Properties of ${}^{15}Be(5/2^+)$

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104 (Received 21 January 2015; published 11 March 2015)

A simple $(sd)^3$ shell-model calculation has previously worked extremely well in predicting absolute energies of the lowest $5/2^+$ state in ¹⁹O, ¹⁷C, and ¹³Be. Here, I apply the same model to ¹⁵Be. When combined with a recent experimental result, the analysis produces tight constraints on the *s* and *d* single-particle energies in ¹³Be.

DOI: 10.1103/PhysRevC.91.034314

PACS number(s): 21.10.Dr, 21.10.Tg, 21.60.Cs, 27.20.+n

I. INTRODUCTION

Even after many years, the neutron-rich Be nuclei still present an exciting field of study. They exhibit a wide range of exotic features. In the 0^+ ground state (g.s.) of ¹²Be, about 68% of the structure corresponds to two neutrons in the *sd* shell with the remainder having the normal *p*-shell character [1–5].

In ¹³Be, states with one and three neutrons in the *sd* shell should exist at reasonably low excitation [6]. Three separate experiments [7–9] have reported an *s*-wave resonance near threshold. A recent experiment [10] found a *d*-wave resonance at 2.39(5) MeV. The inclusion of two *d* states in their analysis lowers the first one to about 2.0 MeV. However, a recent theoretical paper [11] finds the g.s. to be either $3/2^+$ or $5/2^+$. Two more recent experiments [12,13] and a recent analysis [14] all found the lowest *s* state near (or just below) 0.5 MeV. Aksyutina *et al.* [12] suggested a *d* state near 2 MeV. Randisi *et al.* [13] had two *d* states at 0.85 and 2.35 MeV.

For ¹⁴Be, the first mass measurement was made with a pioninduced double-charge-exchange experiment ¹⁴C(π^-, π^+), which gave a mass excess of 40.10(16) MeV [15]. The latest mass evaluation [16] lists 39.95(13) MeV, which corresponds to $E_{2n} = -1.27(13)$ MeV. Only the g.s. is bound. The first 2⁺ is at $E_x = 1.54$ MeV [17] and is thus unbound by about 0.27 MeV. A second 2⁺ state has been suggested [18] at an excitation energy of 3.54(15) MeV [$E_{2n} = 2.28(9)$ MeV]. Some disagreement exists [18,19] concerning the major configurations of the first two 2⁺ states.

Little is known about ¹⁵Be other than the fact that it is unbound. Its g.s. could have $J^{\pi} = 1/2^+$, $3/2^+$, or $5/2^+$. Failure to observe any ¹⁴Be + *n* events that follow two-proton removal from ¹⁷C [20] was taken to be evidence that the lowest $3/2^+$ state of ¹⁵Be is unbound by more than 1.54 MeV for 1*n* decay. [The $3/2^+$ state of ¹⁵Be should be preferentially populated in 2*p* removal from the $3/2^+$ g.s. of ¹⁷C, and its structure is such that it should decay strongly to the 2⁺ of ¹⁴Be and only very weakly to the 0⁺ g.s.] A recent experiment [21] used the reaction ¹⁴Be(*d*, *p*) (in reverse kinematics) to populate a $5/2^+$ state. Its decay was observed by detecting ¹⁴Be + *n* in coincidence. The energy and width of this $5/2^+$ resonance were reported as 1.8(1) MeV and 575(200) keV, respectively.

Reference [20] suggested ¹⁶Be as a good candidate to be a simultaneous 2n emitter if it is bound to ¹⁵Be + n. Indeed, a recent paper [22] claims to have observed this decay. It remains to be seen whether that interpretation survives close scrutiny.

