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An extension of the time-dependent Hartree-Fock-Bogoliubov theory (ETDHFB) which includes higher-order
effects such as screening of the pairing correlation is proposed. ETDHFB is applied to a pairing model and a
fermion system trapped in a harmonic potential to test its feasibility by comparison with exact solutions. With the
use of perturbative expressions for the pairing tensor and the two-body density matrix derived from ETDHFB,
the screening effect is investigated for atomic fermion systems and isotopes of tin nuclei. It is found that the
screening effect on the pairing correlation is not significant.
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I. INTRODUCTION

The study of higher-order effects on superfluidity has
been attracting strong theoretical interests in many fields
of physics including nuclear physics. Many-body effects
that go beyond the Bardeen-Cooper-Schrieffer theory (BCS)
may include the medium polarization known as Gorkov and
Melik-Barkhudarov (GMB) correction [1], the self-energy
correction, the vertex correction, and so on. Most calculations
for neutron matter [2-5] and dilute Fermi gases [1,5-7] show
suppression of the pairing correlation due to the medium
polarization, whereas studies of finite nuclei treating the
medium polarization as low-lying vibrations give opposite
results [8]. Theoretical studies on the higher-order effects
usually start from the generalized gap equation [9] which
consists of the particle-particle irreducible kernel and the
anomalous propagator, and higher-order corrections are made
for these quantities. The fact that various approaches give
contradictory results suggests the necessity of a consistent
microscopic treatment of various higher-order effects on the
same footing. Monte Carlo calculations [5,10-12] and, eventu-
ally, exact diagonalization are certainly consistent approaches
but are restricted to rather small systems (and configuration
spaces for the latter) and, thus, have also their limitations. It is,
therefore, desirable to develop many body techniques which
go beyond the standard BCS theory in a systematic way as has
been done in Refs. [13—15] and check their validity for cases
where exact solutions can be obtained [16].

In the present paper we propose an extension of the time-
dependent Hartree-Bogoliubov theory (TDHFB) to include
higher-order effects. We formulate the extended TDHFB
(ETDHFB) using a truncation scheme similar to that used
in the time-dependent density-matrix theory (TDDM) in
the normal-fluid regime [17,18], where higher-order reduced
density matrices are approximated by lower-order density
matrices to truncate the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy for reduced density matrices.
TDDM has in the past demonstrated its effectiveness in various
applications [18-20] and it can reasonably be assumed that
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its extension to the superfluid case will show equally good
performance. The advantages of ETDHFB are that it has a
direct connection to TDHFB and that various correction terms
are expressed explicitly, contrary to Monte Carlo approaches.
To show the feasibility of ETDHFB, we apply it to a pairing
model and a fermion system trapped in a harmonic potential
where comparison with the exact solution can be made. Using
perturbative expressions for the pairing tensor and two-body
density matrix derived from ETDHFB, we study the screening
effect on the pairing correlation for trapped fermion systems
and nuclei of tin isotopes and make contact with earlier work.

The paper is organized as follows. The ETDHFB equations
and the perturbative expressions for the pairing tensor and the
two-body correlation matrix are given in Sec. II. The obtained
results for the pairing model, trapped fermions, and tin isotopes
are presented in Sec. III, and Sec. IV is devoted to the summary.

II. FORMULATION
A. ETDHFB equations

We consider a Hamiltonian consisting of a one-body part
and a two-body interaction:

1
H =3 (elio)alax +5 D (eplole’ falapap .

ao’ afa’p’

)]

where a, and a, are the creation and annihilation operators of
a fermion in a time-independent single-particle state o.

We first consider the equation of motion for the density
matrix n,, which is defined as nyy = (@(t)|al,ao,|<1>(t)).
Here, |®(z)) is the time-dependent total wave function
|®(1)) = exp(—i(H — uN)/h)|(0)), where N is the number
operator and u is the chemical potential. In the equation
of motion for the density matrix iy, = (<I>(t)|[ai/aa,H —
uN1|®(r)), there appears a two-body density matrix
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Papa'pr = (d>(t)|ai,a;,a,gaa|d>(t)). We decompose it as

Papa'p = Naopp — Nappar + KapKep + Coparp- (2)

Here, «,s 1is the pairing tensor given by «.p =
(®(t)|agas|P(r)). The matrix Cupwp describes two-body
correlations which are not included through the pairing tensor.
In TDHFB the last term in Eq. (2), that is Cypq g, is neglected.
Similarly, in the equation of motion for the pairing tensor
ihkeg = (®()|lagae, H — wN1|®(1)), there appears a matrix
given by (q)(t)lal,ayaﬁaa@(t)). We decompose it as

(@(1)]abayapaq] D))
= Nya'Kap — Npa'Kay + RawKpy + Kozﬁy:a’- (3)

The last term in the above equation is omitted in TDHFB. The
matrices Cogarpr and Kog, .o describe higher-order effects. The
equation for the density matrix is now extended as

lhnaa’ = (ea)\n)\ot’ - nOt)Le)\C(/) + (ACMKO/)L - Aa')\Ka)L)a
A A

+ D Kokt [v1AaA3)Cayrsars,

)»])Lg)ng
_CQMMM (A'2)\‘3|U|a/)"l>]7 (4)
where €, is given by
€ao = (alt]) + Y (ahi[vle/Aa) ans, 5)
)\.1)\.2

and the pairing potential Ayg by

1
Bap = 5 Y {@BII1AD AR - ©

Ao

Here, the subscript A means that the corresponding matrix is
antisymmetrized. Equations (5) and (6) denote the energy-
independent (static) part of the single-particle normal and
anomalous self energies in Gorkov Green’s function theory,
respectively [13,21]. The equation of motion for Cypap is
given by

ihCoparp = Z (€arCaparp + €p:Cararp — €1 Caprp
X

- ekﬁ’caﬂa’k) + Baﬁa’ﬁ’ + Paﬁa’ﬂ’ + Haﬂa’ﬂ’
+ Saﬁct’ﬂ’ + Taﬂa’ﬁ“ (7)

