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Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help
resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large
impact on societal applications in energy production or nuclear waste management. The goal of this paper is
to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of
the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation
energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density
functional theory with Skyrme energy densities, which we benchmark on the 2°Pu(n, f) reaction. We compute
the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to
five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the
outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling
to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many
applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently
can be extended to 7 > 0, and we apply the method to study the interaction energy and total kinetic energy
of fission fragments as a function of the temperature for the most probable fission. While large uncertainties
in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a

useful framework to obtain accurate predictions of fission fragment properties.
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I. INTRODUCTION

One of the most important challenges for a theory of
induced fission is the capability to predict the evolution of
observables such as the charge, mass, relative yields, total
kinetic energy, total excitation energy, and decay patterns of
fission fragments as a function of the energy of the incident
neutron. Recall that the energy of neutrons produced in induced
fission follows roughly a Maxwellian distribution, and the
energy range of interest for applications is typically between
afew eV and up to about 14 MeV [1,2]. Following an original
idea by Bohr and Wheeler, induced fission is modeled as the
breakup of the compound nucleus formed by absorption of the
incident neutron [3]. In this picture, neutron kinetic energies
of the order of the MeV correspond to very high excitation
energies of the compound nucleus, where the nuclear level
density is very large [4].

In a density functional theory (DFT) approach to induced
fission, one may be tempted to describe such highly excited
states directly, via various general schemes such as the random
phase approximation or the generator coordinate method.
However, even assuming all of these methods were properly
defined for the kind of energy densities used in practice (cf.
the discussions about multireference DFT in Refs. [5-9]), the
very large density of states to consider may jeopardize the
success of such a strategy. In addition, it is expected that
dissipation plays a role in fission, and extensions of these
methods to account for explicit couplings between collective
and intrinsic degrees of freedom have only recently been
outlined [10].

In this context, the finite temperature formulation of
the nuclear DFT provides an appealing alternative [11-14].
Assuming that the system is described by a mixed quantum
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state uniquely determined by the form of the statistical density
operator provides a convenient basis to quantify the impact
of excitation energy on the deformation properties of the
compound nucleus.

There have been many applications of the finite temper-
ature formalism in nuclear structure, including early studies
of fission barriers using the Thomas-Fermi approximation
[15-20], the Hartree-Fock (FT-HF) approximation [21,22],
and more recently at the Hartree-Fock-Bogoliubov (FT-HFB)
approximation [23-25], or applications in the calculation of
giant dipole resonances and level densities [26—29]. Until now,
however, there has been no systematic study of the validity and
applicability of finite temperature DFT in the description of
induced fission. Of particular importance are the evolution
of scission configurations and of fission fragment properties
as a function of the excitation energy of the compound
nucleus.

In a previous paper, hereafter referred to as (I), we have used
the nuclear DFT with Skyrme energy densities to analyze static
properties of the neutron-induced fission of the 2**Pu nucleus
[30]. In particular, we have discussed the role of triaxiality at
scission, the dependence on the parametrization of the energy
density functional (EDF) (including the pairing channel),
and the critical importance of scission configurations. The
topological method that we have proposed to identify the
latter makes it possible to define a region in the collective
space where scission should take place. We have then shown
that localization techniques borrowed from electronic structure
theory can allow us to approach the asymptotic conditions
of two independent fission fragments. This is key to extracting
theoretically sound estimates of the total excitation energy of
the fragments.
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Building on this previous study, the goals of this second
paper are, therefore, (i) to establish and validate the framework
for nuclear DFT calculations at finite temperature in the
specific context of induced fission, (ii) to study the evolution
of fission barriers and the position and nature of scission
configurations as functions of the excitation energy of the
incident neutron, and (iii) to explore the consequences of the
finite temperature description for the determination of fission
fragment properties. This paper is the second in a series of
several articles focusing on the microscopic description of
induced fission within the framework of the nuclear DFT with
Skyrme energy densities.

Section II contains a brief reminder of the theoretical
framework, from basic definitions and concepts related to
neutron-induced nuclear fission to the extension of nuclear
DFT at finite temperature with Skyrme functionals. Sec-
tion IIT A focuses on the evolution of potential energy surfaces
and fission barriers with temperature. Section IV is devoted to
fission fragment properties at finite temperature, including the
extension of the concept of quantum localization, a study of
the coupling to the continuum, and an estimate of the nuclear
and Coulomb interaction energy of the fission fragments.

II. THEORETICAL FRAMEWORK

Our theoretical approach is based on the local density
approximation of the EDF theory of nuclear structure. We
recall in the next few sections some of the basic ingredients
of the EDF theory pertaining to the description of induced
nuclear fission at given excitation energy.

A. Thermodynamical and statistical view
of neutron-induced fission

We begin by recalling a few well-known facts about
neutron-induced fission to avoid confusions about the vo-
cabulary used in this work. For fissile elements such as
239Pu, the capture of a thermal neutron (in equilibrium with
the environment and with an average kinetic energy of the
order of E, ~ 0.02 eV) is sufficient to induce fission. The
energy balance of the reaction is such that the compound
nucleus (Z,N) formed after the neutron has been captured
is at an excitation energy equal to |S(N)|, where S(N) is the
one-neutron separation energy. In fissile elements, this quantity
is larger than the fission barrier height, leading to fission. Note
that the concept of nuclear deformation, hence of potential
energy surfaces (PESs) and fission barriers, is highly model
dependent: It is rooted in the mean-field approach to nuclear
structure and originates from the spontaneous symmetry
breaking of rotational invariance in the intrinsic frame of
the nucleus [31,32]. However, the success of macroscopic-
microscopic and self-consistent approaches in describing both
qualitatively and quantitatively the main features of the fission
process is evidence that such a concept is very useful in
practice.

1. Statistical description of the compound nucleus

In a microscopic theory of fission based on nuclear DFT,
it is assumed that the fission process is driven by a small set
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of collective degrees of freedom ¢q. It is further assumed that
the PES of the compound nucleus in this collective space can
be reliably described at the Hartree-Fock-Bogoliubov (HFB)
approximation. This implies that the collective variables are
defined as expectation values of specific operators, such as,
e.g., multipole moments, on the HFB vacuum. The PES is
then generated by performing a series of constrained HFB
calculations. Such an approach is clearly an approximation,
because the HFB vacuum is the lowest energy state for
the set of constraints ¢ while the compound nucleus is, by
definition, in an excited state. Nonetheless, early calculations
of fission fragment charge mass yields and total kinetic en-
ergy for low-energy, neutron-induced fission obtained within
this approximation give a reasonably good agreement with
experimental data [33-35]. In fact, a similar approximation is
implicitly made in macroscopic-microscopic methods, with a
similarly good reproduction of experimental data [36,37].

If the energy of the incident neutron E, increases (fast
neutrons), the excitation energy E* of the compound nucleus
increases accordingly. For E, &~ 14 MeV, E* can be typically
of the order of 20 MeV or more in actinides. In this regime,
the nuclear level density is very large, of the order of p(E™) ~
10'2MeV~! at E* ~ 20 MeV, and growing exponentially with
E*; see, e.g., Ref. [26]. It thus becomes more and more
unlikely that constrained HFB vacua can still provide a realistic
description of the nuclear PES and more generally of the
fission process. In addition, the extremely large level density
suggests that direct calculation of excited states could prove
extremely challenging. Instead, we seek to describe induced
fission with finite temperature density functional theory
(FT-DFT).

In this work, we neglect particle evaporation or y emission.
In other words, we do not consider second chance fission—the
fission of the nucleus after one neutron has been emitted—or
third chance fission—after two neutrons have been emitted.
Therefore, the compound nucleus is viewed as a closed and
isolated system. In statistical physics, such systems should
be treated in the microcanonical ensemble [38]. However,
counting the number N'(E*) of microstates of the system at
any given experimental excitation energy E* would require
one to have access to the full eigenspectrum of the nucleus. In
practice, this is impossible and the microcanonical treatment
of the problem must be ruled out [29].

In nuclear DFT, the nuclear wave function takes the form
of a HFB vacuum: It is not an eigenfunction of the nuclear
Hamiltonian or of the particle number operator. This implies
that the total energy and the number of particles in the system
are only known on average: There can be fluctuations of
both quantities, of either quantum or/and statistical origin
[29]. This observation suggests to use the grand-canonical
ensemble to describe the nuclear system. The density operator
D characterizing such an ensemble is obtained by maximizing
Gibbs entropy under the constraints that the energy and particle
numbers are constant on average. The resulting equation is
equivalent to expressing the thermodynamical grand potential
Q2 at constant temperature 7" and chemical potential A in terms
of the grand partition function. The relevant thermodynamic
potential is then the Helmholtz free energy F [38]. Note that, in
this statistical setting, the temperature 7 is, stricto sensu, only
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a Lagrange parameter used to maintain the energy constant on
average.

2. Neutron incident energy and nuclear temperature

One of the difficulties in the FT-DFT description of fission
is to interpret the temperature introduced in the theory, in
particular in terms of the excitation energy of the compound
nucleus. It was suggested in Refs. [39,40] that the temperature
T be determined locally at every point in the collective space by
assuming that all the excitation energy at deformation ¢ is en-
tirely of thermal nature. In practice, this scenario has only been
applied in the macroscopic-microscopic approach to nuclear
structure. Starting from the total energy at 7 = 0, expressed
as the sum of a macroscopic term, a shell correction, and a
pairing correction, one determines the local temperature 7'(q)
given the experimental excitation energy E*; this temperature
is then used to generate a new, temperature-dependent PES
where shell and pairing corrections are locally damped. This
procedure has been used to describe superdeformed bands at
high spin and high excitation energy [41], hyperdeformation
and the Jacobi shape transition [42], and the dynamics of
induced fission [43].

The feasibility of such an approach, however, is entirely
contingent on the assumed decomposition of the energy into
a temperature-independent part (the liquid drop energy) and a
temperature-dependent microscopic correction, both of which
depend on deformation. In FT-DFT, such a decomposition
does not exist. All of the total energy is a function of the
temperature: If one followed the recipe of selecting at point ¢
in the collective space the DFT solution at T = T'(q) such that
E(q) = E*, the total energy of the nucleus would become, by
construction, constant across the collective space, and the very
concept of a PES with barriers and valleys would be lost.

To retain the view of fission as a large amplitude collective
motion through a PES while simultaneously accounting for
the effect of excitation energy via FT-DFT, we are thus bound
to make the additional assumption that the temperature must
be constant across the PES. More specifically, the PES can
be defined either as the function F(q;T), where F is the
Helmbholtz free energy, or by the function E(q;S), where
S is the entropy; see Sec. III A for additional details. In
addition, because fission occurs for all neutron energies of
interest, we assume that the total excitation energy E* of the
compound nucleus must be higher than the top of the barrier
computed at S > 0: This requirement gives us the maximum
allowable thermal excitation energy U available to the system.
Figure 1 illustrates how this works in practice: The thermal
excitation energy is related to the entropy S of the FI-HFB
theory through E, + S(N) = U(S) + Ea, where E, is the
kinetic energy of the incident neutron, S(/N) is the one-neutron
separation energy of the compound nucleus, and E, is the
height of the first fission barrier at S = 0. In calculations with
energy functionals, the height of the first fission barrier may be
larger than the separation energy, E4 > S(NN), which would
contradict the experimental observation that the nucleus is
fissile. For example, for 2*°Pu, we find S(N) = 7.09 MeV
and Ex =7.65 MeV. To guarantee that thermal neutrons
trigger fission, we thus have to introduce a small offset
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FIG. 1. (Color online) Schematic illustration of how induced
fission is described within DFT at finite temperature. The separation
energy of the compound nucleus (Z,N) is denoted S(N).