II. $(sd)^3$ STATES IN A + 3n NUCLEI

Lawson [23] used a simple model to calculate energies of $(sd)^3$ states in ¹⁹O. The model assumed the three neutrons occupied the $2s_{1/2}$ and $1d_{5/2}$ orbitals (abbreviated *s* and *d* here) with $1d_{3/2}$ (called *d'* here) neglected. Lawson gave simple expressions for the Hamiltonian matrix elements for all the states in this space: one $1/2^+$, two $3/2^+$, three $5/2^+$, one $7/2^+$, and two $9/2^+$. I have applied this model to ¹⁹O and other nuclei [24]. For nucleus A + 3, I use as *s* and *d* singleparticle energies (spe's) (Table I) the $1/2^+$ and $5/2^+$ energies in nucleus A + 1, where *A* is a *p*-shell core. For two-body matrix elements, I use ones from an earlier treatment of ¹⁸O [25] in which two-nucleon and cluster components were separately identified for nine low-lying positive-parity states.

I ignore the $d_{3/2}$ orbital throughout. With that restriction, within the $(sd)^3$ space, there are three $5/2^+$ states—linear combinations of the three configurations d^3 , d_2^2s , and ds_0^2 , where *s* stands for $2s_{1/2}$ and *d* stands for $1d_{5/2}$. I have previously calculated energies and wave functions for these three $5/2^+$ states in three nuclei ¹⁹O, ¹⁷C, and ¹³Be [24] in the spirit of Lawson [23] by assuming a configuration of $(sd)^3$ coupled to the ground states of ¹⁶O, ¹⁴C, and ¹⁰Be, respectively. Single-particle energies were taken from ¹⁷O, ¹⁵C, and ¹¹Be. In all three cases, the *sd*-shell occupancy in the cores is small, and I ignored it. The resulting *3n* energies are absolute.

One remarkable feature of these $(sd)^3$ calculations was the excellent agreement between calculated absolute energies of the lowest $5/2^+$ states and the known energies of their experimental counterparts. In ¹⁹O and ¹⁷C, the calculations missed the $5/2^+$ energy by about 100 and 50 keV, respectively. For ¹³Be, the lowest $5/2^+$ state had a calculated energy of 1.8 MeV—reasonably close to the lowest known *d* state near 2.0 MeV. Energies of $1/2^+$ and $3/2^+$ states were in poorer agreement in all three nuclei. Thus, I would expect that the energy prediction of the first $5/2^+$ state in ¹⁵Be should be reasonably reliable. This calculation is discussed in the next section.

III. CALCULATIONS FOR ¹⁵Be

The configuration of the lowest states in ¹⁵Be is expected to be three neutrons in the *sd* shell coupled to a *p*-shell ¹²Be g.s.(¹²Be_{1p}). A second set of states with five neutrons in the *sd* shell coupled to the *p*-shell g.s. of ¹⁰Be is likely to lie considerably higher. Very early shell-model calculations [26] obtained a g.s. J^{π} of $5/2^+$ for ¹⁵Be with a $3/2^+$ state nearby

TABLE I. Input energies (MeV) from core +1n nuclei.

Core	$E_n(g.s.)$	E_x		E_n	
		$1/2^{+}$	5/2+	$1/2^{+}$	5/2+
¹⁶ O ¹⁴ C	-4.144 -1.218	0.871 0	0 0.740	-3.273 -1.218	-4.144 -0.478
¹² Be	E_s			E_s	$E_{s} + 2.3$

(at 0.07 MeV) with no $1/2^+$ listed. However, for ¹³Be they have a $1/2^-$ g.s. with $5/2^+$ at 0.05 MeV and a $1/2^+$ state at 1.55 MeV. By analogy with ¹⁷C, which is dominated by the structure ¹⁴C \otimes (*sd*)³, others [20] have suggested that the lowest state in ¹⁵Be will be $3/2^+$. All these states are unbound.

