Properties of 15 **Be**($5/2^+$)

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104 (Received 21 January 2015; published 11 March 2015)

A simple $(sd)^3$ shell-model calculation has previously worked extremely well in predicting absolute energies of the lowest $5/2^+$ state in ¹⁹O, ¹⁷C, and ¹³Be. Here, I apply the same model to ¹⁵Be. When combined with a recent experimental result, the analysis produces tight constraints on the s and d single-particle energies in 13 Be.

DOI: [10.1103/PhysRevC.91.034314](http://dx.doi.org/10.1103/PhysRevC.91.034314) PACS number(s): 21.10.Dr, ²¹.10.Tg, ²¹.60.Cs, ²⁷.20.+ⁿ

I. INTRODUCTION

Even after many years, the neutron-rich Be nuclei still present an exciting field of study. They exhibit a wide range of exotic features. In the 0^+ ground state (g.s.) of ¹²Be, about 68% of the structure corresponds to two neutrons in the sd shell with the remainder having the normal p -shell character $[1-5]$.

In 13 Be, states with one and three neutrons in the sd shell should exist at reasonably low excitation [\[6\]](#page-2-0). Three separate experiments [\[7–9\]](#page-2-0) have reported an s-wave resonance near threshold. A recent experiment $[10]$ found a d-wave resonance at $2.39(5)$ MeV. The inclusion of two d states in their analysis lowers the first one to about 2.0 MeV. However, a recent theoretical paper [\[11\]](#page-2-0) finds the g.s. to be either $3/2^+$ or $5/2^+$. Two more recent experiments $[12,13]$ and a recent analysis [\[14\]](#page-2-0) all found the lowest s state near (or just below) 0.5 MeV. Aksyutina *et al.* [\[12\]](#page-2-0) suggested a d state near 2 MeV. Randisi *et al.* [\[13\]](#page-2-0) had two d states at 0.85 and 2.35 MeV.

For 14 Be, the first mass measurement was made with a pioninduced double-charge-exchange experiment ${}^{14}C(\pi^-, \pi^+)$, which gave a mass excess of $40.10(16)$ MeV $[15]$. The latest mass evaluation [\[16\]](#page-2-0) lists 39.95(13) MeV, which corresponds to $E_{2n} = -1.27(13)$ MeV. Only the g.s. is bound. The first 2^+ is at $E_x = 1.54 \,\text{MeV}$ [\[17\]](#page-2-0) and is thus unbound by about 0.27 MeV. A second 2^+ state has been suggested [\[18\]](#page-2-0) at an excitation energy of 3.54(15) MeV $[E_{2n} = 2.28(9) \text{ MeV}]$. Some disagreement exists [\[18,19\]](#page-2-0) concerning the major configurations of the first two 2^+ states.

Little is known about 15 Be other than the fact that it is unbound. Its g.s. could have $J^{\pi} = 1/2^{+}$, $3/2^{+}$, or $5/2^{+}$. Failure to observe any $14Be + n$ events that follow two-proton removal from ${}^{17}C$ [\[20\]](#page-2-0) was taken to be evidence that the lowest $3/2$ ⁺ state of ¹⁵Be is unbound by more than 1.54 MeV for 1n decay. [The $3/2^+$ state of ¹⁵Be should be preferentially populated in 2p removal from the $3/2^{+}$ g.s. of ¹⁷C, and its structure is such that it should decay strongly to the 2^+ of $14Be$ and only very weakly to the 0^+ g.s.] A recent experiment [\[21\]](#page-2-0) used the reaction 14 Be(d, p) (in reverse kinematics) to populate a $5/2^+$ state. Its decay was observed by detecting ¹⁴Be + n in coincidence. The energy and width of this $5/2^+$ resonance were reported as 1.8(1) MeV and 575(200) keV, respectively.

Reference $[20]$ suggested ¹⁶Be as a good candidate to be a simultaneous 2*n* emitter if it is bound to ¹⁵Be + *n*. Indeed, a recent paper [\[22\]](#page-2-0) claims to have observed this decay. It remains to be seen whether that interpretation survives close scrutiny.