8 = Epn — S(N) such that E, + S(N)+ 8 = U(S) + Ea. In
this particular case, U (S) = E, . Note that this offset is a purely
empirical correction needed to guarantee the fissile nature of
the compound nucleus.

To finish this section, we note that the most rigorous way
to combine a statistical description of the compound nucleus
at high excitation energy with the conventional view of fission
as a large-amplitude collective motion would be to use the
Liouville equation for the grand-canonical density operator.
Starting from some initial condition Dy, the Liouville equation
gives the time evolution of D. A collective, time-dependent
equation of motion for the nucleus could then be obtained,
at least in principle, by introducing the HFB approximation
for the density operator and a small set of collective variables
that would carry the time dependence. Such a procedure was
outlined in a recent paper, but numerous challenges remain to
implement it in practice [44].

B. Finite temperature HFB theory

As recalled above, we use the finite temperature HFB
theory to describe the compound nucleus at given excitation
energy. The FT-HFB theory has a long history in the liter-
ature [13,14,27,28,45-48]. Here we only recall the physical
assumptions that are most relevant to this work. The compound
nucleus is assumed to be in a state of thermal equilibrium at
temperature 7. In the grand-canonical ensemble, the system
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is then characterized by the statistical density operator D,

A Y
D= —e PHAN )

z
where Z is the grand partition function, 8 = 1/kT, H is
the Hamiltonian of the system, A the Fermi level, and N the
number operator [13,38]. In this work, the Hamiltonian is a
two-body effective Hamiltonian with the Skyrme pseudopo-
tential. The statistical average (F') of an operator F is defined
as

(Fy =Tr[DF], )

where the trace can be computed in any convenient basis of
the Fock space; i.e., it involves many-body states.

In the mean-field approximation of the density operator,
the real Hamiltonian H is replaced with a quadratic form K of
the particle operators [13,27,28,48]. Given a generic basis |i)
of the single-particle space, with ¢; and cj' the corresponding
single-particle operators, this is expressed by

R = " Kijcle; (HP), 3)

ij
> 1 11 .7 1 2 . f
K = 5 ZKij cicj+ 5 ZKij cic;
1 i
1 1
+5 > KXl + 3 > KPcic; (HFB),  (4)
ij ij

where HF refers to the Hartree-Fock approximation of the
partition function, and HFB refers to the HFB approximation.
As a consequence of the Wick theorem for ensemble averages,
there is a one-to-one correspondence between the one-body
density matrix ¢ (HF) or generalized density matrix R (HFB)
and the operator K [13,28]. In particular, all statistical traces
can be computed by taking the trace in the single-particle space
[13],

. . [w[pF]. HP),
(F)=TdDF1=1 " (5)
su[RF], (HFB).

The forms (3) and (4) of the operator K defining the
statistical density operator are generic. The matrix elements
of K are thus taken as variational parameters and determined
by requesting that the grand potential be minimum with respect
to variations § K . This leads to the identification K = A (HF)
and K = H (HFB); that is,

1

— =, (HF), 6
1 + exp(Bh) (HE) ©

>
Il

R

— ., (HFB), 7
1 4+ exp(BH) ¢ ) @

where £ is the usual HF Hamiltonian, H the HFB Hamilto-
nian, and 8 = 1/kT. These equations are the HF and HFB
equations; see Refs. [13,28] for the demonstration. Note that
the variational principle does not require that either of these
matrices be diagonalized. In practice, building the density
matrix (generalized density) from the eigenvectors of 7 (R)
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just happens to be a very convenient way to guarantee that the
functional equations (6) and (7) are satisfied.

In the basis where H is diagonal, one easily shows that the
statistical occupation of a one quasiparticle (qp) state reads

A ot 1
Tr[ D} Bl =~

1+ eﬂEu nwy = f;w(su.va (8)

with E,, the gp energy, i.e., the eigenvalue of H. This result
allows to show that the matrix of the one-body density matrix
and pairing tensor in the single-particle (sp) basis are modified
according to

pij = Te[Delei] = (VA = /Y1 + WFUD,. )
kij = Tr[Dejei] = V(L — HUTL; + WUV, (10)

where the U and V are the matrices of the Bogoliubov
transformation.

The finite temperature extension of the HFB theory poses
two difficulties. First, we recall that, in the HFB theory at
zero temperature, the component V), of the qp u is always
localized for a system with negative Fermi energy A < 0
[49,50]. The consequence is that the mean-field, the pairing
field, and the expectation value of any physical observable
O are also localized (because p = V*VT and O = tr0p).
However, at finite temperature, we note that, even though
the pairing tensor remains always localized for A < O, the
density matrix does not. More specifically, all qps p© with
0 < E,, < —A give a localized contribution to the mean-field
and physical observables, while all qps with E,, > —A yield a
coupling with the continuum through the (U fU) term of the
density matrix; see Sec. IV D for more details. The existence
of this coupling was already pointed out and quantified in
the context of the Hartree-Fock theory at finite temperature
[22,51,52].

The second difficulty is that, in the statistical description
of the system by a grand-canonical ensemble, only the
average value of the energy and the particle number (and
any other constrained observables) are fixed. In addition to
the quantum fluctuations brought about by the fact that DFT
wave functions are not eigenstates of the Hamiltonian, thermal
(or statistical) fluctuations are also present [29]. They increase
with temperature and should decrease with the system size
[38]. From a statistical point of view, the FT-HFB theory only
gives the most probable solution within the grand-canonical
ensemble, the one that corresponds to the lowest free energy.
Mean values and deviations around the mean values of any
observable O can be computed in the classical limit as in
Ref. [48],

L Jd%q O@yetrre

0= T dVg o P (11)

Such integrals should, in principle, be computed across
the whole collective space defined by the variables ¢ =
(g1, - - - ,qn) and require the knowledge of the volume element
d" g. Other possibilities involve functional integral methods
[53]. In this work, we only consider the most probable value
for observables and disregard all statistical fluctuations.
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C. Skyrme EDF and numerical and numerical implementation

We briefly recall that we work with Skyrme energy
densities, for which the energy of the nucleus is a functional
of the one-body density matrix. In this paper, all calculations
have been performed at the FI-HFB level with the SkM*
parametrization of the Skyrme pseudopotential [54]. The
pairing functional originates from a density-dependent, mixed
surface-volume pairing force. In the calculations of the densi-
ties, all quasiparticles above a cutoff energy E., = 60 MeV
are dismissed. The pairing strength for both the proton and the
neutron forces were fitted locally on the three-point formula
of the odd-even mass difference in 2*°Pu; see (I) for details.
Contrary to (I), the UNEDF family of functionals was not
considered here, because they require the Lipkin-Nogami
prescription, which is not available yet at finite temperature.

As in (I), the nuclear shape is characterized by a set ¢ =
(41, ...,qn) of N collective variables. In this work, we con-
sider the expectation value g,,, of the multipole moment opera-
tors Q »u on the HFB vacuum for the axial quadrupole (A, ) =
(2,0), triaxial quadrupole (A,u) = (2,2), axial octupole
(A, ) = (3,0) and axial hexadecapole (A, ) = (4,0). We also
employ the expectation value of the neck operator Qy with
the range ay = 1.0 fm. The finite-temperature extension of the
Wick theorem guarantees that the expectation value of these
(one-body) operators at T > 0 take the same formasat 7 = 0,
only with the density matrix computed as in (9). Constrained
HFB solutions are obtained by using a variant of the linear
constraint method where the Lagrange parameter is updated
based on the cranking approximation of the random phase
approximation (RPA) matrix [55-57]. This method has been
extended to handle nonzero temperatures. All calculations
were performed with the DFT solvers HFODD [57] and HFBTHO
[58]. In both codes, the HFB eigenfunctions are expanded on a
one-center harmonic oscillator (HO) basis. In all calculations
reported here, this expansion was based on the lowest Ngaes =
1100 states of the deformed HO basis. The largest oscillator
shell entering the expansion was Ny.x = 31. The deformation
B> and the oscillator frequency wy of the HO were parametrized
empirically as a function of the requested expectation value g
of the quadrupole moment Q- according to

{ 0.1 x gaoe~"%220 4+ 6.5 MeV  if |gao] < 30b

8.14 MeV if |g20] > 30 b
(12)
and
B =0.05/92. (13)

We refer the reader to (I) and Ref. [59] for further details on
the convergence properties of the basis.

III. EVOLUTION OF DEFORMATION PROPERTIES AT
FINITE TEMPERATURE

In this section, we illustrate the modifications of the collec-
tive PESs discussed in (I) induced by the finite temperature.
In particular, we give an accurate estimate of the evolution of
fission barrier heights as a function of the excitation energy of
the compound nucleus formed in the reaction 3°Pu(n, f).
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FIG. 2. (Color online) Solid lines with open symbols, free energy
along the least-energy fission pathway in 2*°Pu for finite temper-
atures T = 0.00, ...,1.75 MeV. Dashed lines with solid symbols,
corresponding internal energy E at constant entropy S. All curves
are normalized to their ground-state values. Temperature units are in
MeV.

A. Fission pathway of least energy

As recalled in Sec. II B, the FT-HFB theory is built on
the grand-canonical description of the nucleus as a system
in thermal equilibrium maintained at constant temperature 7.
Because particle number is constant, on average, across the
whole collective space, the thermodynamical potential relevant
to study deformation effects is the Helmholtz free energy
F = E — TS, which is computed at constant volume V and
temperature 7. The PES is characterized by the ensemble of
points F(q), and variations of free energy between two points
q1 and g, are computed through 6 F |7 = F(q1,T) — F(q2,T).

We show in Fig. 2 the free energy of the compound nucleus
240py along the least-energy fission pathway for temperatures
ranging between 0 and 1.75 MeV by steps of 250 keV. Based
on the discussion of Sec. II A, this corresponds to maximal
excitation energies of about E* ~ 80 MeV for the compound
nucleus. Recall that the height of the first fission barrier
is Eo = 7.65 MeV in %Py for the SkM* functional; this
corresponds to maximum neutron kinetic energies of about
E, =~ 73 MeV. The least-energy fission pathway is found
according to the procedure presented in (I): While the value
of the axial quadrupole moment is constrained, the triaxial,
octupole, and hexadecapole moments are unconstrained, so
that triaxiality and mass asymmetry effects are taken into
account.

It has been argued in the literature that an isentropic
description of fission should be preferred over the isothermal
description [20,25]. In this representation, the thermodynam-
ical potential is the internal energy E, which is computed
at constant volume V and entropy S. The PES is now
the ensemble of points E(g), and variations of energy are
computed through §E|s = E(q; S) — E(q2; S). The Maxwell
relations of thermodynamics state that the variations of the free
energy 8 F'|7 over some extensive state variable X (at constant
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temperature) are equal to the variations of the internal energy
S E|g (at constant entropy) [38].