In order to close the coupled chain of equations of motion,
we approximated the matrix (<I>(t)|al,a;,a;,ayaﬁaa|<I>(t)) by
antisymmetrized product combinations of nqa/, Ko, Capa'p's
and Kopy.or such as neanpgny,, naaCpypry's Naakpykp,,
KapKygr,y» and Ky g Koy In Eq. (7) Bypap describes
the two-particle (2p)-two-hole (2h) and 2h-2p excitations,
Puporp P-p (and h-h) correlations which are not included in
the pairing tensor, and Hygy g p-h correlations. The terms in
Saparp and Typep express the coupling to kg and Kegy .o/,
respectively. The expressions for the matrices in Eq. (7) are
given in Appendix A. The equation for Cogarpr Without Sege g
and Ty, p are the same as that in TDDM [18]. Since the
total wave function |®(#)) is not an eigenstate of the number
operator, the couplings to kg and Kg, .. appear in Eq. (7).
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The equation for the pairing tensor is also extended so that

ihkozﬁ = Z(gakK)Lﬂ + gﬂkKak) + Aaﬂ
A

+ Z(Aﬁxna/\ — Agang)
n

— Y (e |vlrars) K payig,
A1hoAz

+ (A1 Blv[A2A3) Koisnain, ) (8)

where €, = €40 — WSy The equation for Kg,,.o is written
as

ihkaﬂy:a’ = Z (gaAKAﬁy:a’ + gﬁAKa)Ly:a/ + gyAKaﬁA:a’
A

- gka/ K(xﬂy:k) + Daﬂy:a’ + Eaﬂy:a”
+ Faﬁy:a’ + Gaﬁy:vt" (9)

We approximated the matrix (®(t)|al/ag/a5aya,gaa|<I>(t)) by
antisymmetrized product combinations of nyq, Kag, Capa'p's
and Kug,.o. The terms in Dgyg, . and Eqg, . describe the
coupling to the pairing tensor and to the product of three pairing
tensors, respectively. The terms in Fg,,.ow describe correlations
involving Kug,.or. The coupling to Cypep iS contained in
Gopy:o- The matrices in Eq. (9) are given in Appendix A.
Equations (4) and (8) may be written in matrix form as in
TDHFB:

ihR — [H,R] = [V.K], (10)

where in obvious notation

R=(1 %), an
M= (_GA* _i) (12)
=% %) (13)
V= (8 _(3)*). (14)

The ETDHFB equation (4) conserves on average the total
number of particles N = )", nqq as is easily shown by taking
the trace of Eq. (4). Since our formalism is designed to deal
with small fluctuations around the HFB ground state, ETDHFB
cannot recover number symmetry broken by HFB, though
higher-order effects are included, as will be shown below.
The total energy Eq,

1 ! n!
B =) €atlaa +5 ), (@Bl0Ie/B)pwpap,  (15)
a afa’p’

034316-2



EXTENSION OF TIME-DEPENDENT HARTREE-FOCK- ...

may be divided into the mean-field energy Eypg, the pairing
energy Ep,; and the correlation energy Ec, given by

1 ' !
Evr =) €atoa+ 5 ) (B0 B) anaangy,  (16)

afa’ B’
1 *
Epair = 5 Z AaﬂKaﬁa (17)
ap
] /
Ecor = Eaﬁza;,,<aﬂlv|a/ﬁ )Co prap- (18)

To conserve E, we need all ETDHFB equations (4) and
(7).

B. Perturbative expression

To understand various higher-order effects included in
ETDHFB, we derive perturbative expressions for the pairing
tensor and the two-body correlation matrix and show how the
screening effect is treated in ETDHFB.

1. Pairing tensor

First we derive a perturbative expression for the pairing
tensor using the equations of motion of ETDHFB. Since the F
and G terms in Eq. (9) which include Kpy.«» and Cypap are
of higher order, we consider only the D term and assume that
the single-particle energy €,,, the density matrix n,, and the
pairing tensor kg are diagonal: &€, = €,800/, Naw’ = Nabaa’s
and kg = K48ga Where @ stands for the time-reversal state of
a. The E term is also neglected because kkg is small for the
p-h transition where iiong A 1. Then Eq. (9) is written as

inKapya = Eq + &+ & — &) Kapyar
— (aBlv|a'P) a(figli png + nangite i,
—(Byvld'@) a(figiiyng + ngnyiig )y
+(ay vl B) afigit,ng + ngnyiie kg, (19
where 7, = 1 —n,. The stationary condition Ka,gy;a/ =0
gives a perturbative expression for K,g, ... Inserting it into

Eq. (8) and using the stationary condition ko = 0, we can
write the equation for the pairing tensor as

28 A —(1 = 210)Ag +2 Y {@hi|v]daks)a

Ad2A3
o Mgl Ny, + nghy, iy,

gol + g)\,z + g)x} - 6)\.1

+ Y {ahi|vlrzAs)a
AA2d3

X (A2Azlv|adi) ake- (20)

(@A3]v| A2 1) akcs,

My, My, + Ny, N0,
gol + g}nz + g)»:; - g}u]

The second term on the right-hand side can be interpreted
as a correction to A, because it contains the sum over the
pairing tensor as the pair potential does. The corresponding
diagram is shown in Fig. 1(a). We call it the screening term
because a similar process has been shown responsible for the
screening of the pairing correlation [1-3,6]. The last term on
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FIG. 1. Schematic presentation of higher-order effects: (a)
Screening effect, and (b) and (c) self-energy correction. Lines depict
single-particle states and dots the residual interaction.

the right-hand side of Eq. (20) can be interpreted as the self-
energy correction to the single-particle energies 2¢, because
it is proportional to x, as the term on the left-hand side of
Eq. (20). The corresponding diagrams are schematically shown
in Figs. 1(b) and 1(c). Using the BCS relations

1 g
0 2 o
= = — 1—— , 21
Mo = Y 2( Ea> @h
k¥ = vou L (1—2n0)A L Ay, (22)
o e 28, @/ 2E, ¥

where «0 is the pairing tensor in BCS and E, is the quasiparti-

cle energy E, = /€2 + A2, and expressing 2&,ky — 21y Ay
as 2E 4k, we solve Eq. (20) for the pairing tensor:

~0-0 0 0,0 =0
Nghy Ny +ngn; i
A

ga + g)»g + g)u3 - g}\]

1
~ 0
Ky XK, + E, Z {aAq|v|AaA3)
AAoAs
— 0 ICO
X (@halolhahi)ak), + 5= D {ahifvliahs)a
% hidais

=0 =0 0 0,0 =0
RORDN + WSORON (

AoAz|v|adi)a. (23)

€+ &,+6,—&,
Inserting the above expression for «, into Eq. (6), we obtain
the pair potential and also the correction to the pairing energy
Eq. (17). In the case of the simple contact interaction v(r —
r') = g83(r — r’) which is often used in the study of pairing
correlations the spin state of the single-particle state A, in the
screening term of Eq. (23) must be the same as @. This means
that Kfz has a sign opposite to «”. Therefore, the screening
effectis compensated by the self-energy correction. The effects
of the mean-field contribution and the partial occupation of the
single-particle states are also included through €, and the Pauli
blocking factor, respectively.