II. $(sd)^3$ **STATES IN** $A + 3n$ **NUCLEI**

Lawson [\[23\]](#page-2-0) used a simple model to calculate energies of $(sd)^3$ states in ¹⁹O. The model assumed the three neutrons occupied the $2s_{1/2}$ and $1d_{5/2}$ orbitals (abbreviated s and d here) with $1d_{3/2}$ (called *d'* here) neglected. Lawson gave simple expressions for the Hamiltonian matrix elements for all the states in this space: one $1/2^+$, two $3/2^+$, three $5/2^+$, one $7/2^+$, and two $9/2^+$. I have applied this model to ¹⁹O and other nuclei [\[24\]](#page-2-0). For nucleus $A + 3$, I use as s and d single-particle energies (spe's) (Table [I\)](#page-1-0) the $1/2^+$ and $5/2^+$ energies in nucleus $A + 1$, where A is a p-shell core. For two-body matrix elements, I use ones from an earlier treatment of ^{18}O [\[25\]](#page-2-0) in which two-nucleon and cluster components were separately identified for nine low-lying positive-parity states.

I ignore the $d_{3/2}$ orbital throughout. With that restriction, within the $(sd)^3$ space, there are three $5/2^+$ states—linear combinations of the three configurations d^3 , d_2^2s , and ds_0^2 , where s stands for $2s_{1/2}$ and d stands for $1d_{5/2}$. I have previously calculated energies and wave functions for these three $5/2^+$ states in three nuclei ¹⁹O, ¹⁷C, and ¹³Be [\[24\]](#page-2-0) in the spirit of Lawson [\[23\]](#page-2-0) by assuming a configuration of $(sd)^3$ coupled to the ground states of ${}^{16}O$, ${}^{14}C$, and ${}^{10}Be$, respectively. Single-particle energies were taken from ^{17}O , ^{15}C , and ^{11}Be . In all three cases, the sd -shell occupancy in the cores is small, and I ignored it. The resulting 3n energies are absolute.

One remarkable feature of these $(sd)^3$ calculations was the excellent agreement between calculated absolute energies of the lowest $5/2^+$ states and the known energies of their experimental counterparts. In ^{19}O and ^{17}C , the calculations missed the $5/2^+$ energy by about 100 and 50 keV, respectively. For 13 Be, the lowest $5/2^+$ state had a calculated energy of 1.8 MeV—reasonably close to the lowest known d state near 2.0 MeV. Energies of $1/2^+$ and $3/2^+$ states were in poorer agreement in all three nuclei. Thus, I would expect that the energy prediction of the first $5/2^+$ state in ¹⁵Be should be reasonably reliable. This calculation is discussed in the next section.

III. CALCULATIONS FOR 15Be

The configuration of the lowest states in $15Be$ is expected to be three neutrons in the sd shell coupled to a p-shell 12 Be g.s.($^{12}Be_{1p}$). A second set of states with five neutrons in the sd shell coupled to the p -shell g.s. of 10 Be is likely to lie considerably higher**.** Very early shell-model calculations [\[26\]](#page-2-0) obtained a g.s. J^{π} of $5/2^+$ for ¹⁵Be with a $3/2^+$ state nearby

TABLE I. Input energies (MeV) from core $+1n$ nuclei.

Core	E_n (g.s.)	E_x		E_n	
		$1/2^+$	$5/2^+$	$1/2^+$	$5/2^+$
16 O 14 C 12Be	-4.144 -1.218 E_{s}	0.871 θ	θ 0.740	-3.273 -1.218 E_{s}	-4.144 -0.478 $E_{s} + 2.3$

(at 0.07 MeV) with no $1/2^+$ listed. However, for ¹³Be they have a $1/2$ ⁻g.s. with $5/2$ ⁺ at 0.05 MeV and a $1/2$ ⁺ state at 1.55 MeV. By analogy with ^{17}C , which is dominated by the structure ${}^{14}C \otimes (sd)^3$, others [\[20\]](#page-2-0) have suggested that the lowest state in ¹⁵Be will be $3/2^+$. All these states are unbound.