Figure 2 also shows the internal energy E(q; S) at constant
entropy deduced from the free energy curves: At each value
q of the constrained collective variable (here the axial
quadrupole moment ng), the quantities E(q; T) and S(q; T)
are used to reconstruct the relation E(q; S) by regression. For
each temperature T, the curves E(q; S) are then generated by
fixing the entropy at its value at the top of the second barrier for
that temperature 7. Note that we could choose the entropy at
other deformations: When properly normalized, the Maxwell
relations guarantee that all these choices should be strictly
equivalent, within the numerical accuracy of the regression.
Figure 2 indicates that this accuracy is of the order of 500 keV,
at worst. This confirms earlier calculations [25,60].

The isentropic representation of the fission process is often
thought of as more physically justified than the isothermal
one, as it has its origin in the separation of scales between
the slow collective motion and fast intrinsic excitations of the
nucleus [44,61]. This separation justifies the thermodynamical
assumption of adiabaticity [62]: Going from point ¢ to point ¢’
in the collective space can be accomplished via a quasistatic,
reversible transformation that conserves entropy. By contrast,
it is sometimes argued that the absence of a heat bath to
maintain the temperature constant invalidates the isothermal
representation [20].

Such a statement, however, comes from a misconception
about the nature of the heat bath. Indeed, another way to
interpret the separation of scales between collective and
intrinsic motion is to write the energy density of the fissioning
nucleus as

H = Heott(q) + Hint, (14)

with the collective part depending only on the collective
coordinates ¢ while the intrinsic part depends on all intrinsic
degrees of freedom. In a DFT picture, for example, we would
take Hin = Hintlp,k]. The number of intrinsic degrees of
freedom is given by the value of p and k at every point in
space, spin, and isospin space: It is considerably higher than
the number of collective variables. In addition, in the limit of no
dissipation, the couplings between the two types of motion can
be neglected [44]. The decomposition (14), together with the
different relaxation scales, shows that the role of the heat bath
is, in fact, played by the intrinsic Hamiltonian. In the theory of
quantum dissipation, the latter is often modeled by a collection
of HOs [63,64]. Passing from point ¢ to point ¢’ can thus also
be accomplished through an isothermal process, during which
heat will be exchanged between the collective wave packet
and the intrinsic excitations, according to §Q = T'dS. In our
opinion, the two representations, which are mathematically
equivalent thanks to the Maxwell equations, are also physically
equivalent because they only rely on the hypothesis of the
separation of degrees of freedom into slow collective and fast
intrinsic motion.

To conclude this section, we note that, for the Maxwell
relations to be valid, the respective thermodynamical potentials
F(q)|r and E(q)|s must be differentiable at point ¢. As dis-
cussed in Sec. IV E, this may not be true near scission, at least
in the four-dimensional collective space explored in Fig. 2.
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FIG. 3. (Color online) Evolution of the inner and outer barrier
heights in 2*°Pu as a function of the energy of the incident neutron.
The inset represents a close-up in the 0—15-MeV region.

B. Dependence of fission barriers on excitation energy

Fission barrier heights (both inner and outer barriers) are
particularly important quantities in fission models, as they are
often used as input to reaction codes. In Fig. 3, we show
the variation of the inner and outer fission barrier heights in
240py as a function of the incident neutron energy E,. As
outlined in Sec. IT A, we compute the fission barrier at incident
neutron energy E, for the entropy S such that £, = U(S). The
maximum allowable thermal excitation energy is deduced from
the E(q)|s curves, which are obtained by spline interpolation
over the F(q)|r calculations. Note that at any point g, the error
on the total energy at given entropy owing to the interpolation
is smaller than 50 keV.

In the literature, fission barriers at finite temperature
were computed within the macroscopic-microscopic approach
[65-68], the semiclassical Thomas-Fermi framework [15-20],
and the self-consistent HF theory [19,21]. There are also a few
applications of the finite temperature HFB theory with both
zero-range Skyrme functionals and finite-range Gogny forces
[24,25,69]. All these studies point to the disappearance of the
barriers with the excitation energy of the compound nucleus
or, equivalently, the nuclear temperature. Our results confirm
this overall trend.

However, we emphasize here that this phenomenon occurs
at temperatures that are relatively high as far as applications
of neutron-induced fission are concerned. In the regime 0 <
E, < 5-6 MeV, the somewhat unexpected effect of nuclear
temperature is to slightly increase fission barriers. In the inset
of Fig. 3, we show a close-up of the fission barrier heights in
the region 0 < E, < 15 MeV. There is a very clear upward
trend at low neutron energies. Although the increase of the
fission barriers does not exceed 200 keV, the effect may be
significant enough to affect fission fragment distributions.

The reason for the counterintuitive behavior of the barriers
may be attributed to the different damping speeds of pairing
correlations and shell effects with temperature. In Fig. 4,
we show the pairing energy as a function of the FT-HFB
temperature for the ground- state, fission isomer, top of
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FIG. 4. (Color online) Evolution of pairing energy in the ground-
state and fission isomer and at the top of the first barrier and the top
of the second barrier in 2*°Pu as a function of the FT-HFB nuclear
temperature.

the first barrier, and top of the second barrier in 2*°Pu.
We find that pairing correlations have vanished completely
beyond T = 0.75 MeV, which corresponds to a neutron energy
of approximately 12 MeV. However, shell effects are still
substantial at this temperature [22]. Our interpretation is that
the fast damping of pairing correlations attenuates, delays,
or even partially reverts the impact of the damping of shell
effects on the deformation energy as a function of temperature.
Indeed, one of the side-effects of pairing correlations is to
reduce deformation energy [40,70], i.e., the energy difference
Eq4t(q) = E(q) — E(q = 0). If pairing correlations rapidly
decrease as a function of 7, the absolute value of the
deformation energy may slightly increase as a result. Of
course, this qualitative interpretation should be validated by
rigorous macroscopic-microscopic calculations.

IV. FISSION FRAGMENT PROPERTIES AT FINITE
TEMPERATURE

In (I), we discussed the fission fragment properties of
29py(n, f)atT = 0 using the joint contour net (JCN) to define
a scission region in terms of topological changes of the density,
based on the assumption that the variations of the density in
the prefragments must be commensurate with those of the
density in the compound nucleus. Within this region of scission
configurations, we then apply a quantum localization method
to disentangle the prefragments to approach the asymptotic
conditions of two fully independent fragments. In this section,
we extend this study to finite temperature.

A. Definition of a scission region

The fission pathway of lowest free energy across the four-
dimensional collective space shown in Fig. 2 was extended
up to the scission region for each temperature. We find that
the value q%‘sc) of the axial quadrupole moment where the
first discontinuity in the F(gyo) curve appears changes with

temperature. Table I lists these values as a function of the
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TABLE I. Position of the first discontinuity of the F(g,) curve
along the most probable fission pathway as a function of temperature.

T (MeV) () T (MeV) 455 (b)
0.00 345.0 1.00 332.5
0.25 357.0 1.25 331.0
0.50 339.5 1.50 333.0
0.75 332.0 1.75 333.0

temperature for the SkM* functional. Note that there is a
numerical uncertainty of about 2-3 b for the values of g re-
ported in the table, because calculations converge very slowly
near scission. The scission region covers a relatively broad
range of Qo values of approximately 25 b. Note the original
increase of the quadrupole moment at low temperatures: This
is caused by the quenching of pairing correlations, which was
shown to shift the discontinuity at larger values of Oa0 in ().
Because the discontinuity does not occur at the same ¢,y for
all temperatures, the equivalence between the E(g»)|s and
F(g20)|7 representations of the fission pathway does not hold
in the scission region because neither the internal energy nor
the free energy are continuous functions over the entire range
of quadrupole moments involved.

Following the approach at zero temperature outlined in
(I), we introduce an additional constraint on the number of
particles in the neck, Qy, to explore scission configurations.
At each temperature T, the expectation value of Qy is varied
in the range gy € [0.1,4.5], while the quadrupole moment
is fixed at the values listed in Table I. The JCN analysis is
then applied at each temperature to the set of neutron and
proton densities along these trajectories to identify putative
scission configurations. As an illustration, Fig. 5 shows the
JCNatgy =0.2atboth7T = 0.0MeV (top)and T = 1.5 MeV
(bottom).

We recall that the JCN algorithm provides a computational
tool for extracting the topological features of a multifield
data set, which includes connectivity between regions of
different behaviors. It was first introduced in the context of
nuclear structure in Ref. [71] and applied in (I) to the specific
problem of defining scission configurations along a continuous
fission pathway for neutron-induced fission. The JCN analy-
sis involves generalizing one-dimensional scalar analysis to
capture simultaneous variation in multiple output functions
of the type (f1, ..., f,) : R3 — R”. In (I), we concluded that
the JCN could be a useful tool to define plausible scission
configurations. In particular, the appearance of a branching
structure in the JCN, which characterizes the existence of two
distinct regions in space, was interpreted as the precursor to
scission; the subsequent development of “starbursts” in each
branch was associated with the completion of scission, as these
starbursts indicate that the variations of the density in each
fragment is commensurate to those of the density in the whole
nucleus (hence, suggesting two well-defined fragments). We
also observed that this identification is independent of the
numerical parameters used in the JCN.

The results of the JCN analysis for the least-energy fission
pathway of 2*Pu at finite temperature are summarized in
Table II. As in (I), we define an interval I, = [q(min),q(m"”‘)]
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(@)

(b)

FIG. 5. (Color online) Joint contour net graph of the densities at
gy = 0.2 at temperature 7 = 0.00 MeV (a) and T = 1.50 MeV (b).

in the collective space, with ¢™™ the value of Qy where
scission has completed (=the actual scission point) and g™
the value corresponding to the precursor to scission. We note

TABLEIL Interval I, = [¢™™,g™*] of scission configurations
as obtained from the JCN analysis of 2*°Pu as a function of the
temperature 7.

T (MeV) q(min) q(max) T (Mev) q(min) q(max)

0.00 0.2 2.6 1.00 0.3 3.1
0.25 0.2 2.5 1.25 0.5 3.1
0.50 0.2 2.8 1.50 0.5 3.1
0.75 0.2 3.0 1.75 0.7 3.1

PHYSICAL REVIEW C 91, 034327 (2015)

that the precursor value is relatively stable, especially at high
temperatures, while the position of the scission point, which is
constant up to 7 = 1.0 MeV, moves to thicker necks beyond
T > 0.75 MeV. We return to this result in Sec. IV E.

The JCN also picked up an interesting “zippering effect”
of the data sets (the proton and neutron densities) at large
temperatures and low gy values. This effect is illustrated
in Fig. 5, which shows the JCN at gy = 0.2 at both T =
0.0 MeV (top) and T = 1.5 MeV (bottom). In both cases, the
fragments are clearly formed, as evidenced by the two distinct
branches in the upper right side of each figure. In addition,
we notice at T = 1.5 MeV a complex pattern connecting
the two fragments, which look similar to a zipper. We have
found that this pattern becomes more noticeable for 7 > 1.25
MeV. Because the zippering connects the two prefragments,
it should be indicative of a spatial connection between these
two distinct regions of space; in addition, the effect manifests
itself only at temperatures where the coupling to the continuum
becomes sizable (see Sec. IV D). Therefore, we suggest that
the zippering effect of the JCN is the representation of a
spatial delocalization of quasiparticles (mostly neutrons) at
large temperatures.