Of course, coupling three *sd*-shell neutrons to the physical g.s. of ¹²Be would do violence to the Pauli principle, but coupling to ${}^{12}\text{Be}_{1p}$ has no such problem. If E_s and E_d , respectively, are the s and d spe's relative to the physical g.s. of ¹²Be, then relative to a pure *p*-shell ¹²Be(g.s.), the spe's are $E'_s = E_s - E_0$ and $E'_d = E_d - E_0$, where E_0 is the energy of ${}^{12}\text{Be}_{1p}(\text{g.s.})$ relative to ${}^{12}\text{Be}_{phys}(\text{g.s.})$. The wellestablished wave function [3] for ¹²Be_{phys} (g.s.) has 68% of the configuration ${}^{10}\text{Be}_{1p} \otimes (sd)^2$ and ${}^{22\%}$ of ${}^{12}\text{Be}_{1p}$, with the excited 0^+ state at 2.24 MeV [27] having the orthogonal configuration. With these two wave functions, E_0 would be 1.52 MeV, but it will turn out that the final results do not depend on E_0 . I previously estimated $E_d - E_s$ in ¹³Be [24] to be about 2.3 MeV. I arrived at that value by considering the trends of the lowest $1/2^+$ and $5/2^+$ states in N = 9 and in Z = 4 nuclei. I treat E_s as an unknown parameter to be determined later. For any expected value of E_s , $E_s - E_0$ will be negative so that the *s* state is bound relative to ${}^{12}\text{Be}_{1\,p}(\text{g.s.})$.

In the ${}^{12}\text{Be}_{1p} \otimes (sd)^3$ space, the diagonal matrix elements of the Hamiltonian will all contain a term $-3E_0$. The eigenvalues from this calculation can then be transformed back to ones relative to the physical ${}^{12}\text{Be}(g.s.) \otimes (sd)^3$ by adding $3E_0$ to each eigenvalue. The final results will thus be independent of E_0 and will be energies relative to ${}^{12}\text{Be}_{phys}(g.s.) + 3n$.

The dominant feature of nuclei just below ¹⁶O is the rapid decrease of the energy of the $2s_{1/2}$ orbital with decreasing mass. In ¹⁷O, it is 0.87 MeV [28] above the $d_{5/2}$; in ¹⁵C it is 0.74 MeV [29] below, and in ¹³Be it is about 2.3 MeV [10,24] below. In ¹⁹O the $5/2^+$ state is predominantly of the configuration $(d_{5/2})^3$, whereas the $1/2^+$ is nearly pure $(d_{5/2})^2(2s_{1/2})$. In ¹⁷C the $5/2^+$ is much less pure—with approximately equal

TABLE II. Configuration intensities for the first $5/2^+$ states in relevant nuclei.

Nucleus	d^3	d^2s	ds^2
¹⁹ 0	0.89	Small	0.11
¹⁷ C	0.53	Very small	0.47
¹⁵ Be, $E_d - E_s = 2.3 \text{MeV}$	0.14	0.01	0.85
15 Be, $E_s = 0.50$,	0.59	Very small	0.41
$E_d = 1.88 \mathrm{MeV}$			

TABLE III. Results (MeV) for the lowest $5/2^+$ states in core +3n nuclei.

Final nucleus	$E_{3n}(g.s.)$	$E_x(5/2^+)$	$E_{3n}(\text{calc})$	$E_{3n}(\text{expt.})$
¹⁹ O	-16.14	0.0	-16.04	-16.14
¹⁷ C	-6.20	0.33	-5.814	-5.87
¹⁵ Be,	Unknown		$3E_s + 0.358$	0.53(16)
$E_d - E_s = 2.3 \text{ MeV}$ ¹⁵ Be, $E_s = 0.50$, $E_d = 1.88 \text{ MeV}$	Unknown		0.53	0.53(16)

components of d^3 and ds^2 (Table II), but the $1/2^+$ is still close to single particle.

In the next three subsections, I present results for the lowest $5/2^+$ state of ¹⁵Be for three different assumptions about spe's.

