εβ=εα+δ)

(jx)2
αβ

δ
N (x),

with

N (x) = δ

(Ex + Ex+δ)2

(
1 − x(x + δ) + �2

ExEx+δ

)(
x

Ex

+ x + δ

Ex+δ

)

+ �2δ2

(Ex + Ex+δ)ExEx+δ

(
1

E2
x

− 1

E2
x+δ

)
. (28)

Here, Ex and Ex+δ are the same as defined in Eq. (21). If
we apply the same approximation as used in Eq. (18), N (x)
becomes an odd function of εα − λ + δ/2. In Fig. 5, we show

-1.5 -1 -0.5 0 0.5

x δ

-10

-5

0

5

10

N
x
M
eV

1

FIG. 5. Behavior of N (x) in Eq. (28) as a function of x(= εα − λ)
with � = 0.1 MeV and δ = 1 MeV.

the behavior of N (x) as a function of x = εα − λ. It is well
understood that the cancellation occurs when the sum is carried
out in Eq. (28). Therefore, we expect the rotational effect on
λ is small and do not take into account such an effect in the
present article.

V. THE I DEPENDENCE OF � AND Jx IN THE RANGE
OF � � 1/ρ (SUM FORM)

In our treatment of the gap equation, the sum over the
relevant single-particle states is replaced with an integral over
a certain finite range. While our approximation is excellent
when � or ξ (=2�/δ) is finite, its accuracy is not enough for
small �, because the factor 1/Ex = 1/

√
x2 + �2 or 1/Ex+δ =

1/
√

(x + δ)2 + �2 in the right-hand side of Eq. (21) diverges at
x = 0 or x = −δ, when � = 0. This fact is inferred also from
the behavior of f (x) at x/δ = 0 and −1 in Fig. 3. Therefore,
we cannot carry out integration over x for the gap equation,
but have to consider another approximation for the case where
� is much smaller than the level distance d. For a nucleus with
A = 160 and the deformation parameter β ∼ 0.3, the average
level distance d is almost 0.4 MeV, which corresponds to
ρ ≡ 1/d ∼ 2.5 MeV−1. Finiteness of the nuclear radius or of
the nuclear system reflects on the finiteness of d.

When � 
 d, the summation must be directly carried out.
We adopt the picket-fence approximation, wherein the single-
particle levels are distributed symmetrically with a common
level distance d in both sides of the chemical potential λ.
Assuming that there are n levels within the interval 0 < x �
δ/2, we expand the relevant expression with respect to (2�/d)2

as follows:

δ/2∑
x>0

1√
x2 + �2

≡
n∑

i=1

1√(
d(2i−1)

2

)2 + �2

= 2

d

n∑
i=1

1

2i − 1

{
1 − 1

2

(
2�

d(2i − 1)

)2

+ 3

8

(
2�

d(2i − 1)

)4

+ · · ·
}
, (29)

with n ≡
[
δ + d

2d

]
,
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where [ ] denotes Gauss symbol. We consider the practice of
the above summation in Appendix C.

According to Eq. (C6) in Appendix C, when � is
much smaller than d/2, the quantity ln [(1 +

√
1 + ξ 2)/ξ ]

in Eq. (15), which arises from the definite integral∫ 0
−δ/2 dx/

√
x2 + �2, should be replaced by 
n − ξ 2Zn. Then

〈g〉av should be approximated by

〈g〉av → 〈g〉n ≡ 1 − ξ 2

(

n − ξ 2Zn − 19

90

)
. (30)

Similarly, F̄ in Eq. (23) should be replaced by

F̄ → F̄n ≡ 16(1 − ξ 2)(
n − ξ 2Zn) + 319
27 ξ 2 − 371

45 . (31)

We name both 〈g〉n in Eq. (30) and F̄n in Eq. (31) as the “sum
form.” Thus, for � 
 d/2, we have

I − I0 =
[

8δ2ρJ rig
x

ln(ξ0/ξ )〈g〉2
n

F̄n

]1/2

, (32)

instead of Eq. (26).
Now we compare both results given by Eqs. (26) and (32)

in the limit of ξ = 0 (� = 0). In this limit, expressions in
both Eqs. (15) and (30) go to unity. In the right-hand side
of Eq. (26), the logarithmic divergence of ln(ξ0/ξ ) in the
numerator is compensated by the divergence of ln(2/ξ ) from
F̄ in the denominator. As a result, the phase transition from
the superconducting state to the normal state occurs at a finite
critical angular momentum Ic − I0. On the other hand, F̄n in
Eq. (31) is finite in the limit of ξ = 0, while the numerator
in Eq. (32) diverges due to ln(ξ0/ξ ). Thus, I − I0 becomes
infinity in the limit of ξ = 0, and no sharp phase transition
occurs. The pairing gap keeps a very small but finite value, as
is seen in Eq. (25) by replacing F̄ by F̄n and 〈g〉av by 〈g〉n.
The finiteness of a nucleus assigns a measurable value to the
average level distance d. As a result, the region with � < d/2
covers a wide range of I − I0.