2. Relation to other perturbative approaches

Next we discuss the relation of our perturbative formulation
and the expression used in Refs. [2,3,6] to study the screening
effect. The latter is related to the self-energy X, of the Gorkov
Green’s function (see Appendix B), where

T = Y (@h|v]Aahs)a

AAads

Do 20 @asulioh) ks, (24)

(,()M =+ g)Q + g)q — g)”
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We focus on the second term on the right-hand side of Eq. (20)
and neglect for the purpose of discussion for the moment the
last term (the self-energy correction). Rewriting the numerator
of the second term as

flolﬁ)»3n)\.1 + nl)tn)\3ﬁ)»1 = ﬁ)»gn)»] + nO( (n)‘&ﬁ)‘«] - ﬁ)ﬂn)‘l)
= Ny, + Ny (n)\.g - nxl), (25)

we can express Eq. (20) without the self-energy contribution
such that

28,k = —(Agy + X)) + 2naA;, (26)
where
ﬁhnll
Yo =2 (ad1|v]AaA3) 4= — —

X (@A3]v|A2A1) aki, (27

and A, = Ay + Zjo(w, = &,). If we consider the single-
particle state near (€, =~ 0) and assume that the pairing tensor
for the single-particle state around @ dominates (this means
also &, ~ 0), X4 is simplified to

Ela(wu ~ 0)
~ ) (ehlvlhais)a

n —n —

2 M@ vloh) aks,  (28)
€y — €

Aoz E

Al

and X, is also given by

n,,
~ =2 Z Ol)»1|U|)»2)\3) — — (@A3]v|Aak) akcs,
Aidars r &
l’l)L3 — Ny, _ -
= D (emilvhaia)a @l Rk a,. (29)

Ahaks A3 T A

In this limit the relation £, &~ X, holds and Eq. (26) is written
as

284kq = —(1 — 2n4)A,. (30)

If Eq. (30) is treated as the BCS equation for «,, we obtain the
modified quasiparticle energy E/ = /€2 + A2 and pairing

tensor «, = —A/,/2E/. The modified gap equation is written
as
=—)Y F, , 31
Z Ay E/ 31
where Fy., is given by
1 —
Fan = 5 (@@ oA} s + Y @b oo T2
S €, — €
X (@Aa|v[Ak1) a- (32)

When we further assume that n, = 0 or 1, we arrive at the
perturbative expression of Refs. [2,3,6]. For a simple contact
interaction g83(r — r’) Eq. (28) always gives a positive value
(screening). The difference between Eqgs. (26) and (30) stems
from the difference in the occupation factors in the numerator
between Eqs. (20) and (24). The occupation factor in Eq. (20)
describes a blocking effect of the p-h excitation caused by the
existence of another particle. As discussed, this difference may
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be small if pairing is concentrated to states close to the Fermi
level (weak coupling).

3. Two-body correlation matrix

Now we consider the corrections to the correlation energy
Eq. (18) which are given by the pertubative expression for the
two-body correlation matrix. In Eq. (7) the terms in Pg, g and
Hepop contain Copergr, and Togqpr includes Kog,, .. Therefore,
the lowest-order corrections are from Bygy g and Segeg. The
pertubative expression for Cypqg Obtained using only the terms
in Segap in Eq. (7) is given by

1 _ _
aB' vl B) arc k% (n® — n,
€a+6ﬂ_€a’_eﬂ’[< /3|| ,3>A ﬁﬁ(a a)

Claﬁa’ﬁ’ =

(B0l B'@) Ak (1) — 1)
— (a1 ) Ak (1) — 1
— (BB'lvlo'a) arcgicy! (nf — n)]. (33)

The perturbative expression for Cypqg Obtained from Eq. (7)
with only the Bggq g is written as

o Bl
2apa’ B ut€p—€w — g
(nongno,n%, — non%n0 ng) (34)

which describes the 2p-2h and 2h-2p excitations. The cor-
rections to the correlation energy obtained from Ciup.p and
Coapapr are related to the self-energies 21, (Eq. (24)) and X,
of the Gorkov Green’s function (see Appendix B), where

My, gy, + 1y, Nty
CUM =+ g)Q =+ g)@ — EM

1
Do = =5 D (ehiluliais)a

AAaks
X (AaAz|v|ohi)a- (35

The self-energy X, describes a correction to the pair
potential A,, similarly to the screening term in Eq. (23),
whereas X,, is a correction to the mean-field potential as
is the case of the normal single-particle Green’s function.
The correlation energy obtained from Cjqpqp corresponds to
the contribution of X, to the total energy because it is written
as Za Xk, whereas the correlation energy obtained from
Coupa g corresponds to the contribution of X»,. The correlation
energy obtained from Cyapq/p gives a significant correction to
the BCS total energy in the case of the pairing Hamiltonian
[22-24].

III. NUMERICAL RESULTS

A. Pairing Hamiltonian

To check the validity of ETDHFB, we first apply it to the
well-known pairing Hamiltonian [22]

Q Q
H :Zea(aja,- +a;a;)—g2aja;a;aj. 36)

i=1 i#]
Here g is the strength of the pairing force acting in a space of 2
twofold degenerate equidistant orbitals with the single-particle
energies €; = (i — 1)Ae. This Hamiltonian has extensively
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FIG. 2. (Color online) Interaction energy E. as a function of g
calculated in ETDHFB (solid line) for N = © = 6. The dotted line
depict the results in BCS. The dot-dashed line shows the exact
solutions.

been used to investigate the validity of theoretical models; see,
e.g., [22-24]. The ground state in ETDHFB is obtained using
an adiabatic method [25]: Starting from the BCS ground state,
we solve the ETDHFB equations [Egs. (4) and (7)—(9) together
with the expressions given in Appendix A] by gradually
increasing the residual interaction such that ¢’ = g x ¢/T.
This method is motivated by the Gell-Mann-Low theorem
[26] and has often been used to obtain approximate ground
states [19]. To suppress oscillating components which come
from the mixing of excited states, we must take large 7: We
use T = 2400 fm/c for Ae = 1 MeV.