A. $E_d - E_s = 2.3 \text{ MeV}, E_s \text{ to be determined}$

With $E_d - E_s = 2.3 \, MeV$ in ¹³Be [24], the wave function of the lowest $5/2^+$ state in ¹⁵Be is as listed in Table II. Keeping $E_d - E_s$ fixed will cause all ¹⁵Be eigenvalues to contain a term $3E_s$. Then, equating the calculated energy of the lowest $5/2^+$ state (Table III) to the experimental value of $E_{3n} =$ $0.53(16) \,\text{MeV} [E_n (^{15}\text{Be}) = 1.8(1) \,\text{MeV}; E_{2n} (^{14}\text{Be}(\text{g.s.})) =$ $-1.27(13) \,\text{MeV}$] produces a value of $E_s = 0.06(6) \,\text{MeV}$. Recall that several early experiments [7–9] suggested an *s* state near threshold. However, more recent work [12–14] places it near 0.5 MeV, a fact that leads to the next subsection.

B. $E_s = 0.50 \text{ MeV}, E_d$ to be determined

If I set $E_s = 0.50$ MeV, I can compute the $5/2^+$ eigenvalue for various values of E_d . Then, requiring this calculated E_{3n} to be equal to 0.53(16) MeV establishes $E_d = 1.88(10)$ MeV close to the lowest known d state at 2 MeV. Future experiments should be able to determine whether this state is primarily single particle or $(sd)^3$.

FIG. 1. Relationship (with an uncertainty band) between the single-particle energies E_s and E_d to reproduce the absolute energy $[E_n = 1.8(1), E_{3n} = 0.53(16) \text{ MeV}]$ of the lowest $5/2^+$ state in ¹⁵Be.

TABLE IV. Calculated and measured widths (keV) of ${}^{15}Be(5/2^+)$.

Source	S	Γ_{sp}	$\Gamma_{\rm calc} = S\Gamma_{sp}$	Γ _{expt.}
Reference [21]	0.44	405	178	575(200)
Present paper	0.9	430	390	

C. E_s and E_d both variable

If I vary both E_s and E_d , requiring the lowest $5/2^+$ eigenvalue to match the experimental value provides a relationship between E_s and E_d as illustrated in Fig. 1. Here, I plot values of E_d vs E_s with uncertainty bands that produce $E_{3n} = 0.53(16)$ MeV. The fact that ¹³Be has no bound states requires $E_s > 0$, which results in an upper limit on E_d of about 2.3 MeV. A lower limit is provided by the fact that all experiments have found E_s less than about 0.7 MeV. Any pair of values within this band will reproduce the experimental $5/2^+$ energy.

D. Width of the $5/2^+$ resonance

As mentioned in the Introduction, the measured width of the $5/2^+$ resonance was 575(200) keV [21]. Even with the large uncertainty, this width is much larger than expected. Combining the published spectroscopic factor S = 0.44 and the single-particle width $\Gamma_{sp} = 405 \text{ keV}$ [21] produces an expected width $\Gamma_{calc} = 178 \text{ keV}$. The experimental width is thus about 2σ larger than the calculated value. I estimate a slightly larger *sp* width of 430 keV but a much larger spectroscopic factor $S \sim 0.9$. Even so, the observed width is still larger than expected (Table IV). The extra width could arise from decays of the $5/2^+$ state to the first 2^+ state of ¹⁴Be. If the 2^+ configuration is primarily *ds* as I suggested [19], rather than *dd* as suggested elsewhere [18], the $5/2^+$ state would have a strong $\ell = 0$ branch to the 2^+ state. [The d^2s component in the lowest $5/2^+$ state is tiny for any value of $E_d - E_s$.] This branch might be observable as ¹²Be + 3*n* coincidences because the 2^+ is unbound.