B. Quasiparticle occupations

The generalization at 7 > 0 of the procedure to identify
a left fragment and a right fragment, their observables and
their interaction energy presented in (I) is straightforward.
Using the definition (9) for the one-body density matrix at
finite temperature 7 > 0, we find that the coordinate space
representation p,(ro,r'c’) of the density of a single qp
reads

,OM(I‘G,FIU/) = Z[‘/;;L(]‘ = SV + UWfMU;M]
ij
x ¢i(ro)pi(r'e”), s)
with ¢;(ro) the single-particle basis functions. With this
definition, the spatial occupation N, of the qp « and the total

number of particles N are formally the same as at 7 = 0; that
is,

N, = Z/d3r pu(ro,ro), (16)

and
Ny =Y Vi = f)Viu+ U fuULL (A7)

As in (I), we introduce the quantity

+00 +00 z
d,-j(z):Z/ dx/ dy/ dz ¢i(ro)gi(ro). (18)

Still assuming that the neck between the two fragments is
located on the z axis of the intrinsic reference frame and
thus has the coordinates r,ex = (0,0,zy5), we can define the
occupation of the qp in the fragment (1) as

Niy =Y Vi = £)Viu + Ui fuU5 M (zx). - (19)

1
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AsatT = 0, the occupation of the qp in the fragment (2) is sim-
ply N, = N, — Ny ,. We then assign the qp u to fragment
(1)if Ny, = 0.5N,, and to fragment (2) if Ny, < 0.5N,. This
gives us two sets of quasiparticles. For each of them, we can
define the corresponding pseudodensities and pseudopairing
tensor. For fragment (f) we find, in coordinate ® spin space,

oOro,r'e’) = Z Z[V[L(l — fwViu

He(f) ij
U fuUL 16 ro)gi(r's’),  (20)

kO(ro,r'e’) = Z Z[Vf;(l — fwUju

He(f) ij
+ Ui V3 1gi(ro)gi(r's’). (21

These are the equivalent at 7 > 0 of Egs. (12) and (13) in (I).
We can build the analog of the kinetic energy density and the
spin current tensor from these pseudodensities. The Coulomb
and nuclear interaction energy between the two fragments thus
takes the same form as at 7 = 0; only the definition of the
various pseudodensities is modified according to Eq. (9) and
Eq. (20).

C. Quantum localization at finite temperature

As recalled in (I), at T = 0 the localization method of
Ref. [72] is based on the idea that any unitary transformation of
the qp operators (81, 8) leaves the generalized density matrix,
hence, all global observables such as the total energy, radii,
etc., invariant. In this section, we generalize thisresultat 7 > 0
and discuss how it impacts the practical implementation of the
method.

1. Unitary transformation of quasiparticles

As in (I), we consider the following unitary transformation
T of the eigenvectors of the HFB matrix,

Ay =TU, =) T,,U,. (22)
n

B(x = f‘CL = Z Tau V//. (23)
"

where the quantities Ay, By, Uy, and V,, are, in fact, vectors
with N components A,, in the original sp basis, so that, in

matrix form,
A=UT?, B=vrr. (24)

It is straightforward to notice that the matrix W', defined as
(A B\ _ (U V*\ 4 +
(4 B2 (U Y)rewr. e
with
_(T" 0 iy —
T_<0 T)’ TT'=T'T =1, (26)

verifies WW'T = WIW’ = 1. The matrices A and B thus
define new sets of qp operators (f,7) such that

Na = TaBu 1h= TunBl. @7
" Iz

PHYSICAL REVIEW C 91, 034327 (2015)

Therefore, a unitary transformation of the Bogoliubov matrices
of the type (22) and (23) correspond to a transformation of the
gp creation (annihilation) operators into linear combination of
themselves without mixing creation and annihilation operators
[13].

With the help of the the Baker-Campbell-Hausdorff for-
mula, it is not very difficult to show that, for the form (27) of
the unitary transformation, there exists in Fock space a general
transformation rule for the qp operators,

Ny = eiRﬁMe_iR, n; — eiRﬂZ'e—iR’ (28)

where R is a one-body Hermitian operator written in the
original gp basisas R = ), RMUIBLIB\)-

2. General invariance of the density matrix at T > 0

We now prove that the one-body density matrix p;; of
Eq. (9) is invariant under a rotation of the qp operators. More
precisely, if we start from a HFB vacuum corresponding to
the rotated qp operators n and compute the one-body density
matrix by using the Bogoliubov transformation W', the result
is the same as if we had started from the HFB vacuum of the
B operators using the initial Bogoliubov transformation W.

The statistical trace defining p;; can be computed in any
arbitrary many-body basis |n) of the Fock space. Generically,
we thus have

pij = p_(nlDejeiln). (29)

Let us introduce the new set of qp operators 1 obtained by
the unitary transformation of Eq. (27). We choose the multi-
gp states |n) of Eq. (29) from the vacuum of the rotated qp
operators; that is,

) = [n,) = nl - nf|vac,). (30)

Then we introduce the Bogoliubov transformation W' to
express the ¢ operators as a function of the n operators. We
find

pij = Z BB}, Y (nal Dnyunling)
v

+ ZAjﬂAiv (’7n|ﬁ’7lm|ﬂn)~ (31)
ny n

n

We now use the property (28) to express the multi-qp states
|n.) of the n operators as a function of the multi-qp states |5,,)
of the B operators. By definition of the multi-qp states, we find

) =1l -+ nilvac,) = e¥|B,). (32)

Above, we have the used the property e~ '%|vac,) = |vacg).
This property is the direct consequence of the definition of
the vacuum: It is the state such that, for all vectors v of the
Fock space and any index i, (v|n;|vac,) = 0. Defining |w) =
e~ ®|v), we find (wlﬁ;e’i’%|vacn) = 0. Hence, e "R|vac,) is
the vacuum for operators B;, because the property is valid
for all |w). Because the vacuum is unique, we must have
e~ '®|vac,) = |vacg). In matrix form, we can thus write

p=B*G'B” + AF'A' (33)
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if we note
G': Gl =Y (Bale " RDu,nleRIB,),

1 s A 5 34
W= _(Bule™®Dnin,e®|B,). B

n

F': F]

By virtue of Eq. (27),
= Z T, Tup Z (Bule "RD BB R 1By,

b , , (35)
Fly= ) TuT} Z (Bule R DBLBse R 1Ba).
af n
In matrix form, this leads to
G =TGT!, F =T*FTT, (36)
with
G:Gpa=Y (Bule " RDB.BLeR B,
- —iR > iR (37
F:Fgy=) (Bale " DBiBse™|B,).
Putting everything back together, we find
p=B*G'BT + AF'AT, (38)
=vrireriTv + UTTT*FTTT*U!, (39)
=Vv*GVI +UFU'. (40)
Now it suffices to notice that
Gpo = Tr(e RDBuBLe™) = (1 = fu)bep,  (41)

by cyclic invariance of the trace. Similarly, we find that Fg, =
JaB4p, so that

pii =) ViaViell = fo) + ZU* Uiafor  (42)

a

This shows that the one-body density matrix in the single-
particle basis is invariant under a unitary transformation of
quasiparticle operators among themselves at 7 > (. Equation
(33) gives the expression of the density matrix after rotation
of the qp; Eq. (9) gives the expression of the density matrix
before rotation. Both expressions coincide. Using similar
reasoning, one can show that the pairing tensor is also invariant
under a unitary transformation. This implies that both the
generalized density R and the HFB matrix (in the sp basis) are
invariant, R’ = R and H' = H. Because the Wick theorem

i
FMM FMV
», FU[L Fvv
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guarantees that there is a one-to-one correspondence between
R and the quadratic operator K defining the density operator
(see Sec. II B), we have also K' =K , and most importantly
‘H’ = K'. In other words, the HFB equations are still obeyed
in the rotated gp basis.

3. Quantum localization in the rotated quasiparticle basis

Although the generalized density R in the sp basis is
invariant under a unitary transformation of the qp, its form
in the basis of the 1 operators (the rotated qp basis) is different
from what it is in the basis of the B operators (the original
gp basis). Before rotation, the matrix R of the generalized
density in the quasiparticle basis is diagonal and we have the
usual relations

—waw!, m=(f O
R =WRW', R-(O 1—f>' (43)
Introducing the unitary transformation 7, we can write
AT O\ (f 0 T 0 "t
s (5 ()0 2

Owing to Eq. (36), we can define the matrix of the generalized
density in the new qgp basis of the n operators defined by
Eq. (27) with

(06 D)

In our case, the unitary transformation is given by definition
cos 6

(23) in (I),
sin @
T= (— sin 6 cos@) )

A simple calculation yields, for the pair (i, v) of quasiparticles,

<fg J?) 7 = (fg })) —sin0(f, — f)

« sin @ cos 6
cosf —sinb )’

and a similar expression for the term 1 — f. Therefore, the
generalized density matrix loses its diagonal form up to first
orderin Af = f,, — f,.Intherotated qp basis, the generalized
density thus takes the generic form

(45)

(46)

(47)

1= fi @)

Gup
G,

G
Gy

It can always be ordered in the form of a block-diagonal matrix, with exactly diagonal terms that contain the statistical occupations
of the gp that have not been rotated and 2 x 2 nondiagonal blocks corresponding to each pair (u,v) of rotated qp.
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As a consequence of the nondiagonal form of R’, the one-
body density matrix cannot be expressed as a simple sum
over single qp densities. This implies that the coordinate space
representation of p becomes

p(ror'c)y =" pror'o)+ Y pl (ro.r's’), (49)

keS nveP

where S refers to the set of gps that are not rotated, and P to
the set of gps that are rotated. The contribution p;,,(ro,r'c”)
of the rotated pair (u,v) of gps to the total one-body density
(which is invariant) is
pror'e’y =" ¢i(ro)¢;(r'c B}, G, Bju
ij
+ A”‘F//L/LA;L + BI*MGWBJV + AW I
+ BZ*UG/U}L Jn + AlvFvuAj;L + Bz*vG;)v J

+ A F) A% L. (50)

F A*

For rotated qgps, the notion of spatial occupation cannot be
captured by the quantity N, alone. We thus redefine the
spatial occupation of the rotated pairs (u,v) and (v,u) of
quasiparticles by

Z [Bt*uG;m in Tt Ai“Fl/lMA;kM]

+ Z[B* G\ Biv + A F, AL (5D

ip ™~ v

and

N = Z [B} G Bi, + Ai,F., A%

+ Z[B*G/

Note that N, # N,,,. A tedious but straightforward calcula-
tion shows that N),, + N, = N, + N,, which is nothing but
the consequence of the invariance of the density matrix under
this rotation. Similarly, the spatial occupations in the fragment
(1) of the rotated pair (u,v) and (v,u) of quasiparticles now

read

Biy + A F,, A7, (52)

vpttip

Nl/,/w = Z [Bl*uGimeﬂ + AWF;/LMAjM]d’J(ZN)

ij

+ Z[B:;G;V jv + AipFl A% )dij(zy) (53)

and

Ni .= IB,G,Bjy + A F), A% 1dij(zy)

ij
+ Z[Bi*vG:)u
ij

This simple extension reflects the fact that the two qps forming
the pair are not independent anymore.