The interaction energy E., which is defined by the dif-
ference between the energy of the HF configuration Eyr
and the total energy E(g) at g as E. = Eyp — E(g), is
shown in Fig. 2 as a function of g for N =Q =6. It is
well known [22-24] that BCS underestimates the interaction
energy for the pairing Hamiltonian. ETDHFB significantly
improves BCS because additional two-body correlations such
as 2p-2h excitations are included through the two-body
correlation matrix Cyperpr. However, ETDHFB still slightly
underestimates the correlation energy as shown in Fig. 2. This
indicates that three-body correlations or higher play a role in
the case of the pairing Hamiltonian [23].

The pairing energy Ep,r (solid line) and the correlation
energy E.o (dotted line) calculated in ETDHFB are shown in
Fig. 3 as a function of g'/g for N =Q =6 and g/Ae =
1. Note that Ey and Eco; in ETDHFB are defined by
Eqgs. (17) and (18). The values at g’/g = 0 correspond to
the BCS results. The correlation energy calculated using the
perturbative expression for the two-body correlation matrix
Eq. (34) is also shown by the dot-dashed line. The pairing
Hamiltonian Eq. (36) has no matrix elements for 1p-lh
excitations and, therefore, cannot induce the screening effect:
The screening term in Eq. (23) and the correlation energy
from Eq. (33) vanish. The self-energy correction in Eq. (23)
is also canceled out in the case of the half-filling N = Q.
Therefore, the increase in the pairing energy calculated in
ETDHFB is caused by higher-order correlations in Eq. (9).
The difference between the dashed and dot-dahsed lines in
Fig. 3 also indicates the importance of higher-order effects.
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FIG. 3. (Color online) Pairing energy E, (solid line) and cor-
relation energy E.,, (dotted line) as a function of g’/g calculated
in ETDHFB for N = Q = 6 and g/Ae = 1. The correlation energy
calculated using the perturbative expression for the two-body corre-

lation matrix Eq. (34) is shown with the dot-dashed line. The values
at g'/g = 0 correspond to the results in BCS.

The increase in the pairing energy is overcompensated by the
decrease in the correlation energy, and the correlation energy
gives a significant correction to the results in BCS as has been
pointed out in Refs. [23,24].

The ratio E.(ETDHFB)/E .(exact) is 0.83 at N =Q =6
and g/Ae = 1. Since BCS becomes better approximation with
increasing N, the ratio increases with N: We found that the
ratio in ETDHFB for N = Q2 =12 and g/Ae =1 is 0.88.
This is of the same order as the result from the quasiparticle
coupled-cluster approach for the same number of particles
[16]. On the other hand, the higher-order effects included in
ETDHEFB also play a role in reducing the number fluctuation
measuredby oy =/ (N2) — (N)2: 0y inBCSforN = Q=6
and g/Ae =1 is 2.00 whereas the corresponding value in
ETDHEFB is 1.65. The reduction of oy may be associated with
the increase in Ep,;; shown in Fig. 3. The reduction of oy
in ETDHFB is not so drastic as in the quasiparticle coupled-
cluster approach [16].

In this subsection we found that ETDHFB yields substantial
improvement over BCS for the pairing Hamiltonian. It should
be pointed out, however, that important aspects such as screen-
ing due to particle-hole correlations are absent in the pairing
Hamiltonian and, therefore, important terms in ETDHFB are
not activated and, thus, not tested. In the following model cases
this aspect will be addressed.

B. Trapped fermions
We consider a system of fermions with spin one half,
which is trapped in a spherically symmetric harmonic po-
tential with frequency w. The system is described by the
Hamiltonian

, 1 n
H=>eala,+ 5 > (aplvle’Balalapan.  (37)
o afa’p’
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FIG. 4. (Color online) Total energy as a function of x calculated
in ETDHFB (solid line). The dotted line depicts the results in HFB.
The exact solutions are given by the dot-dashed line.

where a, and a, are the creation and annihilation operators
of an atom at a harmonic oscillator state « corresponding to
the trapping potential V (r) = mw?*r?/2and €, = ho(n + 3/2)
withn = 0,1,2, .... We assume that & contains the spin quan-
tum number o. In Eq. (37) (a¢B|v|a’B’) is the matrix element
of an attractive contact interaction v(r — r’) = g83(r — r').

We consider a system consisting of six fermions whose
noninteracting configuration consists of the partially filled 1p
state. Besides a trap with a small number of cold atoms, our
system may correspond to neutrons in carbon isotopes. For
numerical reasons we only can handle a very restricted space
and small number of particles, since we want to compare with
exact solutions. Using a limited number of the single-particle
states, the 1s, 1p, 1d, and 2s states, we obtain the ground
states in the Hartree-Fock-Bogoliubov (HFB) theory and the
ETDHEFB theory, and compare with the exact solution obtained
from the diagonalization of the Hamiltonian using the same
single-particle space. The ground state in ETDHFB is obtained
using the adiabatic method [25]: Starting from the HFB ground
state, we solve the coupled set of the ETDHFB equations by
gradually increasing the residual interactiong’ = g x t/T.We
use T =4 x 27 /w.