IV. SUMMARY

A simple $(sd)^3$ shell-model calculation has previously proven quite successful in reproducing the absolute energies of the lowest $5/2^+$ state in several A + 3n nuclei, where A is a p-shell core. Here, I have applied the same model to ¹⁵Be. Requiring the calculated $5/2^+$ energy to agree with the experimental value of $E_n = 1.8(1)$ MeV [$E_{3n} = 0.53(16)$ MeV] provides tight constraints on the s and d spe's. In particular, if $E_d - E_s$ is about 2.3 MeV as previously suggested, the analysis requires $E_s = 0.06(6)$ MeV. If, instead, I use $E_s =$ 0.50 MeV as recently claimed [12–14], the result is $E_d =$ 1.88(1) MeV. For other values of the spe's, I have presented, in graphical form, the relationship between E_s and E_d that reproduces the experimental energy. I have also computed the expected width of this $5/2^+$ resonance, and I suggest a possible source of the extra width.

- [1] H. T. Fortune, G.-B. Liu, and D. E. Alburger, Phys. Rev. C 50, 1355 (1994).
- [2] T. Suzuki and T. Otsuka, Phys. Rev. C 56, 847 (1997).
- [3] R. Sherr and H. T. Fortune, Phys. Rev. C 60, 064323 (1999).
- [4] A. Navin et al., Phys. Rev. Lett. 85, 266 (2000).
- [5] R. Meharchand et al., Phys. Rev. Lett. 108, 122501 (2012).
- [6] H. T. Fortune and R. Sherr, Phys. Rev. C 82, 064302 (2010).
- [7] M. Thoennessen, S. Yokoyama, and P. G. Hansen, Phys. Rev. C 63, 014308 (2000).
- [8] G. Christian *et al.*, Nucl. Phys. A **801**, 101 (2008).
- [9] H. Simon et al., Nucl. Phys. A 791, 267 (2007).
- [10] Y. Kondo et al., Phys. Lett. B 690, 245 (2010).
- [11] Y. Kanada-En'yo, Phys. Rev. C 85, 044320 (2012).
- [12] Y. Aksyutina et al., Phys. Rev. C 87, 064316 (2013).
- [13] G. Randisi et al., Phys. Rev. C 89, 034320 (2014).
- [14] H. T. Fortune, Phys. Rev. C 90, 064305 (2014).
- [15] R. Gilman, H. T. Fortune, L. C. Bland, R. R. Kiziah, C. F. Moore, P. A. Seidl, C. L. Morris, and W. B. Cottingame, Phys. Rev. C 30, 958 (1984).
- [16] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

- [17] T. Sugimoto et al., Phys. Lett. B 654, 160 (2007).
- [18] Yu. Aksyutina *et al.*, Phys. Rev. Lett. **111**, 242501 (2013).
- [19] H. T. Fortune, Phys. Rev. C 89, 044312 (2014).
- [20] A. Spyrou et al., Phys. Rev. C 84, 044309 (2011).
- [21] J. Snyder, T. Baumann, G. Christian, R. A. Haring-Kaye, P. A. DeYoung, Z. Kohley, B. Luther, M. Mosby, S. Mosby, A. Simon, J. K. Smith, A. Spyrou, S. Stephenson, and M. Thoennessen, Phys. Rev. C 88, 031303(R) (2013).
- [22] A. Spyrou et al., Phys. Rev. Lett. 108, 102501 (2012).
- [23] R. D. Lawson, *Theory of the Nuclear Shell Model* (Clarendon, Oxford, 1980), p. 63ff.
- [24] H. T. Fortune, Phys. Rev. C 87, 014305 (2013).
- [25] R. L. Lawson, F. J. D. Serduke, and H. T. Fortune, Phys. Rev. C 14, 1245 (1976).
- [26] N. A. F. M. Poppelier, L. D. Wood, and P. W. M. Glaudemans, Phys. Lett. B 157, 120 (1985).
- [27] S. Shimoura et al., Phys. Lett. B 560, 31 (2003).
- [28] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A 564, 1 (1993).
- [29] F. Ajzenberg-Selove, Nucl. Phys. A 360, 1 (1981).