Of course, coupling three sd -shell neutrons to the physical g.s. of 12Be would do violence to the Pauli principle, but coupling to ¹²Be_{1p} has no such problem. If E_s and E_d , respectively, are the s and d spe's relative to the physical g.s. of ¹²Be, then relative to a pure p-shell ¹²Be(g.s.), the spe's are $E'_{s_2} = E_s - E_0$ and $E'_d = E_d - E_0$, where E_0 is the energy of $^{12}Be_{1p}(g.s.)$ relative to $^{12}Be_{phys}(g.s.)$. The well-established wave function [\[3\]](#page-2-0) for ${}^{12}Be_{\text{phys}}(g.s.)$ has 68% of the configuration ¹⁰Be_{1p} ⊗ (sd)² and 32% of ¹²Be_{1p}, with the excited 0^+ state at 2.24 MeV [\[27\]](#page-2-0) having the orthogonal configuration. With these two wave functions, E_0 would be 1.52 MeV, but it will turn out that the final results do not depend on E_0 . I previously estimated $E_d - E_s$ in ¹³Be [\[24\]](#page-2-0) to be about 2.3 MeV. I arrived at that value by considering the trends of the lowest $1/2^+$ and $5/2^+$ states in $N = 9$ and in $Z = 4$ nuclei. I treat E_s as an unknown parameter to be determined later. For any expected value of E_s , $E_s - E_0$ will be negative so that the s state is bound relative to ¹²Be_{1p}(g.s.).

In the ¹²Be_{1p} ⊗ (sd)³ space, the diagonal matrix elements of the Hamiltonian will all contain a term $-3E_0$. The eigenvalues from this calculation can then be transformed back to ones relative to the physical ¹²Be(g.s.) $\otimes (sd)^3$ by adding 3 E_0 to each eigenvalue. The final results will thus be independent of E_0 and will be energies relative to ¹²Be_{phys} (g.s.) + 3*n*.

The dominant feature of nuclei just below 16 O is the rapid decrease of the energy of the $2s_{1/2}$ orbital with decreasing mass. In ¹⁷O, it is 0.87 MeV [\[28\]](#page-2-0) above the $d_{5/2}$; in ¹⁵C it is 0.74 MeV [\[29\]](#page-2-0) below, and in 13 Be it is about 2.3 MeV [\[10,24\]](#page-2-0) below. In 19 O the $5/2$ ⁺ state is predominantly of the configuration $(d_{5/2})^3$, whereas the $1/2^+$ is nearly pure $(d_{5/2})^2_0(2s_{1/2})$. In 17^C the $5/2⁺$ is much less pure—with approximately equal

TABLE II. Configuration intensities for the first $5/2^+$ states in relevant nuclei.

Nucleus	d^3	d^2s	ds^2
19 O	0.89	Small	0.11
^{17}C	0.53	Very small	0.47
¹⁵ Be, $E_d - E_s = 2.3 \text{ MeV}$	0.14	0.01	0.85
¹⁵ Be, $E_s = 0.50$, $E_d = 1.88 \,\text{MeV}$	0.59	Very small	0.41

TABLE III. Results (MeV) for the lowest $5/2^+$ states in core $+3n$ nuclei.

Final nucleus			$E_{3n}(g.s.) \tE_x(5/2^+) \tE_{3n}(calc) \tE_{3n}(expt.)$	
19 O	-16.14	0.0	-16.04	-16.14
17 C	-6.20	0.33	-5.814	-5.87
15 Be,	Unknown		$3E_s + 0.358$	0.53(16)
$E_d - E_s = 2.3$ MeV				
¹⁵ Be, $E_s = 0.50$,	Unknown		0.53	0.53(16)
$E_d = 1.88 \,\text{MeV}$				

components of d^3 and ds^2 (Table II), but the $1/2^+$ is still close to single particle.

In the next three subsections, I present results for the lowest $5/2^+$ state of ¹⁵Be for three different assumptions about spe's.

A. *Ed* **−** *Es* **= 2***.***3 MeV,***Es***to be determined**

With $E_d - E_s = 2.3 MeV$ in ¹³Be [\[24\]](#page-2-0), the wave function of the lowest $5/2^+$ state in ¹⁵Be is as listed in Table II. Keeping $E_d - E_s$ fixed will cause all ¹⁵Be eigenvalues to contain a term $3E_s$. Then, equating the calculated energy of the lowest $5/2^+$ state (Table III) to the experimental value of $E_{3n} =$ $0.53(16) \text{ MeV } [E_n (1^5 \text{Be}) = 1.8(1) \text{ MeV}; E_{2n} (1^4 \text{Be(g.s.})) =$ $-1.27(13)$ MeV] produces a value of $E_s = 0.06(6)$ MeV. Recall that several early experiments $[7-9]$ suggested an s state near threshold. However, more recent work [\[12–14\]](#page-2-0) places it near 0.5 MeV, a fact that leads to the next subsection.