The total energy calculated in ETDHFB (solid line) is
shown in Fig. 4 as a function of x, where yx is given by x =
|g|/hw&3 with £ being the oscillator length (¢ = /A/mw).
In the case of nuclei for which hw ~ 10 MeV is applied,
x =5 corresponds to |g| &~ 400 MeV fm?, which is similar
to the strength of nuclear pairing interactions commonly used
for a small single-particle space [23]. Both the ETDHFB and
HFB results (dotted line) agree well with the exact solutions
(dot-dashed line). The better agreement of the ETDHFB results
is due to the contribution of the correlation energy as shown in
Fig. 5, where the sum Epsi + Ecor(= Ewor — Emp) calculated
in ETDHFB (solid line) is given as a function of . In HFB
the pairing energy Epqir(= Eiot — Emp) is shown. In the exact
case the difference AE = E,; — Evr is shown (dot-dashed
line). HFB underestimates the correlation energy, which agrees
with the results of the pairing model [22-24] and finite nuclei
[23]. The small deviation of the ETDHFB results from the
exact values in Fig. 5 means that nq, and pqgeg in ETDHFB
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FIG. 5. (Color online) Sum Ep + Ecor as as a function of x
calculated in ETDHFB (solid line). The dot-dashed line depicts the
exact solutions. Ep;; in HFB is shown with the dotted line.

also agree with the exact solutions. The difference in the total
energy is smaller than that in the correlation energy. This is
due to a cancellation of errors between the mean-field energy
and the correlation energy [23].

The pairing energy Ep,r (solid line) and Eco (dot-dashed
line) calculated with ETDHFB are shown in Fig. 6 as a
function of g’/g for x =5. The perturbatively calculated
correlation energies using Eq. (33) [the green (gray) dashed
line] and Eq. (34) [green (gray) double-dot—dashed line] are
also shown. The latter has a significant contribution, which
is in agreement with the results for the pairing Hamiltonian
[23,24]. As mentioned above, the former describes a correction
to the total energy due to the screening effect. In the case
of the trapped fermions it is quite small and plays a role
opposite to screening. The sum A, + X, is shown in Fig. 7
for each single-particle state. The self-energy is calculated

Ecorr Eq. (33)
004 \
S ool Ea 38 f
g ETDHFB

LI.[ —04- /Epair
|.u-g "“4—'-_____"_" N

-0.6 /~ 77 -~Eq. (23) with self

Eq. (23) without self ~~~-_
_08 T T T T T
0.0 0.2 04 0.6 0.8 1.0

g/g

FIG. 6. (Color online) Pairing energy Ep, (solid line) and E oy
(dot-dashed line) calculated in ETDHFB for x =5 as a function
of g’/g. The correlation energy calculated using the perturbative
expression for the two-body correlation matrix Eq. (34) is shown
with the green (gray) double-dot—dashed line. The correlation energy
obtained from the two-body correlation matrix Eq. (33) is also shown
with the green (gray) dashed line. The dotted and dashed lines depict
the results of the perturbative approach Eq. (23) with and without
the self-energy correction, respectively. Ep, and Ecor at g'/g =0
correspond to the values in HFB.
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0.0+ 1d
- 1p
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= 0.2
= S
2 034
3
2 -041
_0_5<
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g/e
FIG. 7. (Color online) Pair potential plus the screening term
Ay + Xy, as a function of g’/g for x =5. The solid, dashed,
and dotted lines depict the results for the 1s, 1p, and 1d states,

respectively. The self-energy is calculated at w, = —&,. The values
at g'/g = 0 correspond to the results in HFB.

at w, = —¢&,. The anti-screening behavior of the correlation
energy calculated with Cj4p, ¢ is determined by the self-energy
Y1 of the 1s state. This indicates that the conditions used to
derive Eq. (28) are not fulfilled for the 1s state.

We also test the perturbative approximations for the pairing
tensor. The dotted and dashed lines in Fig. 6 show the results
obtained using Eq. (23) with and without the self-energy
correction, respectively. In these calculations the pairing tensor
given by Eq. (23) where g’ is used for the higher-order terms
(the v? terms) and the pairing potentials in HFB are used
in Eq. (17). Comparison of the results shown by the dotted
and dashed lines indicates that the self-energy correction is
significant and almost cancels the screening effect for the
pairing tensor. This strong cancellation is explained by the
facts that the dominant contributions to the sums in Eq. (23)
come from the 1 p states because the pairing tensor is the largest
for these states, and that only the doubly exchanged matrices in
the screening term contribute because of their spin characters
of the matrix elements. As shown in Fig. 6, the pairing energy
in ETDHFB is slightly increased from the HFB value while
the perturbative approach (dotted line) gives a slight decrease
of the pairing energy. We found that the coupling to Cogep in
Gy o 18 Tesponsible for the slight reduction of the pairing
correlation in ETDHFB.

C. Tin isotopes

In the case of tin isotopes we first perform the BCS+HF cal-
culations following the numerical procedure used in Ref. [27].
The Skyrme III interaction is used to calculate the single-
particle states. For the BCS calculations of n, and «x, we
take the neutron single-particle states, the 1g7/2, 2ds/2, 1h11,2,
3512, and 2d3/; states. As the pairing interaction we use
v= folto + 13 pp)83(r — r’) derived from the Skyrme III force
with xo = 0, where p, is the proton density. A reduction
factor fy = 0.55 is used to approximately reproduce the
excitation energy of the first 2% state in '°Sn in an extended
version of the random-phase approximation (RPA) [27]. This
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Eq. (33
Ecorr ‘\< )
) o
= -1 Eq. (34)
£ ETDHFB
P29 Epi
w 4 EoEie LY
! / par e
§ -3 A
uf Eq. (23) withcﬁ; self
=4 Eg. (23) with self
-5 . . . . .
00 02 04 06 0.8 1.0
f

FIG. 8. (Color online) Pairing energy as a function of f calcu-
lated in the perturbative approaches for '®Sn. The solid and dotted
lines depict the results with and without the self-energy correction,
respectively. The correlation energy calculated using the perturbative
expressions for the two-body correlation matrix, Eqs. (33) and
(34), are shown with the green (gray) dashed and dot-dashed
lines, respectively. The pairing energy and correlation energy in
ETDHFB are shown with the upper and lower double-dot—dashed
lines, respectively. The values at g’/g = 0 correspond to the results
in BCS.

interaction is similar to a density-dependent pairing interaction
vo(1 — p/po)83(r — r’), which has often been used in the
HFB and quasiparticle RPA calculations. To simulate the p-h
excitations of the core in the pertubative calculations of the
higher-order effects, we add several neutron states in the range
—20 < ¢, <1 MeV: The continuum states are discretized
by confining the wave functions in a sphere with radius
15 fm [27]. There are two occupied states, (2p;,2 and 1g9,2)
and 1 to 4 unoccupied states (2 f7/2, 3p1,2, 3p3/2, and 1hg)),
depending on the isotope. We use the same pairing interaction
in the perturbative calculations.