In Figs. 6 and 7, we show the I − I0 dependence of
� and Jx , respectively. These results are calculated from
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FIG. 6. The gap � as a function of the angular-momentum
difference I − I0 for an even-even nucleus. The dashed line is based
on Eq. (25) with Eqs. (15) and (23), while the solid line is based
on Eq. (25) with Eqs. (30) and (31). The starting gap parameter is
�0 = 0.8 MeV at I = I0, and the other parameters are given in the
text.
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FIG. 7. The moment of inertia (MoI) Jx as a function of the
angular-momentum difference I − I0 for an even-even nucleus. The
dashed line is based on Eq. (26), and the solid line on Eq. (32).
The parameters are the same as those in Fig. 7.

Eqs. (26) (integral form) and (32) (sum form). We take a
common parameter set of ρ = 2.5 MeV−1, J rig

x = 68 MeV−1,
δ = 2.0 MeV, and ξ0 = 0.8 in both calculations. As for the
MoI, Eq. (26) is with Eq. (15) (integral form), and Eq. (32) with
Eq. (30) (sum form). The starting value of ξ is 0.15 for Eq. (32)
(sum form). The dashed line in Fig. 6 stands for the same curve
displayed in a different way in Fig. 4. The dashed line shows
the sharp phase transition around I − I0 ∼ 18, while the solid
line does not indicate any phase transition within the range of
I − I0 � 30. Similarly, in Fig. 7, the dashed line shows a rapid
increase of MoI, while the solid line shows a slow increase. In
summary, the adoption of 
n and Zn in Eqs. (30), (31), and (32)
describes the slow decrease of � and the gradual increase ofJx

over the high-spin region. As a result, the behavior of the MoI
curve employing the expression in Eq. (30) becomes convex
upward for large I − I0, and it avoids a sharp phase transition
to the rigid MoI at a certain finite critical Ic.

VI. INTEGRAL FORM AND SUM FORM
FOR AN ODD-MASS NUCLEUS

We assume that a valence nucleon occupies a certain
quasiparticle state labeled � for the odd-mass case. Such
a quasivacuum is given by | 〉〉 ≡ α

†
�| 〉, where | 〉 denotes

the vacuum for the quasiparticle αi or the vacuum for
a neighboring even-even nucleus. We remark that | 〉〉 is
annihilated by αi(i �= �) and α

†
�. Minimizing the expectation

value of H in Eq. (1) by the state | 〉〉 under the constraints
of Eq. (3) gives the CHFB equation for an odd-mass nucleus.
The standard form of the CHFB equation (4) holds, provided
that A�α and B�α are interchanged or 	� is replaced by −	�.
Then, the CHFB equation takes a common expression as given
by Eq. (4) for all the quasiparticle states including �th state.

As for the BCS solution when �x = 0, we have E�̃ =
−E� =

√
(ε� − λ)2 + �2. Then, we can choose u� = u�̃ =√

[1 + (ε� − λ)/E�̃]/2 and v� = v�̃ = √
[1 − (ε� − λ)/E�̃]/2.

034328-6



NUCLEAR MOMENT OF INERTIA AS AN INDICATOR OF . . . PHYSICAL REVIEW C 91, 034328 (2015)

An application of the perturbation treatment similar to the case of the even-even nucleus yields the gap equation as

� = G

4

∑
α �=�,�̃

�

Eα

[
1 − �2

x

∑
β �=�,�̃

(jx)2
αβ

Eα + Eβ

(
EαEβ − (εα − λ)(εβ − λ) − �2

EαEβ(Eα + Eβ)
+ (εα − λ)(εα − εβ)

E2
αEβ

)

+�2
x

(jx)2
α�

E2
α − E2

�̃

(
3 − (εα − λ)(ε� − λ) + �2

E2
α

)]
. (33)

The third term in Eq. (33) works to prevent � decreasing, because the sign before �2
x is positive in contrast to the second term.