To finish this section, we note that the HFB matrix, just like
the generalized density, is not diagonal in the rotated gp basis.
This situation already occurred at T = 0 [30]. Because of this

Bj, + A F,, A% 1dij(zn). (54)
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property, special attention should be paid before extending the
formalism to account, e.g., for low-lying excitations using the
gp random phase approximation (QRPA). In the rotated qp
basis, the QRPA equations would take a form that is different
from usual.

4. Implementation of the quantum localization at T > 0

In practice, we construct the fission fragments by scanning
both the set S of nonrotated qps and the set P of rotated gps.

(i) For all gps u € S, we compute N, Ny ,, and N, ,
according to Egs. (17) and (19); the qp is assigned
to fragment (1) if Ny, > 0.5N,, to fragment (2)
otherwise.

(i1) Let us note P, = (u,v) the pair of qps u and v. We
have P = | P,,. For each pair P, and for each qp 1 in
this pair, we compute N, ,, Ny ,,, and N, according

to Egs. (51) (54); the qp u is 3551gned to fragment

(D)if N1 w = 0. 5N/ .- to fragment (2) otherwise. Note

that the procedure must be done separately for the qp

w of and the gp v of the pair, because N, # N,

vu

The result of this procedure is to partition the whole set
of quasiparticles into two subsets corresponding to the two
fragments. The pseudodensities in the fragment can then be
formally written as

0 Oro,r'o’) = Z Z Z B}, G, B;

ne(f)veP, ij

AL FL AL iro)gi(r0)), (55)

KOroroy=>" " [B,G,Aj

ne(f)veP, ij
+ AiuF B 1¢i(ro)pl(r'e’).  (56)

These relations make it possible to extend the calculation of
the interaction energy between the fragments and the fragment
internal energies at 7 > 0 using the formulas given in (I).

We have implemented the localization method in a new
module of the DFT solver HFODD [57]. The rotation of the
gp is first performed in the sp space; i.e., the matrices U
and V of the Bogoliubov transformation are rotated according
to Eq. (25). Using Egs. (9) and (33), we have checked that
the density matrix in the sp basis (the deformed HO basis
in our case) remains invariant after the transformation within
numerical precision.

In HFODD, calculations of the nuclear and Coulomb interac-
tion energy are carried out in coordinate space. The matrices
of the Bogoliubov transformation are first transformed into
spinors according to

(pl(})(ro) —20 Z (;5 (r —
57
o)=Y vi*,;¢i<ra>. oD

Note that this transformation depends on a specific phase
convention. Local densities are then defined in terms of these
HFB spinors; see Ref. [73] for details. We have then checked
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FIG. 6. (Color online) Profile of the integrated nuclear density
p(2) (integrated over x and y coordinates) along the elongation axis z
in 2°Pu at gy = 0.7 and T = 1.0 MeV before (solid lines) and after
(dashed lines) rotation of the qp wave functions.

that the coordinate space representations of the densities, as
computed from the HFB spinors (57), are also invariant after
the gp rotation within machine precision.

As an example, Fig. 6 shows the impact of the localization
on the pseudodensities of the fission fragments. The figure
shows the one-body density matrix of the compound nucleus
before and after rotation; it also shows the pseudodensities
of the left and right fragments, before and after rotation. All
densities were integrated along the x and y directions. As at
T =0, we observe a significant decrease of the tails of the
densities, of approximately an order of magnitude. The curves
labeled “Total” and “Total (rot.),” which pertain to the total
density before and after rotation, are indistinguishable.

D. Coupling to the continuum

It was demonstrated in Refs. [49,50] based on the coordinate
space formulation of the HFB equations (in spherical symme-
try) that the asymptotic conditions for the (U, V) matrices of
the Bogoliubov transformations read

cos(kir +81), E > —X\,

U(E.ro) — {e bo_s  6®
cos(kiyr +61), E < +A,

V(E.ro) — {e’“’, E > +A. (59)

From these expressions, it was shown that for nuclei with
negative Fermi energy, the local density is always localized,
which leads to observables taking finite values.

AtT > 0,the FT-HFB equations take exactly the same form
as at T = 0; hence, the matrices U and V of the Bogoliubov
transformation have the same asymptotic properties. We
summarize in Table III the localized or delocalized nature
of the U and V matrices of the Bogoliubov transformation
depending on the value of the Fermi level A and the energy £
of the qp.

Contrary to the case at T = 0, however, the density matrix
now takes the form of Eq. (9), and the additional term fUUT
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TABLE III. Localization properties at 7 > O of the matrices
(U,V) of the Bogoliubov transformation depending on the value of
the gp energies and the Fermi level.

Fermi level gp energy Localization of (U,V)

A>0 E > +A U delocalized, V localized
E < +A U delocalized, V delocalized

A <0 E > -\ U delocalized, V localized
E < —A U localized, V localized

can be delocalized even for systems with negative Fermi
energy. In fact, the set of quasiparticles can be split into the
subset £ of localized, discrete gps, with 0 < E < —A, and the
subset C of delocalized, continuous gps with E > —A. The full
density is, of course, the sum of the two contributions

(loc) (con)

pij = pi; o5 (60)
with
p;}oc) — Z[V[L(l = MDuViu + Ui U7, (61)

neL

and (assuming the continuous spectrum is discretized as, e.g.,
happens in the HO basis)

P = Wi (= PuViu + Ui fuUS1. (62)

neC

In Fig. 7, we illustrate this result by showing the profile
of the total isoscalar density py(r) along the elongation axis
of 2Y%Pu in the scission region, at gy = 1.0, together with the
contribution of the term fU U to its delocalized contribution
pi@on). Curves are shownat 7 = 1.0,1.5, and 2.0 MeV. At T =
1.0 MeV, the energy of the incident neutron is of the order of
25 MeV, while it is more than 70 MeV at T = 2.0 MeV. Yet,
even at such a high excitation energy and after integrating
over the transverse coordinates x and y, the contribution of
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FIG. 7. (Color online) Profile of the isoscalar nuclear density
po(r) (integrated over x and y coordinates) along the elongation axis
zin*Puatgy = 1.0and T = 1.0,1.5, and 2.0 MeV. The solid lines
correspond to the full density; the dashed lines to the term fUUT
only of p(m,
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FIG. 8. (Color online) Total number of delocalized quasiparticles
as a function of the number of particles in the neck for various
temperatures.

the term fUU T to the total density is, at most, of the order
of 107*. We note that the use of the one-center HO basis
induces numerical limitations: The tails of the densities at the
boundaries of the domain are not physical but a consequence of
the Gaussian asymptotic behavior of the basis functions (which
is visible as a roughly parabolic decrease of the density near
z = £20-25 fm).

The densities can be further integrated over z to provide
an estimate of the number of particles originating from the
gp located in the continuum. This is shown in Fig. 8 as a
function of gy for five values of the nuclear temperature,
T =0,0.5,...,2.0 MeV. For temperatures below 1.5 MeV,
the number of particles is virtually zero; only beyond 1.5
MeV is the contribution noticeable, with up to about 1
particle in the continuum at 7 = 2.0 MeV. Because of the
unphysical spatial truncation of qp wave functions induced
by the asymptotic behavior of the basis functions, it may be
possible that the actual coupling to the continuum is a little
stronger. Itis, however, unlikely that the effect is strong enough
to have a sizable impact on the physics of neutron-induced
fission.

We have thus shown that, in the regime of temperatures
relevant to the description of induced nuclear fission, the
coupling to the continuum remains essentially negligible. Our
results are fully compatible with estimates published in the
literature. Indeed, early works in the context of the finite-
temperature Hartree-Fock theory suggested that the effect of
the continuum becomes significantonly at 7 > 4 MeV [52]. In
the follow-up paper by the same authors, the density of neutron
vapor in 2Pb was shown to be 0.51072 fm 3 at T = 7 MeV
[51]. More recent estimates obtained at the fully FT-HFB level
with a coordinate-space solver also suggest a total number
of particles in the continuum of 0.2 at T = 1.5 MeV in the
superheavy element Z = 114, N = 178 [25]. These results
are noteworthy, because they justify a posteriori the validity
of the model of the compound nucleus to describe induced
fission.
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FIG. 9. (Color online) Skyrme interaction energy between the
fission fragments of 2*°Pu as a function of the number of particles
in the neck for the SkM* functional at low temperatures 0.00 <
T < 0.75 MeV. Solid curves with open symbols correspond to the
calculation before the localization is applied; dashed curves with solid
symbols to the localized qp.

E. Fragment interaction energy and Kinetic energy

Based on the JCN analysis presented in Sec. IV A, we have
identified the range gy € [0.1-3.0] as the scission region,
with gy ~ 0.2-0.3 as the most likely scission point (at low
temperatures). Using the generalized quantum localization
procedure of Sec. IVC3, we have computed the fission
fragment interaction energy and total kinetic energy before
and after localization for the range of temperatures 0 < 7' <
1.75MeV. For T > 1.50 MeV, the localization method begins
to break down: On the one hand, the number of possible pairs
meeting the criteria for rotation becomes very large and the
procedure becomes very time-consuming; in addition, it does
not always succeed in fully localizing the fragments. This may
be an indirect effect of the coupling to the continuum discussed
in the previous section.

It is interesting to distinguish two temperature regimes. In
the range 0 < T < 0.75 MeV, which is depicted in Fig. 9,
there are relatively few qualitative differences between the
zero-temperature case and the finite-temperature results: The
nuclear interaction energy is of the same order of magnitude
at all T, both before and after quantum localization. This is
consistent with the earlier observation in Sec. III A that the
PES does not change dramatically in this temperature range.
As in (I), we note relatively large fluctuations of the interaction
energy as a function of gy, especially before localization. To
a large extent, these fluctuations reflect the binary nature of
the partitioning of the nucleus in two (entangled) fragments:
A given qp could be assigned to one fragment for a given gy
and to the other at gy + dqy, especially if its localization £
indicator is close to 0.5. After localization, such fluctuations
are strongly attenuated but do not disappear entirely, because
there remain a few qps that can not be properly localized
[72]. In addition, small discontinuities in the unconstrained
collective variables can also contribute to the fluctuations of
interaction energy.
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FIG. 10. (Color online) Same as Fig. 9 in the higher temperature
regimes 1.00 < T < 1.75 MeV.

In the higher temperature regime, the effect of changes in
temperature becomes more visible (see Fig. 10). From a purely
topological point of view, the scission point, as determined by
the JCN, is pushed back from gy = 0.2-0.4 to gy =~ 0.5-0.9.
This observation is confirmed by the behavior of the nuclear
interaction energy: As a function of gy, the interaction energy
goes to zero faster as T increases. This trend is already clearly
visible before localization, the effect of which is to make
it more pronounced. Qualitatively, these results show that
the system tends to break with a thicker neck than at lower
temperatures, in a manner somewhat similar to glass.

