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Spin-orbit decomposition of ab initio nuclear wave functions
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Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total
angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler
picture for 0p-shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L.
I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions
and dissect the resulting wave functions into their component L- and S-components. Remarkably, there is broad
agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years
and six orders of magnitude in basis dimensions. I suggest that L-S decomposition may be a useful tool for
analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
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I. INTRODUCTION

Microscopic theories of low-energy nuclear structure ar-
guably began with the realization that one could base nuclear
wave functions on an independent particle model (IPM), with
the crucial proviso that there is a strong spin-orbit force.
The IPM was motivated by filled shells (“magic numbers”)
and by the magnetic moments of nuclei with one particle
outside or one hole in a closed shell [1–3]. Even today many
high-end methods for ab initio nuclear structure, such as
Green’s function Monte Carlo [4,5], coupled clusters [6,7],
and the no-core shell model (NCSM) [8], use the IPM as a
starting point, although each goes far beyond it.

Because the nuclear Hamiltonian is rotationally invariant,
the total angular momentum J is a good quantum number (as
is the third or z component, M). In the nuclear IPM, despite
the lack of a core as in atomic physics, one uses an average or
mean potential, typically one that is rotationally invariant, to
construct the single-particle states. These single-particle states
have good orbital angular momentum l and intrinsic spin s,
which is (1/2)� for electrons and for nucleons and following
the rules for addition of quantized angular momentum [9],
symbolized ⊕, one can combine these into the total angular
momentum for a single particle,

j = l ⊕ s. (1)

Single-particle states which are degenerate or nearly so are
grouped together into shells, and the IPM is often called the
noninteracting shell model.

For atoms, with weak coupling between orbital angular
momentum and spin, single-particle states with the same l but
different j are nearly degenerate. In this case it makes sense to
follow L-S or Russell-Saunders coupling and couple together
all the individual orbital angular momenta for A particles,

L = l1 ⊕ l2 ⊕ l3 ⊕ . . . lA, (2)
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into the total orbital angular momentum L, and similarly for
the total spin S, and then construct

J = L ⊕ S. (3)

Indeed, such L-S coupling could be found in the first ap-
proaches to the IPM for nuclei [10,11]. With the understanding
of a strong nuclear spin-orbit coupling, however, it was seen as
advantageous to adopt j -j coupling [12,13], by first coupling
up l and s for each particle as in (1) and then summing the j ’s:

J = j1 ⊕ j2 ⊕ j3 ⊕ . . . ⊕ jA. (4)

Nowadays the IPM has been superseded by the interacting
or configuration-interaction (CI) shell model [14–16] and other
many-body methods. Nonetheless, one can consider how good
the IPM is as a starting point by looking at semimagic shells.
For example, using the phenomenological interaction KB3G
(which is a monopole-adjusted version [17] of the Kuo-Brown
interaction [18]) in the pf shell, one finds that the full CI wave
function of 48Ca is 90% a filled (0f7/2)8 configuration; and in
the sd shell, using the phenomenological USDB (universal
sd-shell interaction, version B) interaction [19], the ground
state of 24O is a 91% filled (0d5/2)6(1s1/2)2 configuration, and
the ground state of 22O is a 75% filled (0d5/2)6 configuration.

This simple success is not universal. In the sd shell, with
the same USDB phenomenological interaction, 28Si is only
21% a filled (0d5/2)12 configuration, and in the p shell, using
the Cohen-Kurath interaction [20], the ground state of 8He is
only 37% a filled (0p3/2)4 configuration, while 12C is about
51% a filled (0p3/2)8 configuration. In fact, it was known
long ago, at least phenomenologically [21,22], that p-shell
nuclei are intermediate between j -j and L-S coupling. In
some p-shell cases the latter leads to a simpler description: the
ground state of 8He is 96% L = 0 and that of 12C is 82% L = 0
(see also Sec. 5 of [23]). For heavier nuclei, with stronger spin-
orbit forces, L-S coupling is less satisfactory: for the sd-shell
cases given above have ground states which are roughly only
35% L = 0 components, and the 48Ca ground state has only
about 20% L = 0 components. (How these decompositions are
carried out is described in more detail below.)
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This suggests L-S decomposition as a tool to investigate
theoretical wave functions, even if it is not directly exper-
imentally measurable, especially for p-shell nuclei where
phenomenological interactions suggest strong dominance by
a few L-S components. But what about more “realistic”
interactions? The past two decades have seen tremendous
advances in ab initio calculations of nuclear structure, mostly
for p-shell nuclides.