Within the same approximation as adopted in Secs. II and III, the third term is efficient only for εα = ε� ± δ. We rewrite the
right-hand side of Eq. (33) into the sum of the part similar to the even-even case [see Eq. (7)] and the residual part relevant to E�̃:

4

G
= − 2

E�̃

+
∑

α

1

Eα

[
1 − �2

x

∑
β

(jx)2
αβ

Eα + Eβ

(
EαEβ − (εα − λ)(εβ − λ) − �2

EαEβ(Eα + Eβ)
+ (εα − λ)(εα − εβ)

E2
αEβ

)]

− 2�2
x

∑
α>0,α �=�

(jx)2
α�

E�̃

(
E2

�̃
− E2

α

)[
3 − (εα − λ)(ε� − λ) + �2

E2
�̃

]
. (34)

The summations in the second term of this equation extend
over all the states including � and �̃, whose quasiparticle
energies are expressed as positive quantities. The factor 2 in
the first term comes from the degeneracy of � and �̃ levels, and
the sum

∑
α>0,α �=� excludes the time-reversed state α̃.

From Eq. (8), the MoI is given in the first-order perturbation
by

Jx =
∑

εα<εβ

(jx)2
αβ

Eα + Eβ

(
1 − (εα − λ)(εβ − λ) + �2

EαEβ

)

+ 2
∑

α>0,α �=�

(jx)2
α�

E2
α − E2

�̃

(
E�̃ + (εα − λ)(ε� − λ) + �2

E�̃

)
.

(35)

The second term is effective only for εα = ε� ± δ and con-
tributes to increase MoI. The second-order perturbation yields
an additional contribution in the form of �x(jx)αβ(jx)α�(jx)β�

(α,β �= �,�̃), but it can be disregarded within the present
approximation scheme neglecting matrix elements between
two states of α and β, whose energies are related by εα =
εβ ± 2δ or εα = εβ .

The number constraint is given by

N = ε� − λ

E�̃

+
∑

α

v2
α + �2

x

2

∑
α,β

(jx)2
αβ

Eα + Eβ

[
εα − λ

Eα(Eα + Eβ)

×
(

1 − (εα − λ)(εβ − λ) + �2

EαEβ

)
− �2(εα − εβ)

E3
αEβ

]

+ �2
x�

2

E3
�̃

∑
α>0,α �=�

(jx)2
α�(εα − ε�)

(
5E2

�̃
− E2

α

)
(
E2

α − E2
�̃

)2 . (36)

Here, the integer N is odd, and N − 1 is even. These equations
agree with those obtained in Ref. [19] except for the last term in
Eq. (36), which was neglected in the latter numerical analysis.

We briefly consider the effect caused by the occupation of
one nucleon in the �th orbital when �x = 0, which is called
the blocking effect. In such a case, Eqs. (33) and (36) are

reduced to

� = G

4

∑
α �=�,�̃

�

Eα

, N − 1 =
∑
α �=�,�̃

v2
α. (37)

On the other hand, when �x = 0, Eqs. (7) and (27) are reduced
to

�e = G

4

∑
α

�e

Ee
α

, N − 1 =
∑

α

(
ve

α

)2
, (38)

where the superscript e denotes the even-even nucleus. We
express small shifts due to the blocking effect as δ� and δλ:

� = �e + δ�, λ = λe + δλ. (39)

We expand two equations in Eq. (37) up to the first order in δ�
and δλ and compare them with Eq. (38). The blocking effect
is described by

δ� ∼= −A(�e)2/Ee
� − 2B

(
ve

�

)2

�e((A�e)2 + B2)
, δλ ∼= B/Ee

� + 2A
(
ve

�

)2

(A�e)2 + B2
,

(40)

where

A ≡ 1

2

∑
α �=�,�̃

1(
Ee

α

)3 , B ≡ 1

2

∑
α �=�,�̃

εα − λe(
Ee

α

)3 . (41)

If we assume ε� ∼ λe as was adopted by Nilsson and Prior [29],
we have B ∼= 0 and

δ� = −δλ ∼= − 1

A(�e)2
. (42)

Thus, the pairing gap for the odd-mass nucleus is smaller than
the one for the even-even nucleus. Usually, δλ is negligible in
comparison with |λ|, because |λ| is much larger than �.

While both � and λ at �x = 0 differ from those in the
even-even nucleus, a similar technique, which is developed
in Secs. II and III, is applicable to the second term in the
right-hand side of Eq. (34) and the first term in the right-hand
side of Eq. (35), because all of them have the same forms as
the even-even case. As for the factor (jx)2

α�, we introduce two
parameters: j 2

>/4 = (jx)2
α� for εα > ε� and j 2

</4 for εα < ε�.
Introducing another parameter, η ≡ 2(ε� − λ)/δ, in analogy to
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ξ = 2�/δ, we rewrite Eq. (35) as

Jx = J rig
x

[
1 − ξ 2 ln

1 +
√

1 + ξ 2

ξ
+ 19

90
ξ 2

]

+X1

√
ξ 2 + η2 + X2√

ξ 2 + η2
, (43)

where

X1 ≡ 1

2δ

(
j 2
>

1 + η
+ j 2

<

1 − η

)
,

(44)

X2 ≡ η

2δ

(
j 2
>

1 + η
− j 2

<

1 − η

)
.