We show in Fig. 11 the variations of the direct Coulomb
interaction energy along the gy trajectory at low temperatures,
which are the most relevant to applications of neutron-induced
fission. We notice again the smoothing effect of the localization
method, especially at large gy values, where the fragments are
still heavily entangled. We also remark that the effect of the
temperature is weak, which is compatible with experimental
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FIG. 11. (Color online) Direct Coulomb interaction energy in the
fission of ?*°Pu as a function of the number of particles in the neck
for the SkM* functional for temperatures in the range 0.00 < 7 <
0.75 MeV.
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FIG. 12. (Color online) Same as Fig. 11 in the higher temperature
range 1.00 < T < 1.75 MeV.

evidence, which shows a variation of about 2 MeV in total
kinetic energy (TKE) over a 5-MeV range of neutron energies
[74]. For gy = 0.2, which the JCN analysis identifies as the
most likely scission configuration, the Coulomb interaction
energy seems first to increase with temperature, from about
185 MeV up to approximately 195 MeV at T = 0.50 MeV
(corresponding to E* ~ 8—10-MeV excitation energy in the
compound nucleus), before decreasing as temperature keeps
on increasing. However, it is clear from the figure that the
amplitude of the energy fluctuations along the Oy path in the
scission region are quite large, so these results should be taken
with a grain of salt.

Finally, Fig. 12 shows the evolution of the direct Coulomb
interaction energy along the Qy path at higher temperatures
T > 1.00 MeV. This corresponds to incident neutron energies
larger than 25 MeV. In this regime, pairing correlations
have vanished entirely. Quite surprisingly, the total Coulomb
interaction energy is nearly constant at low gy values, and this
constant value is the same for all temperatures. Considering the
large uncertainties of the current calculations, it is premature
to draw definitive conclusions, but this point calls for further
studies.

The calculations presented here are clearly schematic and
have yet to reach the accuracy obtained from evaluations
[74]. We recall that the goal of this paper is to set up
a framework based on finite-temperature DFT that can be
used in more systematic studies. In particular, it becomes
clear from Figs. 9-12 that scission configurations must be
identified from a PES that is fully continuous, which should
remove some of the fluctuations observed here. This can be
achieved by considering simultaneously all relevant collective
variables, i.e., at least on, sz, Q30, Q40, and QN, together
with the temperature. To compare theoretical predictions with
experimental data, which is based on the average total kinetic
energy, the local enlargement of the collective space should
be repeated for all fragmentations observed in the >**Pu(n, f)
reaction. Improvements on the quantum localization methods
are also possible. Work along these lines is currently under
way.
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V. CONCLUSIONS

One of the main challenges for a theory of induced
fission is the need to accurately describe the (possi-
bly high) excitation energy of the compound nucleus.
In this paper, we have adopted the finite temperature
nuclear density formalism to describe neutron-induced
fission.

(i) Wehave validated the nuclear DFT framework at finite
temperature for the description of induced fission.
In particular, we have given a prescription to relate
the excitation energy of the compound nucleus to the
nuclear temperature of the FT-HFB theory. Following
Ref. [25], we have confirmed the validity of the
Maxwell relations of thermodynamics over the entire
fission pathway, with the exception of the scission
region (unless there are enough collective variables to
make the PES continuous).

(i) We have quantified the effect of the incident neutron
energy on the fission barriers of the compound nucleus
240py . In particular, we have found that fission barriers
slightly increase in the energy range E, = 0-5 MeV;
at higher neutron energies, the trend is reversed and
fission barriers decrease monotonically. We stress that,
in the energy range of interest in applications of
induced fission, (E, = 0—14 MeV), the barriers are
lower by at most 15%. While this can have a significant
impact on fission observables, in particular fission
probabilities, the effect is not as dramatic as may have
been expected from, e.g., studies of cold fusion in
superheavy nuclei [24].

(iii)) We have given a microscopic foundation at 7 > 0
of the central hypothesis of induced fission as a
two-step process based on the decay of a compound
nucleus. Indeed, we have confirmed that the coupling
to the continuum induced by the finite temperature
is negligible at least up to 50 MeV of excitation
energy (T ~ 1.5MeV) and remain small even at larger
excitation energies.

(iv) We have generalized the quantum localization method
of Ref. [72] to the case of the finite temperature DFT,
showing that the method remains applicableupto 7' ~
1.5 MeV. We have found that scission tends to occur
at larger values of the number of particles in the neck
as temperature increases.
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In principle, the finite temperature DFT framework should
allow us to compute the excitation energy of the fragment in a
fully microscopic way. There are, however, multiple caveats.
First of all, we have seen that the position of the scission point
changes with temperature. The charge and mass of the fission
fragments also change: The evolution of a given fragment
(Z,N) as a function of the excitation energy of the compound
nucleus cannot be obtained from a single fission pathway only,
but requires the full local scission hypersurface. An additional
difficulty is that both the charge and the mass of the fragments
are noninteger numbers, through both quantum and statistical
fluctuations. Of course, we may perform HFB calculations for
the fragments by imposing that (Z) and (N) take any value,
including fractional ones, but it is not clear how accurate this
approximation would be.

In this work, we have restricted ourselves to a static view
of the fission process. A dynamical treatment of the process
would certainly require an extension of the microscopic theory
of collective inertia at finite temperature. This would allow
both fully consistent computations of spontaneous fission
half-lives in the commonly adopted WKB approximation and
calculations of fission yields and energy distributions in
the time-dependent generator coordinate method, such as in
Refs. [34,35,75].

ACKNOWLEDGMENTS

Stimulating discussions with W. Younes, D. Gogny, D.
Regnier, and J. Randrup are very gratefully acknowledged.
We are also thankful to W. Nazarewicz and J. C. Pei for useful
comments. This work was partly performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract No. DE-AC52-07NA27344.
Funding was also provided by the U.S. Department of Energy
Office of Science, Nuclear Physics Program, pursuant to
Contract No. DE-AC52-07NA27344, Clause B-9999, Clause
H-9999, and the American Recovery and Reinvestment Act,
Pub. L. 111-5. Computational resources were provided through
an INCITE grant, “Computational Nuclear Structure,” by the
National Center for Computational Sciences (NCCS) and
National Institute for Computational Sciences (NICS) at Oak
Ridge National Laboratory. Additional computing support was
provided by the Livermore Computing Resource Center at
Lawrence Livermore National Laboratory. Thanks are also
due to the UK Engineering and Physical Sciences Research
Council, under Grant No. EP/J013072/1.

[1] M. B. Chadwick et al., ENDF/B-VII.1 nuclear data for science
and technology: Cross sections, covariances, fission product
yields and decay data, Nucl. Data Sheets 112, 2887 (2011).

[2] B. E. Watt, Energy spectrum of neutrons from thermal fission of
U?%, Phys. Rev. 87, 1037 (1952).

[3] N. Bohr and J. A. Wheeler, The mechanism of nuclear fission,
Phys. Rev. 56, 426 (1939).

[4] A.Bohrand B. Mottelson, Nuclear Structure, Vol. II (Benjamin,
New York, 1975).

[5] T. Duguet, M. Bender, K. Bennaceur, D. Lacroix, and T.
Lesinski, Particle-number restoration within the energy density

functional formalism: Nonviability of terms depending on
noninteger powers of the density matrices, Phys. Rev. C 79,
044320 (2009).

[6] D. Lacroix, T. Duguet, and M. Bender, Configuration mixing
within the energy density functional formalism: Removing
spurious contributions from nondiagonal energy kernels, Phys.
Rev. C79, 044318 (2009).

[7]1 M. Bender, K. Bennaceur, T. Duguet, P.-H. Heenen, T. Lesinski,
and J. Meyer, Tensor part of the Skyrme energy density
functional. II. deformation properties of magic and semi-magic
nuclei, Phys. Rev. C 80, 064302 (2009).

034327-15


http://dx.doi.org/10.1016/j.nds.2011.11.002
http://dx.doi.org/10.1016/j.nds.2011.11.002
http://dx.doi.org/10.1016/j.nds.2011.11.002
http://dx.doi.org/10.1016/j.nds.2011.11.002
http://dx.doi.org/10.1103/PhysRev.87.1037
http://dx.doi.org/10.1103/PhysRev.87.1037
http://dx.doi.org/10.1103/PhysRev.87.1037
http://dx.doi.org/10.1103/PhysRev.87.1037
http://dx.doi.org/10.1103/PhysRev.56.426
http://dx.doi.org/10.1103/PhysRev.56.426
http://dx.doi.org/10.1103/PhysRev.56.426
http://dx.doi.org/10.1103/PhysRev.56.426
http://dx.doi.org/10.1103/PhysRevC.79.044320
http://dx.doi.org/10.1103/PhysRevC.79.044320
http://dx.doi.org/10.1103/PhysRevC.79.044320
http://dx.doi.org/10.1103/PhysRevC.79.044320
http://dx.doi.org/10.1103/PhysRevC.79.044318
http://dx.doi.org/10.1103/PhysRevC.79.044318
http://dx.doi.org/10.1103/PhysRevC.79.044318
http://dx.doi.org/10.1103/PhysRevC.79.044318
http://dx.doi.org/10.1103/PhysRevC.80.064302
http://dx.doi.org/10.1103/PhysRevC.80.064302
http://dx.doi.org/10.1103/PhysRevC.80.064302
http://dx.doi.org/10.1103/PhysRevC.80.064302

N. SCHUNCK, D. DUKE, AND H. CARR

[8] M. V. Stoitsov, J. Dobaczewski, R. Kirchner, W. Nazarewicz,
and J. Terasaki, Variation after particle-number projection for
the Hartree-Fock-Bogoliubov method with the Skyrme energy
density functional, Phys. Rev. C 76, 014308 (2007).

[9] M. Anguiano, J. L. Egido, and L. M. Robledo, Particle number
projection with effective forces, Nucl. Phys. A 696, 467 (2001).

[10] R. Bernard, H. Goutte, D. Gogny, and W. Younes, Microscopic
and nonadiabatic Schrodinger equation derived from the gen-
erator coordinate method based on zero- and two-quasiparticle
states, Phys. Rev. C 84, 044308 (2011).

[11] R. Eschrig, Fundamentals of Density Functional Theory
(Teubner, Leipzig, 1996).

[12] R. Parr and W. Yang, Density Functional Theory of Atoms and
Molecules (Oxford University Press, Oxford, UK, 1989).

[13] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems
(MIT Press, Cambridge, MA, 1985).

[14] J. des Cloizeaux, in Approximation de Hartree-Fock et ap-
proximation de phase aléatoire a température finie, Many-Body
Physics, edited by C. DeWitt and R. Balian (Gordon and Breach
Science Publishers, Philadelphia, 1968).

[15] F. Garcias, M. Barranco, A. Faessler, and N. Ohtsuka, Angular
momentum and temperature dependence of fission barriers with
a realistic force, Z. Physik A 336, 31 (1990).

[16] F. Garcias, M. Barranco, J. Nemeth, C. Ngo, and X. Vifias, The
fission of hot rotating nuclei: A selfconsistent Thomas-Fermi
calculation, Nucl. Phys. A 495, 169 (1989).

[17] C. Guet, E. Strumberger, and M. Brack, Liquid drop parameters
for hot nuclei, Phys. Lett. B 205, 427 (1988).

[18] D. Dalili, J. Németh, and C. Ngd, A self consistent Thomas-
Fermi calculation of fission barriers at finite temperature and
angular momentum as applied to the 23 At, Z. Physik A 321, 335
(1985).

[19] J. Nemeth, D. Dalili, and C. Ng6, Hartree-Fock and Thomas-
Fermi self-consistent calculations of the '**Nd nucleus at finite
temperature and angular momentum, Phys. Lett. B 154, 11
(1985).

[20] M. Diebel, K. Albrecht, and R. W. Hasse, Microscopic calcula-
tions of fission barriers and critical angular momenta for excited
heavy nuclear systems, Nucl. Phys. A 355, 66 (1981).