The pairing energies calculated in HF+BCS are —2.68,
—4.65, and —4.27 MeV for '98n, 11°Sn, and 120Sn, respec-
tively. These isotopes correspond to the beginning, middle,
and end of the subshell. The pairing energies calculated using
the perturbative expression for the pairing tensor Eq. (23)
are shown in Figs. 8-10 as a function of the strength f of
the residual interaction: The pairing interaction v used in the

g / :
é Eq. (34) \
w” ~21

Eq. (23) with self ETDHFB

§ —3-
w” Eq. (23) without self /
-4 /Epair .................... N N
-5 : : : : :
00 02 04 06 08 1.0
.I'.‘

FIG. 9. (Color online) Same as Fig. 8 but for ''°Sn.
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FIG. 10. (Color online) Same as Fig. 8 but for '2°Sn.

second-order terms in Eq. (23) is multiplied with an artificial
factor f (f = 1 corresponds to the full strength). As is the case
of the trapped fermion system, there is a cancellation between
the screening term and the self-energy term. However, the
perturbative correction to the pairing tensor is quite small in
the case of the tin isotopes. This may be explained by the fact
that the p-h excitation energies in the tin isotopes normalized
by the averaged pairing potential are a few times larger than
those in the trapped fermion systems. We also performed
perturbative calculations for the pairing energy including the
proton single-particle states in the energy range from —20
to 1 MeV to see the effects of proton p-h excitations on the
screening. The results depend on isotope. We found a small
antiscreening in '°°Sn and ''®Sn and an increase in screening
in 12°Sn: The change in the pairing energy due to the proton
p-h excitations is less than 2.5%.

The correlation energies calculated using Eq. (33) [green
(gray) dashed line] and Eq. (34) [green (gray) dot-dashed line]
are also shown in Figs. 8-10. The corrections to the total
energy from the two-body correlation matrix are much larger
than those from the pairing tensor. The correlation energies
calculated using Eq. (33) are positive, which means that the
pairing correlation is screened by the process given by the
self-energy X, as is shown in Fig. 11, where the sum A, +
Y1« is given for each single-particle state of ''°Sn. The self-
energy is calculated at w,, = —&,. The results shown in Fig 11
indicate that the conditions used in the derivation of Eq. (28)
are approximately fulfilled.

In the ETDHFB calculations we use a small single-particle
space consisting of the neutron 1g7,2, 2ds;, 1hi1/2, 3512,
and 2d3, states because it is hard to calculate the two-body
matrices using the same single-particle space as used in the
perturbative calculations. The ETDHFB results for the pairing
energy (lower double dot-dashed line) and the correlation
energy (upper double-dot—dashed line) are shown in Figs. 8—-10
as a function of f =1¢/T, where T = 1200 fm/c is used.
The pairing energies in ETDHFB are slightly increased
from the perturbative results, indicating the contribution of
nonperturbative effects as is the case of the trapped fermion
system. The correlation energies in ETDHF are similar to the
sum of the perturbative results from Eqs. (33) and (34) except
for 126Sn. In the case of >°Sn the subshell is almost filled and
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FIG. 11. (Color online) Sum A, + ¥, as a function of f for
116Sn. The solid, dashed, dotted, dot-dashed and double-dot—dashed
lines depict the results for the 3sy,,, 2d3)2, 2ds)2, 1872, and 1k,
states, respectively. The self-energy is calculated at ,, = —&,. The
values at g’/g = 0 correspond to the results in BCS.

the p-h excitations are limited within the small single-particle
space used.

IV. SUMMARY

In order to study higher-order effects on the pair-
ing correlation, we formulated an extended time-dependent
Hartree-Fock-Bogoliubov theory (ETDHFB) using a trunca-
tion scheme of the time-dependent density matrix theory. This
approach allows us to calculate the pairing tensor and the two-
body correlation matrix in a nonperturbative way and it also is
used to derive their perturbative expressions. We showed that
the perturbative expression for the two-body correlation matrix
which contains the pairing tensor has a direct connection to
other approaches used in the study of the screening effect
of the pairing correlation. We tested ETDHFB for a pairing
model and fermions trapped in a harmonic potential where
comparison with the exact solution could be made and obtained
reasonable agreement with the exact solutions. We applied the
perturbative expressions to the trapped fermion system and
the tin isotopes, and compared with the results in ETDHFB. It
was found thatm for the systems considered, the perturbative
correction to the pairing energy is small both in the trapped
fermion system and tin isotopes, whereas ETDHFB always
gives a slight increase of the pairing energy, indicating the
importance of nonperturbative effects. It was found that the
perturbative correction to the correlation energy expressed by
the pairing tensor shows a screening effect in the case of the
tin isotopes. It was also found that the perturbative corrections
to the correlation energy supplemented by the contribution
of two-particle—two-hole excitations are similar to the results
from full ETDHFB. The results of our calculations indicate
that the screening correction to the results in HFB or BCS+HF
is at most a few tens percent in the case of small finite systems
considered here, although more quantitative analysis using
larger single-particle space is required.
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APPENDIX A

We present the terms in the equations of motion for Cogarpr and Koy .o Since decomposition of higher-order density matrices
to lower-order ones involves various combinations due to the fact that the total wave function is not an eigenstate of the number
operator, these equations contain many terms. We try to explain the meanings of each term as clearly as possible.

1. Terms in Eq. (7)
The terms in Eq. (7) are given below. B,g. g describes the 2p-2h and 2h-2p excitations as in TDDM [18].