Only for a special case with ε� − λ = δ/2 and εα − λ = −δ/2
does η = 1 hold, and subsequently Eα = E�̃. However, such
a degenerate case is excluded by the assumption as mentioned
below Eq. (6).

In the limit of ξ = 0, we get

J rig
x (odd) − J rig

x (even) = 1

2δ
(j 2

> − j 2
<). (45)

This difference is 0.69 MeV−1 with the formula A5/3/72
MeV−1 between A and A + 1 for A = 160 ∼ 164. If j 2

> = j 2
<,

J rig
x (odd) coincides with J rig

x (even). For simplicity, we fix
j 2
> − j 2

< = 2[J rig
x (odd) − J rig

x (even) ∼ 0.5MeV−1], so that
we can see the difference between even-even and odd-mass
nuclei clearly.

Similarly, Eq. (34) becomes

ρδ ln

(
ξ0

ξ

)
= 1√

ξ 2 + η2
− 1√

ξ 2
0 + η2

+ �2
x

δ

(J rig
x F̄

8

− X1√
ξ 2 + η2

+ X2

(
√

ξ 2 + η2)3

)
, (46)

where F̄ is defined in Eq. (23) and ξ0 is the initial value of ξ
in the odd-mass nucleus at �x = 0, which is smaller than the
value in the even-even nucleus due to the blocking effect as
inferred from Eqs. (40) and (42).

As for Eq. (36), the first and the second terms are derived
without rotation, and the shifts of δ� and δλ are already
included in the starting values of ξ0 and λ in the odd-mass
system. The third term does not affect λ at �x �= 0 as is seen
in Fig. 5. The last term in Eq. (36) is rewritten with j 2

>, j 2
<,

and X2 in Eq. (44) as

�2
xξ

2

2δ2

[
1√

ξ 2 + η2

(
j 2
>

(1 + η)2
− j 2

<

(1 − η)2

)
− 2δX2

η(
√

ξ 2 + η2)3

]
.

(47)

If we assume j 2
> = j 2

<, which gives a common rigid-body
value for both the even-even nucleus and the odd-mass nucleus,
Eq. (47) is reduced to

�2
x

(
ξ

δ

)2
j 2
>η(1 − 3η2)

(ξ 2 + η2)3/2(1 − η2)2
, (48)

as long as the contribution from ξ 4 is neglected. The quantity
given by Eq. (48) vanishes for ξ = 0 (large angular-momentum
region) and η = 0, i.e., the blocking effect as studied by
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FIG. 8. Comparison of gap � between the even-even case (�(even)

with dashed line) and the odd-mass case (�(odd) with solid line). The
parameters for the odd-mass case are j 2

> = 12, j 2
< = 10, ξ0 = 0.6,

and η = 0.6. Lines for the even-even case are the same as those in
Fig. 6.

Nilsson and Prior [29], or η2 = 1/3. We can neglect the change
in λ by rotation as long as we choose η2 ∼ 1/3.

As for the matrix element (jx)2
α�, we consult with the one

for the orbital angular momentum given in Ref. [15]:

〈Nn′
z	 ± 1|�x ± i�y |Nnz	〉

= ωz + ω⊥
2
√

ωzω⊥

[√
(nz + 1)(N − nz ∓ 	)δn′

z nz+1

+
√

nz(N − nz ± 	 + 2)δn′
z nz−1

]
. (49)

We approximate the coefficient before [· · · ] to be almost one
and neglect the contribution from the spin part to the matrix
element of (jx)2

α�. Then, if we assume the level � is [521]3/2,
j 2
> = 12 for the transition to [512]5/2 and j 2

< = 12 for the
transition to [530]1/2. If the level � is [532]3/2, j 2

> = 18 to
[523]5/2 and j 2

< = 16 to [541]1/2. If the level � is [512]5/2,
j 2
> = 8 to [503]7/2 and j 2

< = 4 to [523]7/2. We adopt j 2
> = 12

and j 2
< = 10 in Figs. 8, 9, 10, and 12.

From Eq. (46), we get the integral form for the odd-mass
case as

(I − I0)2 = δ2J 2
x ρ

(
ln

ξ0

ξ
− 1

ρδ
√

ξ 2 + η2
+ 1

ρδ

√
ξ 2

0 + η2

)

×
(J rig

x F̄

8
− X1√

ξ 2 + η2
+ X2

(
√

ξ 2 + η2)3

)−1

.