As I show below, both the phenomenological and the
ab initio wave functions, despite being separated by six orders
of magnitude in the basis dimensions, and over four decades
in the origin of the interactions, show remarkable congruence
in their L-S decomposition. While L-S composition is not
directly measurable, it does have an effect on transitions
such as Gamow-Teller and M1; furthermore, this congruence
suggests that both the old and the new calculations are probably
doing something right.

Of course, any spin-orbit force will play a big role in
the L-S decomposition, and it is well known that ab initio
three-body forces strongly influence spin-orbit interactions,
for example, to get the correct ground-state spin for some
p-shell nuclides [24]. In this paper, intended as an introduction
to and demonstration of the method, I only look at two-body
interactions, but in the near-future I will examine how these
results change with the addition of three-body forces.

II. METHODS

The tools used for this investigation are the many-body
method, the interactions used, and the decomposition of the
wave functions into L and S components. The many-body
method I use is CI diagonalization of the many-body Hamil-
tonian in a shell-model basis [14–16], using the BIGSTICK

code [25]. Here one defines a finite single-particle space and
has as input single-particle energies and two-body matrix
elements; three-body interactions can also be used but will
be investigated in future work. The calculations are carried out
in occupation space, with occupation-representation of Slater
determinants built from single-particle states as the many-body
basis states. In brief, one chooses a finite set of single-particle
orbits with good orbital angular momentum l (and thus good
parity) and good angular momentum j and z-component m;
with this it is easy to build basis states with fixed total M , thus
BIGSTICK is termed an M-scheme code. BIGSTICK computes the
many-body Hamiltonian in this basis from the input interaction
matrix elements; i.e., it computes

Hab = 〈�a|Ĥ |�b〉, (5)

where |�a〉 is an occupation representation of a Slater
determinant with fixed M and finds the low-lying eigenpairs

H�vλ = Eλ�vλ (6)

by the Lanczos algorithm [26,27].
Within this framework I use two model spaces and interac-

tions. First is the phenomenological Cohen-Kurath interaction
[20], which works entirely within the 0p3/2-0p1/2 space; it has
two single-particle energies and 15 unique two-body matrix
elements. Because the matrix elements were fitted to spectra,
the radial component, of the single-particle wave functions

have not been rigorously defined; fortunately, for my purpose
they are not needed. For a given number of valence protons
and neutrons, and for fixed total M , all possible configurations
are used.

The second are ab initio interactions in the so-called
NCSM framework [8]. Here one uses harmonic oscillator
single-particle states with a fixed frequency � and utilizes
the Nmax truncation on the many-body states: one allows only
many-body harmonic oscillator configurations which are a
maximum of Nmax�� in energy above the lowest harmonic
oscillator configuration. This allows one to exactly decou-
ple the relative wave function from center-of-mass motion
[28–30], although that is not important to this study.

High-precision ab initio interactions are fitted to low-
energy nucleon-nucleon scattering phase shifts and to deuteron
properties. Among the first was the Argonne V18 [31], while
more recent ones, such as that used in this study [32], are
derived from chiral effective-field theory [33–36].

These interactions generally have a large coupling between
high- and low-momentum components, which is often inter-
preted as a “hard core”; such a hard core can be seen directly in
local interactions fitted to scattering data such as the Argonne
V18 and related potentials. While such interactions can be used
directly in coupled-cluster calculations [6,7] and, when local
or nearly so, in Green’s function Monte Carlo calculations
[4,5], both of these very powerful methodologies favor the
ground state. Finding excited states is challenging, though not
impossible, for coupled-cluster and Green’s function Monte
Carlo calculations, and the technology for projecting the L and
S components in those methods has not yet been developed.