Buparp = Z (Ai22lvIAsha) a[ (8ans — nan, ) (8830 — Mpas)Masa My — Nari Mgy (Sisar — Mg ) (Srupr — naup) |- (A1)
Mdahaha

Particle-particle and h-h correlations which are not included in the pairing tensor are described by Pgq g

Poporp = Z <)‘l)‘-2lv|)‘3)\4)[(8akl‘sﬂkz — 8 Ngr, — nax,SﬁAz)CA3,\4a',s' - (8A3a’ak4ﬂ’ — Spali, g — n»\3a/5x4ﬁ')caml,\2]-

AArA3hy
(A2)
H,pop describes p-h correlations:
Huporp = Z (A1 22101A344) A [Sary (MrsaCosprapr — MasprCouproa) + 8820 (Mo Crsaniar — Nasa Crsain p7)
AA2Asha
— Su2s (naxlck4ﬂlzﬁ’ - nﬁA1CA4aA2ﬁ’) — 82 (nﬂkzc)\ga)qa’ - nakzckgﬂkla’)]- (A3)
The coupling to the pairing tensor is given by Segap':
Separpr = Z (A122lv|Asha) a[Sar, (ﬂx3a/KA4,3Kfz,g/ — MKk ) + 8pi (Mg Kk o — ”)»401”(?»30!’(;1;3’)
Arhshshy
— 8aray (na)th)%ﬁK;i:zﬁ/ - nﬂh’(ha’(:\kzﬂ’) - 8/3’/\4 (nﬁlzKM“K;:a’ - n“AZK'\SfK’C:\k]a’)]' (Ad)
From the decomposition
(®()|a}alal,a,a5a. (1)) = (@(1)]al,al, |0) (@(1)]a) ayapas| D)) + - - - (A5)

we obtain T, g Which expresses the coupling to Kyg, .o
1
Tuparp = ) _(DarK g — DpK i — Dy Kaprop + Ay Kapior) + 3 D (ahalvlraia)a
a MAahsha
x [6‘“' (Q’KﬁM K;’?»zﬂf’?hs + K;’kz Kprpsar — K:’Az Kﬂh)ﬁiﬁ’) =g, (21(‘”4 KE’Azrx’:kz + K;’Az Koz — K:’Az Koth?»z:ﬂ’)
—dass (ZK;Szﬁ’ Koaping + Karg K;:ﬂwzﬂ’iﬁ KB K;:Mzﬂ’wt) + 82, (ZK)Tza/ Kogpin, + Kany K)T])»zct’tﬁ - KﬂMKIMza’:a)]‘
(AO6)

The terms in the first sum describe the coupling to the pairing potential. Since the terms in the second sum contain both p-p
(and h-h) and p-h correlations, they may describe corrections to Pyg, g and Hegy g . In the derivation of Eq. (7) we neglected the

genuine three-body density matrix (dD(t)lal/a;,ai,ayaﬁaa|<I>(t)) as in TDDM.

2. Terms in Eq. (9)
The terms in Eq. (9) are given below. Dgg,, ., describes the coupling to one pairing tensor:

Dopyar = — Y _ (@BlvIA122) 4Ky, + (BY [VIA122) K, — (@ [VIA142) AKB2 i 00
)L1)»2

+ > [lanilvlrara)a(npnkya, — nyaipn) + (BA1[VIAA3) 4 (15, Kary — N kyay)
Ath2Az

+ (V)‘1|U|)‘2)"3>A(na)\1/(,3)»3 - nﬂMKa)Lg)]nAza’ + Z ()"1)‘2|v|a/)‘3>A(nol)»ln}/)»zl(ﬂ)»s —NaNyaKany — na)»lnﬂkzk-}’)hs)‘
AA2h3

(A7)
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The terms in the first sum originate from the decomposition
(q>(t)|al/ayaﬂaa|®(t)> = <<1>(t)|alray|<I>(t))(q>(t)|aﬁaa|<1>(t)) + (A8)
whereas those in the second and third sums from
(®(1)|a)a),asa, apaq| D)) = (D(1)|a)a.| D) (D)) as| D) (D(1)|ayag|d@)) + - . (A9)

The perturbative expression for the pairing tensor Eq. (23) is obtained from the first term and Dyg, . in Eq. (9). From the
decomposition of the matrix

((1)la),alasayapay| D)) = ((1)|alal,|O))(@D)]asa, | DN PO |apay| W) + -+ . (A10)
we also obtain the coupling to three paring tensors given by Eqgy .o/,
Eapyor == Y (@h]vlhaks) akpiieys, — (BAiI0IA2A3) akar, Ky + (¥ M1 10IA2A3) AKea i, K, - (A1)
AAads

These terms express the modification of the two-particle propagator due to the pairing correlations with other particles. The terms
in Fygy . are from

(®(1)|a),al,asayagaq| ®(1) = (B(1)|a)aq|P(0)(P(1)|a},asa, ag| D)) + - - (A12)

and describe correlations among Kyg, o'

Z 0»1)»2|U|)»3)»4)A[(5ax,5ﬁ,\2 — S gr, — 5ﬁxznax.)KyA3,\4:af + (8ﬂA|8yA2 — 8 Nyn, — 5yxznﬁxl)Kax3)\4:a/
Mdakaha

| =

Faﬁy:a’ -

1
— (5axl5y,\2 — Sy, — 3yxznax,)K,3x3x4:af] + Z (AMA2|V|A3A4) 4 [5(5% Kgynsn — 881 Kayisig
MAohsha

+ 8)/)\41 Kaﬁ}\g:)»z)n)qv/ + 8)\,30[’ (n}/)\z Kolﬁ)\.42)u1 - nﬁ)\z KayM:M - nOt)\z KyﬁM:Al )] . (A13)

The terms in the first sum describe p-p (and h-h) correlations while those in the second sum p-h correlations. Since these terms
contain K,g, .., they describe the coupling to collective p-p, h-h, and p-h correlations. The terms in G4g, .. come from

(@()|a)alasa,apaq| ®(1)) = (@()|asa, | DO P(O)|a,a)asay| D)) + - : (Al4)

Gaﬁy:a’ = Z (Aakcﬁya’k - Aﬂkcaya’A + Ay)»cotﬂa’)») - Z ()\1)"2|U|)"3)‘44>A[(5a)\1/(/3)»3 - (SﬁAIKa)q)C}/Ma’)Lz
A AiAarzAg

+ (8}9)»1’{)/)»3 - 87//\1’{/3)»3)60!/\40/)»2 - (800~1KW»3 - 8V)»1Kd)»3)cﬁ)~4a’)»z]' (A15)

These terms describe the coupling to Cegyp. In the above derivation of Eq. (9) the genuine correlated matrices
(®(1)|a),al,asa,apaq|®(1)) and (®(1)]asa, agaq| (1)) are neglected.