(50)

When � 
 1/ρ, we apply the same prescription as devel-
oped in Sec. V (sum form). We replace F̄ in Eq. (50) by F̄n in
Eq. (31) to obtain

(I − I0)2 = δ2J 2
x ρ

(
ln

ξ0

ξ
− 1

ρδ
√

ξ 2 + η2
+ 1

ρδ

√
ξ 2

0 + η2

)

×
(J rig

x F̄n

8
− X1√

ξ 2 + η2
+ X2

(
√

ξ 2 + η2)3

)−1

.

(51)
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FIG. 9. Comparison of the MoI between the even-even case
(dashed line) and the odd-mass case (solid line). The parameters
are the same as those in Fig. 8.

In Eq. (43) we replace ln [(1 +
√

1 + ξ 2)/ξ ] by 
n − ξ 2Zn to
obtain

Jx = J rig
x

[
1 − ξ 2

(

n − ξ 2Zn − 19

90

)]

+X1

√
ξ 2 + η2 + X2√

ξ 2 + η2
. (52)

VII. COMPARISON OF MOMENT OF INERTIA BETWEEN
EVEN-EVEN AND ODD-MASS NUCLEI

In Fig. 8 we compare the gap values given by Eqs. (50)
(integral form) and (51) (sum form) (solid lines with �(odd))
with those for the even-even case (dashed lines with �(even)),
which are the same as those in Fig. 6. The parameters for the
odd-mass case are η = 0.6, ξ0 = 0.6, j 2

> = 12, and j 2
< = 10.

The other parameters are common for both even-even and
odd-mass cases, i.e., δ = 2.0 MeV, J rig

x = 68 MeV−1, and
ρ = 2.5 MeV−1. The gap for the odd-mass case starts from
ξ0 = 0.6, which is smaller than 0.8 for the even-even case due

15 20 25 30 35 40
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FIG. 10. Comparison of Jx/J rig
x in the approximate sum form

between the even-even case (dashed line) and the odd-mass case
(solid line) in the high-spin region. In both cases, the parameters are
the same as those in Figs. 8 and 9.

to the blocking effect. The value of η = 0.6 corresponds to
η2 ∼ 1/3, and we have numerically confirmed that the quantity
in Eq. (48) becomes vanishingly small (at most 0.0019) over all
the region of ξ for this parameter set. We find that the decrease
of �(odd) is more gradual, and the shape of the curve becomes
convex downward in the asymptotic region. Comparing the
right-hand side of Eq. (46) at ξ = ξ0 with 1/(Gρ) for G =
0.14 MeV [28], we find that the applicability of the original
perturbation expansion is limited to I < 30.

In Fig. 9, the MoI based on Eqs. (43) (integral form) and (52)
(sum form) for the odd-mass case (solid lines with J (odd)) is
compared with the MoI for the even-even case (dashed lines
with J (even)), which is already shown in Fig. 7. Because of the
blocking effect, J (odd) starting from a value larger than J (even)

increases gradually and approaches the rigid-body value at
large I − I0.

Similar to the even-even case, the curve of J (odd) is convex
upward and approachesJ rig

x . The necessity of such behavior of
the MoI has been confirmed by reproducing the experimental
data of E∗ − aI (I + 1) for TSD bands [2–4] (e.g., Fig. 10 in
Ref. [4]). This trend is clearly seen in numerical results based
on both Eq. (50) with F̄ and Eq. (51) with F̄n.

To derive an analytic expression for both J (even) and J (odd)

in the high-spin region where ξ is small enough, we neglect
the ξ 2 and ξ 4 terms in the expressions with sum form, i.e.,
Eqs. (30), (32), (51), and (52). Thus, for the even-even case,
Eq. (32) gives

ξ = ξ0e
−Pe(I−I0)2

, with Pe ≡ 2
n − 371/360

δ2ρJ rig
x

. (53)

Inserting this expression for ξ into Eq. (30) without the ξ 4

term, we get

Jx

J rig
x

= 1 − ξ 2
0 Qee

−2Pe(I−I0)2
, with Qe ≡ 
n − 19

90
. (54)

In the plot of Jx/J rig
x for the even-even case (dashed line in

Fig. 10), we take ξ0 = 0.8 for the initial value of ξ at �x = 0
(I = I0).