For CI calculations, on the other hand, obtaining excited
states and decomposition into L and S components is hardly
more difficult than finding the ground state. On the other hand,
unlike coupled-cluster calculations, CI calculations include
unlinked diagrams [37], and because of the strong coupling
between low- and high-momentum states, the basis for CI
grows exponentially and convergence with the size of the space
is very slow in all but the smallest nuclides. Therefore for
ab initio CI calculations in computationally tractable spaces
one usually softens or renormalizes the interaction via a unitary
transformation. A very popular unitary transformation is the
similarity renormalization group (SRG) [38–41], whereby the
Hamiltonian is evolved by a flow equation,

dĤ (s)

ds
= [η̂(s),Ĥ (s)], (7)

where one commonly chooses the generator of the flow to
be η̂(s) = [T̂ ,Ĥ (s)], with T̂ the kinetic energy; this drives
the Hamiltonian in momentum space towards the diagonal
and weakens the coupling between low- and high-momentum
states. Because the transformation is unitary, any quantity
represented by an eigenvalue, such as scattering phase shifts
or on-shell T-matrix elements if evolved in free space, remains
unchanged. What does change is, for example, the off-shell
T-matrix elements, but exploring that topic further is beyond
the focus of this paper; furthermore, three-body forces are
induced by evolution [42,43]. I follow the convention of
parameterizing the evolution not by s but by λ = (m2

N/�
4s)1/4,
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with mN the nucleon mass; then λ has units of fm−1. Other
authors follow s, which is sometimes written as α.

A. L-S decomposition

It is worth describing in a little detail how L-S decomposi-
tion is carried out. Suppose one wants to find the fraction of a
CI wave function with a given L, that is, to expand

|�〉 =
∑

L

c(L)|L〉, (8)

but in general, the dimension of the subspace of states with a
given L is greater than 1. One naive method then is to generate
all many-body states of a given L or S, that is, {|L; a〉}, where a
carries any additional information needed to label such states.
Then the fraction of a state with that L is

|〈L|�〉|2 =
∑

a∈L

|〈L; a|�〉|2. (9)

This presupposes that one can generate all the {|L; a〉}, for
example, by diagonalizing the operator L̂2, but that is easy
only in small spaces.

Instead I turn to a modification of the “Lanczos trick,”
invented for generating strength functions [44–46], which has
been used previously to analyze phenomenological states in
terms of their SU(3) irreps [47]. Let |�〉 be a CI wave function
I wish to decompose in components labeled by the eigenvalues
of a Hermitian operator, in this case L̂2. I carry out the Lanczos
algorithm with |�〉 as my pivot, that is, the starting vector |v1〉:

L̂2|v1〉 = α1|v1〉 + β1|v2〉,
L̂2|v2〉 = β1|v1〉 + α2|v2〉 + β2|v3〉,

(10)
L̂2|v3〉 = β2|v2〉 + α3|v3〉 + β3|v4〉,

· · · .

As is well known for the Lanczos algorithm [27], this
procedure generates a Krylov subspace and the eigenvalues
of the tridiagonal matrix given by αi,βi will converge to the
extremal eigenpairs of L̂2, of which the eigenvectors are a
linear combination of the Lanczos vectors,

|L〉 =
∑

i

di(L)|vi〉, (11)

which is an inversion of (8). In fact the Krylov space is
exhausted by the eigenvectors of L̂2 contained in the pivot,
so that to get the fraction of |�〉 = |v1〉 with orbital angular
momentum L, it is just

|〈L|�〉|2 = |d1(L)|2, (12)

so that no sum is needed and one can simply read off the
amplitude.

One can decompose using any Hermitian operator, and the
procedure for decomposition with spin S is identical to the
above. One can do joint decomposition, that is, decompose a
wave function into states of specific L and S, but I do not carry
out such a fine-grained analysis here.

III. RESULTS

I give results for four nuclides from roughly the middle
of the p shell: 9Be, 10,11B, and 12C. In particular, I look at
states in 12C known to be problematic and at rotational bands
in 9Be. For all NCSM calculations I use Nmax = 6 (chosen so
all the calculations could be easily carried out on a desktop
computer using the BIGSTICK code); an oscillator frequency
�� = 20 MeV for 9Be and 22 MeV for the other nuclides
for the single-particle basis, which roughly minimized the
ground-state energies; and an SRG evolution parameter of
λ = 2.0 fm−1. I also carried out an Nmax = 8 calculation for
10B which required supercomputer time, for reasons discussed
in Sec. III B. Because the phenomenological calculations with
the Cohen-Kurath force include only “normal” parity states,
i.e., the same parity as the ground state, I only show these,
although there is no barrier to dissecting unnatural parity states
using the method described in Sec. II A.