APPENDIX B

We consider the Gorkov Green’s function

Gap(t,t')  Fup(t,t) ) B

gaﬂ(t,t ) = <_F(jﬂ(t’t/) —G:ﬁ(f,t/)

where i Gop(t,t') = (0|T(aa(t)ag(t’))|0) and i Fop(t,t") = (0T (aq(t)ag(t'))|0) with a,(t) = expli(H — wl)t/Rlag exp[—i(H —
wN)t/h)]. The Green’s functions are written in terms of the transition amplitudes x = (u|ay|0) and y = (u|ai |0) as

iGap(t.1') = 0t — 1){Olau(Naj(t)|0) — 0" — N(Olak(t)an()I0) = > [0 — ') (Ol ) (ulah0ye =/

n

— 0" = )(0laj|w) (laq|Ohe VM) = 3 [0 — 1)) e T — 0 — 1)) e 0,
"

(B2)
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i Fop(1,1') = 0(t — 1')(Olag()ap(t)]|0) — (' — )(0lag(t)au(®)|0) = Y [0(t — ') (0laq ) {ulag|0)e =/
i
— (" — )(Olag|p) (ulag|0ye =M = 3 716G — 1)y xfe TN — 0" — 1) (yf) wle M,
"

(B3)

The equations of motion for the Green’s functions can be formulated using the equations of motion for the transition amplitudes
xk and y# [13]. First we derive the perturbative expressions for the self-energies of the Green’s function Gyg(t,¢’) which are
related to corrections to the pairing potential and the mean-field potential. The equation motion for x/ is written as

N B 1
ou = (UIlH = uN ag)l0) = —&oxll = Aayg = 5 3 (@hilvliada)aXfis, - (B4)
A2z
where Xgﬂ:zx’ = (ulal,aﬂaaw). We assume that €, = €400/, Naa’ = Rabaer aNd Agg = Aydgs. The equation of motion for

X gﬁ:a, contains the terms proportional to y/ and x4

0u Xligo = (WIH — uN . alapa,)|0) = Co — & — &)Xl + Y [(Aarlv]o! B) 4l — nar)ip
A

— (ABlvla'@) a(ng — ng ke lyy + Z(aﬁ|v|a/A)A(ﬁaﬁﬂna/ + ngngiig)x; + more terms with Xj,.,..  (B5)
A
Inserting X“,. , into Eq. (B4), we obtain

af:a’

I’l)\3 — I’l)‘1

wuxlt = —Exll = Aayl — Y [<axl|v|xzx3>A

(M3|v|7»2)»1)A/<x2]yi4
Aihads

Wy, + &, + &, — &,

1 ), fl)\ ny, +n,,n fl)\
+= > [mnvmzm e VS SI [ PP R Y P (B6)
2)»)»11213 wy +E)L2 +€x3 — €y

The third term is the perturbative expression of the self-energy describing a correction to the pairing potential A, and the last
term a correction to the mean-field potential. The diagonal part of the third term X, is given as

ny; — Ny,

T =Y (@h|v]Aahs)a (@h3]v]Zah1) arcs, (B7)

, € €, — €
MAaAs M+ )\2+ A3 A

Similarly, the self-energy 3, for the last term of Eq. (B6) is given by
My, Mgy, + Mo,y

1
You = —= akli|v|AaA Madszlv|ary)a. B8
2 5 E ( 1||23>Awu+€xz+€k3—€kl(23|l 14 (BY)
Ad2A3

Next we show that the equation for the pairing tensor [Eq. (8)] is derived from that for F,z(¢,#’). This is because the pairing
tensor is given as the equal-time limit of F,g(t,t’) as

. . _ _ W\ *
Z/Eﬂo(—l)Faﬁ(t,t/) =kap = »_ (vj)"xlt. (B9)
I
The equation motion for y/ is written as
. |
0uye = (ullH — uN.al]l0) = &yl + A + 5 Y (ualvleds)a Vi, s, (B10)
STEYE]

where Yé‘,:aﬂ = (u|alagaar|0). Using Eq. (B4) and the complex conjugate of Eq. (B10) (we assume w,, is real), we calculate

Zu[wu(yg)*x[j — (y§)*w,x!*] and obtain

* * * 1 *
0=22 ) ()"l + a3 (56) 35 — Aa D () + 5 D {ehalvliada)a D0 (v6) X,
Iz "

I A1A2A3 2

1 _
+3 D @alviarsha Y (V,,) Xl (B11)

PSpEYES Iz
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When the replacements

> OB = ke,

mo_
s = 1 —ng,

> 8y
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Yy Xl =ne, and 3 (vg) X5, =

— Z:M(Y,{‘l i) Xl = =Koy, are made, the above equation is of the same form as Eq. (8) for a stationary solution.

From the equations of motion for x/, y£, X, and Yy, 4,

we can derive the pertubative expression for «, [Eq. (20)]. Let us
discuss this point in some more detail. Considering Zu[wlb(y;l/t)*xgﬂ:a’ - (y)’j)*wﬂXgﬁ:a,], we show that the term Zu(yj’j)*X”

afa

on the right-hand side of Eq. (B11) is reduced to —K¢g,.ov given in Eq. (19). From the equations of motion for y)’;’“ and X 5,«;;[1/ we

obtain

0=(atés+& =)y (V) Xlipy — D _[(Aavla' B a(ng — nalkp — (MBlvle/@) alng — na ol (y2) " vi

" A

/ - = — * 1
= D (@Bl W aGaligna + nangia) () 5+ 50 Y 0 (raslulhirn)a(Vis ) Xige-

A

(B12)

PA1Aahs

If we use Zﬂ(yg Xl = Spake, Zﬂ(ygj)*y’g = 845(1 — ng), and the additional relation

Z (Y(it’:aﬂ)*xgp:a’ = Z(OIa;’aﬂaallj’) (M'al’apClU'O) ~ 86’&(80E8pa’ - 8pﬁ80a/)ﬁana’lcﬁ — 5(7/5(50&5;;0/ - (Sp&(saot/)flﬁna//(om

w n

(B13)

the right-hand side of Eq. (B12) becomes that of Eq. (19). In a similar way it can be shown that the sum ) M(Y){‘l iy) Xk on the
right-hand side of Eq. (B11) becomes Kq,3,:1, given by Eq. (19). The equations for ny, and Cypep are also related to those for

oy YH "
xk, oy, X(w:a,, and Ya,:aﬁ.
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