Similarly, for the odd-mass case, assuming that ξ is much
smaller than η(=0.6) in Eqs. (51) and (52), we get the following
from Eq. (51):

ξ = ξ0e
−R1−Po(I−I0)2

,

with R1 ≡ 1

ρδ

(
1

η
− 1√

ξ 2
0 + η2

)
,

Po ≡ Pe + P1

R2
2

, R2 ≡ 1 + j 2
> − j 2

<

2δJ rig
x

, (55)

and P1 ≡ 1

2δρ
(
δηJ rig

x

)2

(
1 − η

1 + η
j 2
> − 1 + η

1 − η
j 2
<

)
.

We insert this approximate ξ into Eq. (52) without the ξ 4 term
to obtain

Jx

J rig
x

= R2 − ξ 2
0

(
Qe + 1

2
P1J rig

x δ2ρ

)
e−2R1−2Po(I−I0)2

.

(56)
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FIG. 11. Comparison of the MoI between two cases with j 2
> = 18

(dashed line) and j 2
> = 6 (solid line) for the odd-mass nucleus. In both

cases, the other parameters are common, i.e., j 2
< = j 2

> − 2, ξ0 = 0.7,
and η = 0.6.

In the plot of Jx/J rig
x for the odd-mass case (solid line in

Fig. 10), we take ξ0 = 0.6 for the initial value of ξ at �x = 0
(I = I0). Both the approximate solutions given by Eqs. (54)
and Eq. (56) are compared in Fig. 10. The main difference
between those comes from the initial value ξ 2

0 , which includes
the blocking effect. Both lines show convex upward before
they reach to rigid-body values.

To study the effect of j 2
>, we compare two cases of j 2

> = 18
and j 2

> = 6 in Fig. 11 with the parameter set of ξ0 = 0.7 and
η = 0.6. Through the present analysis, we choose j 2

< = j 2
> −

2. As seen in Fig. 11, the blocking effect is larger for the larger
j 2
>, even though ξ0 is common. The blocking effect on the MoI

depends on X1 and X2 in Eq. (44). When η < 1, X1 is positive
and larger than X2. The critical angular momentum predicted
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FIG. 12. Comparison of the MoI for different η values in the
odd-mass nucleus as functions of I − I0. The solid line corresponds
to η = 0.6 and the dashed line to η = 1.2. The other parameters are
common in both cases, i.e., ξ0 = 0.6, j 2

> = 12, and j 2
< = 10.

by the integral form (ξ = 0) is larger for larger j 2
> by about 2

units in I − I0. If η is larger than 1, X1 becomes negative. Then
the blocking effect at I = I0 becomes larger and the critical
angular momentum becomes larger for the smaller j 2

>.
To study the effect of η, we compare η = 0.6 with η = 1.2

in Fig. 12. Because X1 is negative for η = 1.2, the blocking
effect is smaller. As for the effect on the chemical potential,
Eq. (48) gives 0.036 at its maximum for η = 1.2, which is still
in a negligible order.

If we suppose the last nucleons occupy �1 and �2 levels for
the excited bands in the even-even nucleus or the valence levels
in the odd-odd nucleus, then the summation in Eq. (33) should
be replaced by

∑
α �=�1,�2,�̃1,�̃2

. For example, the gap equation,
Eq. (33), is replaced by

� = G

4

∑
α �=�1,�2,�̃1,�̃2

�

Eα

{
1 − �2

x

∑
β �=�1,�2,�̃1,�̃2

(jx)2
αβ

Eα + Eβ

(
EαEβ − (εα − λ)(εβ − λ) − �2

EαEβ(Eα + Eβ)
+ (εα − λ)(εα − εβ)

E2
αEβ

)

+�2
x

[
(jx)2

α�1

E2
α − E2

�̃1

(
3 − (εα − λ)

(
ε�1 − λ

) + �2

E2
α

)
+ (jx)2

α�2

E2
α − E2

�̃2

(
3 − (εα − λ)

(
ε�2 − λ

) + �2

E2
α

)]}
. (57)

This equation indicates that the existence of two blocked levels
labeled �1 and �2 inducesa larger reduction of � (blocking
effect [30,31]) and a slower decrease of � with increasing I
(CAP effect) than the case with only one blocked level. In more
detail, (i) when �x = 0, the sum in the first term extends over
fewer numbers of levels, so that the blocking effect is more
effective. (ii) As for the CAP effect caused by the terms with
�x( �=0), the contribution from the second term is reduced since
the sum covers fewer numbers of levels, and the contribution
from the third term with opposite sign increases because the
sum covers a larger number of blocked levels. As a result, it is
expected that � starts from a reduced value and its reduction
rate with increasing I becomes smaller than that of the single
blocked case.

VIII. CONCLUSION

We have applied the approximation method developed by
Bohr and Mottelson [15] and by Bengtsson and Helgessen [16]
to the CAP effect [17]. Using the second-order perturbed
CHFB equation, we have derived the angular-momentum
dependence of the MoI and of the gap parameter � for both
even-even and odd-mass nuclei.