B. $E_s = 0.50 \,\text{MeV}, E_d$ to be determined

If I set $E_s = 0.50$ MeV, I can compute the $5/2^+$ eigenvalue for various values of E_d . Then, requiring this calculated E_{3n} to be equal to 0.53(16) MeV establishes $E_d = 1.88(10)$ MeV close to the lowest known d state at 2 MeV. Future experiments should be able to determine whether this state is primarily single particle or $(sd)^3$.

FIG. 1. Relationship (with an uncertainty band) between the single-particle energies E_s and E_d to reproduce the absolute energy $[E_n = 1.8(1), E_{3n} = 0.53(16) \,\text{MeV}$ of the lowest $5/2^+$ state in ¹⁵Be.

TABLE IV. Calculated and measured widths (keV) of ${}^{15}Be(5/2^+)$.

Source		Γ_{sp}	$\Gamma_{\text{calc}} = S \Gamma_{sp}$	\cdot expt.
Reference [21]	0.44	405	178	575(200)
Present paper	0.9	430	390	

C. E_s and E_d both variable

If I vary both E_s and E_d , requiring the lowest $5/2^+$ eigenvalue to match the experimental value provides a relationship between E_s and E_d as illustrated in Fig. [1.](#page-1-0) Here, I plot values of E_d vs E_s with uncertainty bands that produce $E_{3n} = 0.53(16)$ MeV. The fact that ¹³Be has no bound states requires $E_s > 0$, which results in an upper limit on E_d of about 2.3 MeV. A lower limit is provided by the fact that all experiments have found E_s less than about 0.7 MeV. Any pair of values within this band will reproduce the experimental $5/2$ ⁺ energy.

D. Width of the 5*/***2⁺ resonance**

As mentioned in the Introduction, the measured width of the $5/2$ ⁺ resonance was 575(200) keV [21]. Even with the large uncertainty, this width is much larger than expected. Combining the published spectroscopic factor $S = 0.44$ and the single-particle width $\Gamma_{sp} = 405 \text{ keV}$ [21] produces an expected width $\Gamma_{\text{calc}} = 178 \,\text{keV}$. The experimental width is thus about 2σ larger than the calculated value. I estimate

a slightly larger sp width of 430 keV but a much larger spectroscopic factor $S \sim 0.9$. Even so, the observed width is still larger than expected (Table IV). The extra width could arise from decays of the $5/2^+$ state to the first 2^+ state of ¹⁴Be. If the 2^+ configuration is primarily ds as I suggested [19], rather than dd as suggested elsewhere [18], the $5/2^+$ state would have a strong $\ell = 0$ branch to the 2^+ state. [The d^2 s component in the lowest $5/2^+$ state is tiny for any value of $E_d - E_s$.] This branch might be observable as ¹²Be + 3n coincidences because the 2^+ is unbound.

IV. SUMMARY

A simple $(sd)^3$ shell-model calculation has previously proven quite successful in reproducing the absolute energies of the lowest $5/2^+$ state in several $A + 3n$ nuclei, where A is a p -shell core. Here, I have applied the same model to 15 Be. Requiring the calculated $5/2^+$ energy to agree with the experimental value of $E_n = 1.8(1)$ MeV $[E_{3n} = 0.53(16)$ MeV] provides tight constraints on the s and d spe's. In particular, if $E_d - E_s$ is about 2.3 MeV as previously suggested, the analysis requires $E_s = 0.06(6)$ MeV. If, instead, I use $E_s =$ 0.50 MeV as recently claimed [12–14], the result is $E_d =$ 1.88(1) MeV. For other values of the spe's, I have presented, in graphical form, the relationship between E_s and E_d that reproduces the experimental energy. I have also computed the expected width of this $5/2^+$ resonance, and I suggest a possible source of the extra width.