[21] J. Bartel, M. Brack, and M. Durand, Extended Thomas-Fermi
theory at finite temperature, Nucl. Phys. A 445, 263 (1985).

[22] M. Brack and P. Quentin, Selfconsistent calculations of highly
excited nuclei, Phys. Lett. B 52, 159 (1974).

[23] J. Mcdonnell, N. Schunck, and W. Nazarewicz, Microscopic
description of nuclear fission: Fission barrier heights of even-
even actinides, Fission and Properties of Neutron-Rich Nuclei
(World Scientific, Sanibel Island, FL, 2013), p. 597.

[24] J. A. Sheikh, W. Nazarewicz, and J. C. Pei, Systematic study of
fission barriers of excited superheavy nuclei, Phys. Rev. C 80,
011302 (2009).

[25] J. C. Pei, W. Nazarewicz, J. A. Sheikh, and A. K. Kerman,
Fission barriers of compound superheavy nuclei, Phys. Rev.
Lett. 102, 192501 (2009).

[26] S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, Temperature-
dependent combinatorial level densities with the D1M Gogny
force, Phys. Rev. C 86, 064317 (2012).

[27] J. L. Egido, L. M. Robledo, and V. Martin, Behavior of shell
effects with the excitation energy in atomic nuclei, Phys. Rev.
Lett. 85, 26 (2000).

[28] J. L. Egido and P. Ring, The decay of hot nuclei, J. Phys. G:
Nucl. Part. Phys. 19, 1 (1993).

PHYSICAL REVIEW C 91, 034327 (2015)

[29] J. L. Egido, Quantum versus statistical fluctuations in mean-field
theories, Phys. Rev. Lett. 61, 767 (1988).

[30] N. Schunck, D. Duke, H. Carr, and A. Knoll, Description of
induced nuclear fission with Skyrme energy functionals: Static
potential energy surfaces and fission fragment properties, Phys.
Rev. C 90, 054305 (2014).

[31] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent
mean-field models for nuclear structure, Rev. Mod. Phys. 75,
121 (2003).

[32] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, Berlin, 2000).

[33] W. Younes and D. Gogny, Fragment yields calculated in a
time-dependent microscopic theory of fission, Technical Report
LLNL-TR-586678, Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, 2012.

[34] H. Goutte, J. F. Berger, P. Casoli, and D. Gogny, Microscopic
approach of fission dynamics applied to fragment kinetic energy
and mass distributions in 23U, Phys. Rev. C 71, 024316
(2005).

[35] J. E. Berger, M. Girod, and D. Gogny, Constrained Hartree-Fock
and beyond, Nucl. Phys. A 502, 85 (1989).

[36] J. Randrup and P. Moller, Brownian shape motion on five-
dimensional potential-energy surfaces:Nuclear fission-fragment
mass distributions, Phys. Rev. Lett. 106, 132503 (2011).

[37] J. Randrup, P. Moller, and A. J. Sierk, Fission-fragment mass
distributions from strongly damped shape evolution, Phys. Rev.
C 84, 034613 (2011).

[38] L. Reichl, A Modern Course in Statistical Physics (John Wiley
& Sons, New York, 1988).

[39] A. L. Goodman, Thermal shape fluctuations in hot rotating
nuclei: Comparison of constant energy constraint and constant
temperature constraint, Nucl. Phys. A 528, 348 (1991).

[40] L. G. Moretto, Statistical description of deformation in excited
nuclei and disappearance of shell effects with excitation energy,
Nucl. Phys. A 182, 641 (1972).

[41] J. Dudek, B. Herskind, W. Nazarewicz, Z. Szymanski, and T.
R. Werner, Pairing, temperature, and deformed-shell effects on
the properties of superdeformed *>Dy nucleus, Phys. Rev. C 38,
940 (1988).

[42] N. Schunck, J. Dudek, and B. Herskind, Nuclear hyperdeforma-
tion and the Jacobi shape transition, Phys. Rev. C 75, 054304
(2007).

[43] J. Randrup and P. Moller, Energy dependence of fission-
fragment mass distributions from strongly damped shape evolu-
tion, Phys. Rev. C 88, 064606 (2013).

[44] K. Dietrich, J.-J. Niez, and J.-F. Berger, Microscopic transport
theory of nuclear processes, Nucl. Phys. A 832, 249 (2010).

[45] H. C. Lee and S. Das Gupta, Nuclear shape transitions at finite
temperature, Phys. Rev. C 19, 2369 (1979).

[46] A.L. Goodman, Finite-temperature HFB theory, Nucl. Phys. A
352,30 (1981).

[47] K. Tanabe, K. Sugawara-Tanabe, and H. J. Mang, Theory of
the cranked temperature-dependent Hartree-Fock-Bogoliubov
approximation and parity projected statistics, Nucl. Phys. A
357,20 (1981).

[48] V. Martin, J. L. Egido, and L.M. Robledo, Thermal shape
fluctuation effects in the description of hot nuclei, Phys. Rev. C
68, 034327 (2003).

[49] J. Dobaczewski, H. Flocard, and J. Treiner, Hartree-Fock-
Bogolyubov description of nuclei near the neutron-drip line,
Nucl. Phys. A 422, 103 (1984).

034327-16


http://dx.doi.org/10.1103/PhysRevC.76.014308
http://dx.doi.org/10.1103/PhysRevC.76.014308
http://dx.doi.org/10.1103/PhysRevC.76.014308
http://dx.doi.org/10.1103/PhysRevC.76.014308
http://dx.doi.org/10.1016/S0375-9474(01)01219-2
http://dx.doi.org/10.1016/S0375-9474(01)01219-2
http://dx.doi.org/10.1016/S0375-9474(01)01219-2
http://dx.doi.org/10.1016/S0375-9474(01)01219-2
http://dx.doi.org/10.1103/PhysRevC.84.044308
http://dx.doi.org/10.1103/PhysRevC.84.044308
http://dx.doi.org/10.1103/PhysRevC.84.044308
http://dx.doi.org/10.1103/PhysRevC.84.044308
http://dx.doi.org/10.1016/0375-9474(89)90316-3
http://dx.doi.org/10.1016/0375-9474(89)90316-3
http://dx.doi.org/10.1016/0375-9474(89)90316-3
http://dx.doi.org/10.1016/0375-9474(89)90316-3
http://dx.doi.org/10.1016/0370-2693(88)90971-9
http://dx.doi.org/10.1016/0370-2693(88)90971-9
http://dx.doi.org/10.1016/0370-2693(88)90971-9
http://dx.doi.org/10.1016/0370-2693(88)90971-9
http://dx.doi.org/10.1007/BF01493455
http://dx.doi.org/10.1007/BF01493455
http://dx.doi.org/10.1007/BF01493455
http://dx.doi.org/10.1007/BF01493455
http://dx.doi.org/10.1016/0370-2693(85)91557-6
http://dx.doi.org/10.1016/0370-2693(85)91557-6
http://dx.doi.org/10.1016/0370-2693(85)91557-6
http://dx.doi.org/10.1016/0370-2693(85)91557-6
http://dx.doi.org/10.1016/0375-9474(81)90132-9
http://dx.doi.org/10.1016/0375-9474(81)90132-9
http://dx.doi.org/10.1016/0375-9474(81)90132-9
http://dx.doi.org/10.1016/0375-9474(81)90132-9
http://dx.doi.org/10.1016/0375-9474(85)90071-5
http://dx.doi.org/10.1016/0375-9474(85)90071-5
http://dx.doi.org/10.1016/0375-9474(85)90071-5
http://dx.doi.org/10.1016/0375-9474(85)90071-5
http://dx.doi.org/10.1016/0370-2693(74)90077-X
http://dx.doi.org/10.1016/0370-2693(74)90077-X
http://dx.doi.org/10.1016/0370-2693(74)90077-X
http://dx.doi.org/10.1016/0370-2693(74)90077-X
http://dx.doi.org/10.1103/PhysRevC.80.011302
http://dx.doi.org/10.1103/PhysRevC.80.011302
http://dx.doi.org/10.1103/PhysRevC.80.011302
http://dx.doi.org/10.1103/PhysRevC.80.011302
http://dx.doi.org/10.1103/PhysRevLett.102.192501
http://dx.doi.org/10.1103/PhysRevLett.102.192501
http://dx.doi.org/10.1103/PhysRevLett.102.192501
http://dx.doi.org/10.1103/PhysRevLett.102.192501
http://dx.doi.org/10.1103/PhysRevC.86.064317
http://dx.doi.org/10.1103/PhysRevC.86.064317
http://dx.doi.org/10.1103/PhysRevC.86.064317
http://dx.doi.org/10.1103/PhysRevC.86.064317
http://dx.doi.org/10.1103/PhysRevLett.85.26
http://dx.doi.org/10.1103/PhysRevLett.85.26
http://dx.doi.org/10.1103/PhysRevLett.85.26
http://dx.doi.org/10.1103/PhysRevLett.85.26
http://dx.doi.org/10.1088/0954-3899/19/1/002
http://dx.doi.org/10.1088/0954-3899/19/1/002
http://dx.doi.org/10.1088/0954-3899/19/1/002
http://dx.doi.org/10.1088/0954-3899/19/1/002
http://dx.doi.org/10.1103/PhysRevLett.61.767
http://dx.doi.org/10.1103/PhysRevLett.61.767
http://dx.doi.org/10.1103/PhysRevLett.61.767
http://dx.doi.org/10.1103/PhysRevLett.61.767
http://dx.doi.org/10.1103/PhysRevC.90.054305
http://dx.doi.org/10.1103/PhysRevC.90.054305
http://dx.doi.org/10.1103/PhysRevC.90.054305
http://dx.doi.org/10.1103/PhysRevC.90.054305
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1016/0375-9474(89)90656-8
http://dx.doi.org/10.1016/0375-9474(89)90656-8
http://dx.doi.org/10.1016/0375-9474(89)90656-8
http://dx.doi.org/10.1016/0375-9474(89)90656-8
http://dx.doi.org/10.1103/PhysRevLett.106.132503
http://dx.doi.org/10.1103/PhysRevLett.106.132503
http://dx.doi.org/10.1103/PhysRevLett.106.132503
http://dx.doi.org/10.1103/PhysRevLett.106.132503
http://dx.doi.org/10.1103/PhysRevC.84.034613
http://dx.doi.org/10.1103/PhysRevC.84.034613
http://dx.doi.org/10.1103/PhysRevC.84.034613
http://dx.doi.org/10.1103/PhysRevC.84.034613
http://dx.doi.org/10.1016/0375-9474(91)90093-L
http://dx.doi.org/10.1016/0375-9474(91)90093-L
http://dx.doi.org/10.1016/0375-9474(91)90093-L
http://dx.doi.org/10.1016/0375-9474(91)90093-L
http://dx.doi.org/10.1016/0375-9474(72)90543-X
http://dx.doi.org/10.1016/0375-9474(72)90543-X
http://dx.doi.org/10.1016/0375-9474(72)90543-X
http://dx.doi.org/10.1016/0375-9474(72)90543-X
http://dx.doi.org/10.1103/PhysRevC.38.940
http://dx.doi.org/10.1103/PhysRevC.38.940
http://dx.doi.org/10.1103/PhysRevC.38.940
http://dx.doi.org/10.1103/PhysRevC.38.940
http://dx.doi.org/10.1103/PhysRevC.75.054304
http://dx.doi.org/10.1103/PhysRevC.75.054304
http://dx.doi.org/10.1103/PhysRevC.75.054304
http://dx.doi.org/10.1103/PhysRevC.75.054304
http://dx.doi.org/10.1103/PhysRevC.88.064606
http://dx.doi.org/10.1103/PhysRevC.88.064606
http://dx.doi.org/10.1103/PhysRevC.88.064606
http://dx.doi.org/10.1103/PhysRevC.88.064606
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.004
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.004
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.004
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.004
http://dx.doi.org/10.1103/PhysRevC.19.2369
http://dx.doi.org/10.1103/PhysRevC.19.2369
http://dx.doi.org/10.1103/PhysRevC.19.2369
http://dx.doi.org/10.1103/PhysRevC.19.2369
http://dx.doi.org/10.1016/0375-9474(81)90557-1
http://dx.doi.org/10.1016/0375-9474(81)90557-1
http://dx.doi.org/10.1016/0375-9474(81)90557-1
http://dx.doi.org/10.1016/0375-9474(81)90557-1
http://dx.doi.org/10.1016/0375-9474(81)90624-2
http://dx.doi.org/10.1016/0375-9474(81)90624-2
http://dx.doi.org/10.1016/0375-9474(81)90624-2
http://dx.doi.org/10.1016/0375-9474(81)90624-2
http://dx.doi.org/10.1103/PhysRevC.68.034327
http://dx.doi.org/10.1103/PhysRevC.68.034327
http://dx.doi.org/10.1103/PhysRevC.68.034327
http://dx.doi.org/10.1103/PhysRevC.68.034327
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1016/0375-9474(84)90433-0
http://dx.doi.org/10.1016/0375-9474(84)90433-0