To solve the gap equation, we have applied alternative
methods depending on the magnitude of the gap value. We
have shown that in the region � � d/2, both the MoI and the
angular momentum I are related to ξ (= 2�/d) by integral
forms, while in the region of � 
 d/2, both are expressed by
sum forms. As a result, the MoI is expressed as an analytic
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function of I mediated by the parameter ξ . We found that MoI
continuously increases with increasing I and its functional
behavior is convex upward till it approaches the rigid-body
value, while the gap parameter slowly decreases and follows a
curve convex downward till it approaches zero asymptotically.
Subsequently, the phase transition from super state to normal
state never occurs due to the finiteness of a nucleus.

For the odd-mass nucleus, we have discussed the effect
of the level occupied by one valence nucleon and relevant
matrix elements. The blocking effect reduces the starting value
of � and increases that of the MoI. Therefore, the behavior
of the MoI in the odd-mass nucleus shows a more gradual
increase as a function of I compared with that of the even-even
nucleus. Needless to say, such a slow increase of the MoI with
increasing I is consistent with the conclusion assessed from
the analysis by applying the particle-rotor model to the TSD
bands [2–4].

Neglecting higher-order terms in ξ within the sum forms,
we directly express the MoI as analytic functions of I − I0 in
Eqs. (54) and (56).

Finally, we remark that the centrifugal stretching effect on
the MoI will be included by the third-order perturbation in the
expectation value of Îx within the present scheme.
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APPENDIX A: APPROXIMATION FOR THE
INTEGRAND g(x)

For a technical purpose, first we rewrite the integral of the
function g(x), which is symmetric about x = −δ/2, as∫ δ/2

−3δ/2
g(x)dx =

∫ δ/2

−δ/2
[g(x) + g(x − δ)]dx

= 2
∫ 0

−δ/2
[g(x) + g(x − δ)]dx. (A1)

As directly confirmed from the expression in Eq. (14), g(x) +
g(x − δ) is an even function of x and is symmetric about
x = 0. Regarding x/δ,

√
x2 + �2/δ, and �/δ as equally small

quantities, we expand g(x) + g(x − δ) up to the second order
in these quantities. Then, we get

g(x) + g(x − δ) ∼= 1 − δ

2

ξ 2

√
x2 + �2

+ 3

8
ξ 2, (A2)

where ξ is defined by Eq. (10). In Fig. 13, we compare the
original function g(x) + g(x − δ), which is labeled “exact,”
with the approximate expression labeled “approx.,” which is
given by the right-hand side of Eq. (A2), in the range −δ/2 �
x � δ/2 for the case of ξ = 0.2. Both agree at x = 0, but
there remains a discrepancy by −(59/72)ξ 2 at x/δ = ±1/2.
Because we have included up to the second order in x/δ,
we assume such a difference comes from the fourth-order
contribution (x/δ)4, whose coefficient is determined from the
difference at x/δ = ±1/2 between the quantity approximated

-0.4 -0.2 0 0.2 0.4

x δ

0.2

0.4

0.6

0.8

1

g
x
g
x

exact

approx.

FIG. 13. Difference between the function g(x) + g(x − δ) given
by Eq. (14) (exact) and the approximate one given by Eq. (A2)
(approx.) within the interval −δ/2 � x = εα − λ � δ/2.

by Eq. (A2) and the one estimated with the original expression
in Eq. (14). Taking account of this difference, we propose an
expression for an actual use in the text:

g(x) + g(x − δ) ∼= 1 − δ

2

ξ 2

√
x2 + �2

+ 3

8
ξ 2 − 118ξ 2

9

(
x

δ

)4

.

(A3)

APPENDIX B: APPROXIMATION FOR THE
INTEGRAND f (x)

To integrate f (x), we introduce the summed function of
F (x) ≡ f (x) + f (x − δ), which is an even function of x, and
limit the interval of the integral to −δ/2 � x � δ/2:∫ δ/2

−3δ/2
f (x)dx =

∫ δ/2

−δ/2
[f (x) + f (x − δ)]dx

= 2
∫ 0

−δ/2
F (x)dx. (B1)

The behavior of F (x) for the case of � = 0.1 MeV and δ = 1
MeV is shown by the solid line in Fig. 14. The peaks in
F (x) are located around x = ±�. To perform the integral
without destroying the functional dependence on � or ξ , we
proceed with an analytic integration as follows: Regarding