- [1] H. T. Fortune, G.-B. Liu, and D. E. Alburger, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.50.1355) **[50](http://dx.doi.org/10.1103/PhysRevC.50.1355)**, [1355](http://dx.doi.org/10.1103/PhysRevC.50.1355) [\(1994\)](http://dx.doi.org/10.1103/PhysRevC.50.1355).
- [2] T. Suzuki and T. Otsuka, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.56.847) **[56](http://dx.doi.org/10.1103/PhysRevC.56.847)**, [847](http://dx.doi.org/10.1103/PhysRevC.56.847) [\(1997\)](http://dx.doi.org/10.1103/PhysRevC.56.847).
- [3] R. Sherr and H. T. Fortune, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.60.064323) **[60](http://dx.doi.org/10.1103/PhysRevC.60.064323)**, [064323](http://dx.doi.org/10.1103/PhysRevC.60.064323) [\(1999\)](http://dx.doi.org/10.1103/PhysRevC.60.064323).
- [4] A. Navin *et al.*, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.85.266) **[85](http://dx.doi.org/10.1103/PhysRevLett.85.266)**, [266](http://dx.doi.org/10.1103/PhysRevLett.85.266) [\(2000\)](http://dx.doi.org/10.1103/PhysRevLett.85.266).
- [5] R. Meharchand *et al.*, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.108.122501) **[108](http://dx.doi.org/10.1103/PhysRevLett.108.122501)**, [122501](http://dx.doi.org/10.1103/PhysRevLett.108.122501) [\(2012\)](http://dx.doi.org/10.1103/PhysRevLett.108.122501).
- [6] H. T. Fortune and R. Sherr, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.82.064302) **[82](http://dx.doi.org/10.1103/PhysRevC.82.064302)**, [064302](http://dx.doi.org/10.1103/PhysRevC.82.064302) [\(2010\)](http://dx.doi.org/10.1103/PhysRevC.82.064302).
- [7] M. Thoennessen, S. Yokoyama, and P. G. Hansen, *[Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.63.014308)* **[63](http://dx.doi.org/10.1103/PhysRevC.63.014308)**, [014308](http://dx.doi.org/10.1103/PhysRevC.63.014308) [\(2000\)](http://dx.doi.org/10.1103/PhysRevC.63.014308).
- [8] G. Christian *et al.*, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2008.01.004) **[801](http://dx.doi.org/10.1016/j.nuclphysa.2008.01.004)**, [101](http://dx.doi.org/10.1016/j.nuclphysa.2008.01.004) [\(2008\)](http://dx.doi.org/10.1016/j.nuclphysa.2008.01.004).
- [9] H. Simon *et al.*, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2007.04.021) **[791](http://dx.doi.org/10.1016/j.nuclphysa.2007.04.021)**, [267](http://dx.doi.org/10.1016/j.nuclphysa.2007.04.021) [\(2007\)](http://dx.doi.org/10.1016/j.nuclphysa.2007.04.021).
- [10] Y. Kondo *et al.*, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2010.05.031) **[690](http://dx.doi.org/10.1016/j.physletb.2010.05.031)**, [245](http://dx.doi.org/10.1016/j.physletb.2010.05.031) [\(2010\)](http://dx.doi.org/10.1016/j.physletb.2010.05.031).
- [11] Y. Kanada-En'yo, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.85.044320) **[85](http://dx.doi.org/10.1103/PhysRevC.85.044320)**, [044320](http://dx.doi.org/10.1103/PhysRevC.85.044320) [\(2012\)](http://dx.doi.org/10.1103/PhysRevC.85.044320).
- [12] Y. Aksyutina *et al.*, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.87.064316) **[87](http://dx.doi.org/10.1103/PhysRevC.87.064316)**, [064316](http://dx.doi.org/10.1103/PhysRevC.87.064316) [\(2013\)](http://dx.doi.org/10.1103/PhysRevC.87.064316).
- [13] G. Randisi *et al.*, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.89.034320) **[89](http://dx.doi.org/10.1103/PhysRevC.89.034320)**, [034320](http://dx.doi.org/10.1103/PhysRevC.89.034320) [\(2014\)](http://dx.doi.org/10.1103/PhysRevC.89.034320).
- [14] H. T. Fortune, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.90.064305) **[90](http://dx.doi.org/10.1103/PhysRevC.90.064305)**, [064305](http://dx.doi.org/10.1103/PhysRevC.90.064305) [\(2014\)](http://dx.doi.org/10.1103/PhysRevC.90.064305).
- [15] R. Gilman, H. T. Fortune, L. C. Bland, R. R. Kiziah, C. F. Moore, P. A. Seidl, C. L. Morris, and W. B. Cottingame, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.30.958) **[30](http://dx.doi.org/10.1103/PhysRevC.30.958)**, [958](http://dx.doi.org/10.1103/PhysRevC.30.958) [\(1984\)](http://dx.doi.org/10.1103/PhysRevC.30.958).