DESCRIPTION OF INDUCED ... .II. FINITE ...

[50] J. Dobaczewski and J. Dudek, Time-Odd components in the
rotating mean field and identical bands, Acta Phys. Pol. B 27,
45 (1996).

[51] P. Bonche, S. Levit, and D. Vautherin, Statistical properties and
stability of hot nuclei, Nucl. Phys. A 436, 265 (1985).

[52] P. Bonche, S. Levit, and D. Vautherin, Properties of highly
excited nuclei, Nucl. Phys. A 427, 278 (1984).

[53] S. Levit and Y. Alhassid, Phenomenology of shape transitions
in hot nuclei, Nucl. Phys. A 413, 439 (1984).

[54] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Hékansson,
Towards a better parametrisation of Skyrme-like effective
forces: A critical study of the SkM force, Nucl. Phys. A 386, 79
(1982).

[55] J. Dechargé and D. Gogny, Hartree-Fock-Bogolyubov calcula-
tions with the D1 effective interaction on spherical nuclei, Phys.
Rev. C 21, 1568 (1980).

[56] W. Younes and D. Gogny, in The Microscopic Theory of Fission,
AIP Conf. Proc. Vol. 1175 (AIP Publishing, Melville, NY,
2009), p. 3.

[57] N. Schunck, J. Dobaczewski, J. McDonnell, W. Satuta, J. A.
Sheikh, A. Staszczak, M. Stoitsov, and P. Toivanen, Solution
of the Skyrme-Hartree—Fock—Bogolyubov equations in the
cartesian deformed harmonic-oscillator basis. (VII) HFODD
(v2.49t): A new version of the program, Comput. Phys.
Commun. 183, 166 (2012).

[58] M. V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam,
E. Olsen, J. Sarich, and S. Wild, Axially deformed solution
of the Skyrme—Hartree—Fock—Bogoliubov equations using the
transformed harmonic oscillator basis (II) HFBTHO v2.00d: A
new version of the program, Comput. Phys. Commun. 184, 1592
(2013).

[59] N. Schunck, Density functional theory approach to nuclear
fission, Acta Phys. Pol. B 44, 263 (2013).

[60] N.Schunck, Microscopic description of induced fission, J. Phys.:
Conf. Ser. 436, 012058 (2013).

[61] M. Baranger and M. Vénéroni, An adiabatic time-dependent
Hartree-Fock theory of collective motion in finite systems, Ann.
Phys. 114, 123 (1978).

[62] L. Landau and E. Lifshitz, Statistical Physics, Part (Pergamon
Press, Oxford, UK, 1980).

PHYSICAL REVIEW C 91, 034327 (2015)

[63] T. Dittrich, P. Hanggi, G.-L. Ingold, B. Kramer, G. Schon, and
W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH,
Weinheim, 1998).

[64] M. Razavy, Classical and Quantum Dissipative Systems
(Imperial College Press, London, 2005).

[65] A. V. Ignatyuk, I. N. Mikhailov, L. H. Molina, R. G.
Nazmitdinov, and K. Pomorsky, The shape of the heated fast-
rotating nuclei, Nucl. Phys. A 346, 191 (1980).

[66] G. Sauer, H. Chandra, and U. Mosel, Thermal properties of
nuclei, Nucl. Phys. A 264, 221 (1976).

[67] U. Mosel, P.-G. Zint, and K. H. Passler, Self-consistent calcu-
lations for highly excited compound nuclei, Nucl. Phys. A 236,
252 (1974).

[68] R. W. Hasse and W. Stocker, Temperature effects in the
liquid drop description of nuclear fission, Phys. Lett. B 44, 26
(1973).

[69] V. Martin and L. M. Robledo, Fission barriers at finite tempera-
ture: A theoretical description with the Gogny force, Int. J. Mod.
Phys. E 18, 861 (2009).

[70] M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M.
Strutinsky, and C. Y. Wong, Funny hills: The shell-correction
approach to nuclear shell effects and its applications to the fission
process, Rev. Mod. Phys. 44, 320 (1972).

[71] D. Duke, H. Carr, A. Knoll, N. Schunck, H. A. Nam, and A.
Staszczak, Visualizing nuclear scission through a multifield
extension of topological analysis, IEEE Trans. Visualization
Comput. Graphics 18, 2033 (2012).

[72] W. Younes and D. Gogny, Nuclear scission and quantum
localization, Phys. Rev. Lett. 107, 132501 (2011).

[73] J. Dobaczewski and P. Olbratowski, Solution of the Skyrme—
Hartree—Fock—-Bogolyubov equations in the cartesian deformed
harmonic-oscillator basis. (IV) HFODD (v2.08i): a new version
of the program, Comput. Phys. Commun. 158, 158 (2004).

[74] D. G. Madland, Total prompt energy release in the neutron-
induced fission of 2*U, 23U, and 2*°Pu, Nucl. Phys. A 772, 113
(2006).

[75] H. Goutte, P. Casoli, and J.-F. Berger, Mass and Kkinetic
energy distributions of fission fragments using the time de-
pendent generator coordinate method, Nucl. Phys. A 734, 217
(2004).

034327-17


http://dx.doi.org/10.1016/0375-9474(85)90199-X
http://dx.doi.org/10.1016/0375-9474(85)90199-X
http://dx.doi.org/10.1016/0375-9474(85)90199-X
http://dx.doi.org/10.1016/0375-9474(85)90199-X
http://dx.doi.org/10.1016/0375-9474(84)90086-1
http://dx.doi.org/10.1016/0375-9474(84)90086-1
http://dx.doi.org/10.1016/0375-9474(84)90086-1
http://dx.doi.org/10.1016/0375-9474(84)90086-1
http://dx.doi.org/10.1016/0375-9474(84)90421-4
http://dx.doi.org/10.1016/0375-9474(84)90421-4
http://dx.doi.org/10.1016/0375-9474(84)90421-4
http://dx.doi.org/10.1016/0375-9474(84)90421-4
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1016/0375-9474(82)90403-1
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1016/j.cpc.2011.08.013
http://dx.doi.org/10.1016/j.cpc.2011.08.013
http://dx.doi.org/10.1016/j.cpc.2011.08.013
http://dx.doi.org/10.1016/j.cpc.2011.08.013
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.1016/j.cpc.2013.01.013
http://dx.doi.org/10.5506/APhysPolB.44.263
http://dx.doi.org/10.5506/APhysPolB.44.263
http://dx.doi.org/10.5506/APhysPolB.44.263
http://dx.doi.org/10.5506/APhysPolB.44.263
http://dx.doi.org/10.1088/1742-6596/436/1/012058
http://dx.doi.org/10.1088/1742-6596/436/1/012058
http://dx.doi.org/10.1088/1742-6596/436/1/012058
http://dx.doi.org/10.1088/1742-6596/436/1/012058
http://dx.doi.org/10.1016/0003-4916(78)90265-8
http://dx.doi.org/10.1016/0003-4916(78)90265-8
http://dx.doi.org/10.1016/0003-4916(78)90265-8
http://dx.doi.org/10.1016/0003-4916(78)90265-8
http://dx.doi.org/10.1016/0375-9474(80)90497-2
http://dx.doi.org/10.1016/0375-9474(80)90497-2
http://dx.doi.org/10.1016/0375-9474(80)90497-2
http://dx.doi.org/10.1016/0375-9474(80)90497-2
http://dx.doi.org/10.1016/0375-9474(76)90429-2
http://dx.doi.org/10.1016/0375-9474(76)90429-2
http://dx.doi.org/10.1016/0375-9474(76)90429-2
http://dx.doi.org/10.1016/0375-9474(76)90429-2
http://dx.doi.org/10.1016/0375-9474(74)90230-9
http://dx.doi.org/10.1016/0375-9474(74)90230-9
http://dx.doi.org/10.1016/0375-9474(74)90230-9
http://dx.doi.org/10.1016/0375-9474(74)90230-9
http://dx.doi.org/10.1016/0370-2693(73)90290-6
http://dx.doi.org/10.1016/0370-2693(73)90290-6
http://dx.doi.org/10.1016/0370-2693(73)90290-6
http://dx.doi.org/10.1016/0370-2693(73)90290-6
http://dx.doi.org/10.1142/S0218301309012963
http://dx.doi.org/10.1142/S0218301309012963
http://dx.doi.org/10.1142/S0218301309012963
http://dx.doi.org/10.1142/S0218301309012963
http://dx.doi.org/10.1103/RevModPhys.44.320
http://dx.doi.org/10.1103/RevModPhys.44.320
http://dx.doi.org/10.1103/RevModPhys.44.320
http://dx.doi.org/10.1103/RevModPhys.44.320
http://dx.doi.org/10.1109/TVCG.2012.287
http://dx.doi.org/10.1109/TVCG.2012.287
http://dx.doi.org/10.1109/TVCG.2012.287
http://dx.doi.org/10.1109/TVCG.2012.287
http://dx.doi.org/10.1103/PhysRevLett.107.132501
http://dx.doi.org/10.1103/PhysRevLett.107.132501
http://dx.doi.org/10.1103/PhysRevLett.107.132501
http://dx.doi.org/10.1103/PhysRevLett.107.132501
http://dx.doi.org/10.1016/j.cpc.2004.02.003
http://dx.doi.org/10.1016/j.cpc.2004.02.003
http://dx.doi.org/10.1016/j.cpc.2004.02.003
http://dx.doi.org/10.1016/j.cpc.2004.02.003
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.013
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.013
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.013
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.013
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.038
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.038
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.038
http://dx.doi.org/10.1016/j.nuclphysa.2004.01.038