-0.4 -0.2 0 0.2 0.4

x δ

15

20

25

30

35

40

F
x
or
G
x
M
eV

3

F x

G x

FIG. 14. Comparison between the functions F (x) and G(x) as
functions of x(= εα − λ) for the case of � = 0.1 MeV and δ =
1 MeV.
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FIG. 15. Difference F (x) − G(x) as a function of x(= εα − λ)
for the case of � = 0.1 MeV and δ = 1 MeV.

x/δ,
√

x2 + �2/δ, and �/δ as equally small quantities, we
expand F (x) around x = 0 up to the second order in those
quantities and name it as G(x):

F (x) ∼= 2

δ3

{
4δ√

x2 + �2

[
1 − 6

(
�

δ

)2]
− 3

+ 16

√
x2 + �2

δ
− 25

x2

δ2
+ 5

2

(
�

δ

)2

− 2δ3

(
√

x2 + �2)3

(
�

δ

)2[
1 − 4

(
�

δ

)2]}
≡ G(x). (B2)

The behavior of the approximate function G(x) is also shown
in Fig. 14 by the dashed line, which simulates F (x) very well,
except for the region close to x/δ = ±1/2. The difference
between F (x) and G(x) is shown in Fig. 15. Because G(x)
takes into account up to the order of x2, we assume that the
remaining part of F (x) − G(x) comes from the contribution
of x4. The coefficient for x4 at x/δ = ±1/2 is given by
[F (±δ/2) − G(±δ/2)](2/δ)4. We integrate G(x) analytically
and add two areas below the curve F (x) − G(x) as shown in

Fig. 15. Finally, we arrive at an analytic form of the integral
up to the second order in ξ :∫ δ/2

−3δ/2
f (x)dx = 2

∫ 0

−δ/2
F (x)dx

∼= 2
∫ 0

−δ/2
G(x)dx + δ

5

[
F

(
− δ

2

)
−G

(
− δ

2

)]

= 1

δ2

[
16(1 − ξ 2) ln

(
1 +

√
1 + ξ 2

ξ

)

+ 319

27
ξ 2 − 371

45

]

≡ F̄

δ2
. (B3)

In the text, we make use of the dimensionless quantity F̄ ,
which is a function of ξ only.

APPENDIX C: APPLICATION OF ASYMPTOTIC SERIES
EXPANSION TO THE CRITICAL REGION OF � � d/2

If 2�/d is small enough, the right-hand side of Eq. (29)
can be well approximated by the expansion retaining up to its
second-order term:

δ/2∑
x>0

1√
x2 + �2

∼= 2

d

[
n∑

i=1

1

2i − 1
− 1

2

(
2�

d

)2 n∑
i=1

1

(2i − 1)3

]
. (C1)

Making use of the following identities,

n∑
i=1

1

(2i − 1)k
=

2n∑
i=1

1

ik
− 1

2k

n∑
i=1

1

ik
, (C2)

for k = 1 and 3, we rewrite Eq. (C1) as

δ/2∑
x>0

1√
x2 + �2

∼= 2

d

[
2n∑
i=1

1

i
− 1

2

n∑
i=1

1

i
− 1

2

(
2�

d

)2
(

2n∑
i=1

1

i3
− 1

23

n∑
i=1

1

i3

)]
. (C3)

To each of four sums, we apply the asymptotic series expansions [32]:

n∑
i=1

1

i
= γ + ln n + 1

2n
− 1

12n(n + 1)
− 1

12n(n + 1)(n + 2)
− · · · (C4)

and
n∑

i=1

1

ik
= ζ (k) − 1

2(n + 1)k
− 1

(k − 1)(n + 1)k−1
− · · · , (k � 2), (C5)

where γ (= 0.577 . . .) is the Euler constant, and ζ (k) the Riemann ζ function.
Thus, Eq. (C3) is rewritten as

δ/2∑
x>0

1√
x2 + �2

∼= 1

d
(
n − ξ 2Zn), (C6)
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with


n ≡ γ + ln 4n + 1

12n

[
1

n + 1
− 1

2n + 1
+ 1

(n + 1)(n + 2)
− 1

2(n + 1)(2n + 1)

]
+ · · ·

∼= γ + ln 4n (C7)

and

Zn ≡
(

δ

d

)2[7

8
ζ (3) + 1

16

(
1

(n + 1)3
+ 1

(n + 1)2

)
− 1

2

(
1

(2n + 1)3
+ 1

(2n + 1)2

)
+ · · ·

]

∼=
(

δ

d

)2 7

8
ζ (3), (C8)

where ζ (3) = 1.202 . . . [33]. Regarding n being large enough, we have retained only leading terms in 
n and Zn. We confirm
that neglected contributions in Eqs. (C7) and (C8) are small enough even for n = 3.
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