- [16] G. Audi, A. H. Wapstra, and C. Thibault, [Nucl. Phys. A](http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003) **[729](http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003)**, [337](http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003) [\(2003\)](http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003).
- [17] T. Sugimoto *et al.*, [Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2007.08.052) **[654](http://dx.doi.org/10.1016/j.physletb.2007.08.052)**, [160](http://dx.doi.org/10.1016/j.physletb.2007.08.052) [\(2007\)](http://dx.doi.org/10.1016/j.physletb.2007.08.052).
- [18] Yu. Aksyutina *et al.*, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.111.242501) **[111](http://dx.doi.org/10.1103/PhysRevLett.111.242501)**, [242501](http://dx.doi.org/10.1103/PhysRevLett.111.242501) [\(2013\)](http://dx.doi.org/10.1103/PhysRevLett.111.242501).
- [19] H. T. Fortune, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.89.044312) **[89](http://dx.doi.org/10.1103/PhysRevC.89.044312)**, [044312](http://dx.doi.org/10.1103/PhysRevC.89.044312) [\(2014\)](http://dx.doi.org/10.1103/PhysRevC.89.044312).
- [20] A. Spyrou *et al.*, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.84.044309) **[84](http://dx.doi.org/10.1103/PhysRevC.84.044309)**, [044309](http://dx.doi.org/10.1103/PhysRevC.84.044309) [\(2011\)](http://dx.doi.org/10.1103/PhysRevC.84.044309).
- [21] J. Snyder, T. Baumann, G. Christian, R. A. Haring-Kaye, P. A. DeYoung, Z. Kohley, B. Luther, M. Mosby, S. Mosby, A. Simon, J. K. Smith, A. Spyrou, S. Stephenson, and M. Thoennessen, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.88.031303) **[88](http://dx.doi.org/10.1103/PhysRevC.88.031303)**, [031303\(](http://dx.doi.org/10.1103/PhysRevC.88.031303)R) [\(2013\)](http://dx.doi.org/10.1103/PhysRevC.88.031303).
- [22] A. Spyrou *et al.*, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.108.102501) **[108](http://dx.doi.org/10.1103/PhysRevLett.108.102501)**, [102501](http://dx.doi.org/10.1103/PhysRevLett.108.102501) [\(2012\)](http://dx.doi.org/10.1103/PhysRevLett.108.102501).
- [23] R. D. Lawson, *Theory of the Nuclear Shell Model* (Clarendon, Oxford, 1980), p. 63ff.
- [24] H. T. Fortune, [Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.87.014305) **[87](http://dx.doi.org/10.1103/PhysRevC.87.014305)**, [014305](http://dx.doi.org/10.1103/PhysRevC.87.014305) [\(2013\)](http://dx.doi.org/10.1103/PhysRevC.87.014305).
- [25] R. L. Lawson, F. J. D. Serduke, and H. T. Fortune, *[Phys. Rev. C](http://dx.doi.org/10.1103/PhysRevC.14.1245)* **[14](http://dx.doi.org/10.1103/PhysRevC.14.1245)**, [1245](http://dx.doi.org/10.1103/PhysRevC.14.1245) [\(1976\)](http://dx.doi.org/10.1103/PhysRevC.14.1245).
- [26] N. A. F. M. Poppelier, L. D. Wood, and P. W. M. Glaudemans, [Phys. Lett. B](http://dx.doi.org/10.1016/0370-2693(85)91529-1) **[157](http://dx.doi.org/10.1016/0370-2693(85)91529-1)**, [120](http://dx.doi.org/10.1016/0370-2693(85)91529-1) [\(1985\)](http://dx.doi.org/10.1016/0370-2693(85)91529-1).
- [27] S. Shimoura *et al.*, [Phys. Lett. B](http://dx.doi.org/10.1016/S0370-2693(03)00341-1) **[560](http://dx.doi.org/10.1016/S0370-2693(03)00341-1)**, [31](http://dx.doi.org/10.1016/S0370-2693(03)00341-1) [\(2003\)](http://dx.doi.org/10.1016/S0370-2693(03)00341-1).
- [28] D. R. Tilley, H. R. Weller, and C. M. Cheves, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(93)90073-7) **[564](http://dx.doi.org/10.1016/0375-9474(93)90073-7)**, [1](http://dx.doi.org/10.1016/0375-9474(93)90073-7) [\(1993\)](http://dx.doi.org/10.1016/0375-9474(93)90073-7).
- [29] F. Ajzenberg-Selove, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(81)90510-8) **[360](http://dx.doi.org/10.1016/0375-9474(81)90510-8)**, [1](http://dx.doi.org/10.1016/0375-9474(81)90510-8) [\(1981\)](http://dx.doi.org/10.1016/0375-9474(81)90510-8).