In standard NCSM procedures one carefully finds the
variational minimum as a function of �� and studies the
convergence as a function of the model-space parameter Nmax.
Instead, I demonstrate selected 12C results are relatively robust
under variation of both �� and λ. Using a fifth light nuclide,
7Li, I demonstrate robustness as Nmax is varied from 6 to
12. Thus one can have good confidence in the general results
obtained here.

A. 11B

Let us begin with an odd-A nucleus. Figure 1 compares the
low-lying excitation energies from experiment (experimental
spectra for all cases in this paper are taken from the National
Nuclear Data Center [48]), from the Cohen-Kurath interaction
in the 0p space, with a dimension of 62, and from an NCSM
calculation, with a dimension of 20 million, using λ = 2 fm−1

and �� = 22 MeV; the latter choice approximately minimizes
the ground-state energy in this space. All the low-lying states
have T = 1/2, exactly in the case of Cohen-Kurath; the NCSM
interaction includes isospin breaking terms but for all the cases
in this paper the isospin assignments are very good.
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FIG. 1. Low-lying excitation spectrum of 11B, comparing exper-
iment, the Cohen-Kurath interaction, and the no-core shell model
(NCSM) using a chiral two-body force evolved via SRG to λ =
2.0 fm−1. All states have T = 1/2.
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FIG. 2. (Color online) Decomposition of low-lying states of 11B
into components of good L (total orbital angular momentum), com-
paring wave functions computed from the Cohen-Kurath interaction
(gray bars) and from the NCSM [hatched (red) bars]. All states have
T = 1/2.

The L decomposition is displayed in Fig. 2. Here both
the first and the second 3/2− show contrasting patterns, with
agreement between Cohen-Kurath and the NCSM. I also show
the spin S decomposition in Fig. 3, which displays the good
qualitative agreement between the two calculations.

One can take this kind of decomposition further, for
example, decompose the spin S into the proton and neutron
components Sp and Sn, respectively. The low-lying states
discussed here are all dominated (>80%) by an Sp = 1/2,
coupling primarily to Sn = 0 to form S = 1/2 and to Sn = 1
to form S = 3/2. Both the NCSM calculation and the
phenomenological Cohen-Kurath agree, with the exception
of the S = 3/2 component of the second 3/2− state; there
the Cohen-Kurath wave function is roughly equally divided
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FIG. 3. (Color online) Decomposition of low-lying states of 11B
into components of good S (total spin), comparing wave functions
computed from the Cohen-Kurath interaction (gray bars) and from
the NCSM [hatched (red) bars]. All states have T = 1/2.
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FIG. 4. Low-lying excitation spectrum of 10B, comparing exper-
iment, the Cohen-Kurath interaction, and the no-core shell model
(NCSM) using a chiral two-body force evolved via SRG to λ =
2.0 fm−1, with the harmonic oscillator basis frequency �� = 22 MeV,
for Nmax = 6 and 8.

between the two subcomponents, but I note that in this space
four neutrons form only two S = 0 states and three S = 1
states, severely constraining the results.

B. 10B

Now I turn to the case of 10B. Prior work has demonstrated
that ab initio calculations with two-body forces alone yield the
wrong ground-state spin, and only the introduction of three-
body forces produces the correct ordering of low-lying states
[43,49]. For this work I carried out NCSM calculations (two-
body only) at both Nmax = 6 and Nmax = 8, with dimensions
of 12 million and 166 million, respectively, using λ = 2 fm−1

and �� = 22 MeV. These spectra, along with the experimental
spectrum and that from the Cohen-Kurath interaction in the 0p
space, with a dimension of 84, are shown in Fig. 4. Although
the 3+ state is the ground state in the Nmax = 6 calculation,
the 1+ state, which is well known to be slow to converge [43],
drops below it for the Nmax = 8 calculation.

Figure 5 shows the decomposition of selected states into
their components with good L. Of particular interest are the
first and second 1+; 0 states, which show contrasting patterns
(1+; 01 is dominated by L = 0, while 1+; 02 is dominated by
L = 2), with both the Cohen-Kurath and the NCSM wave
functions giving good agreement, even in minor components,
despite the vast difference in model-space sizes and the origin
of the forces. Note that even though the 1+

1 state drops
below the 3+ as one goes from Nmax = 6 to Nmax = 8, the
L decomposition is nearly identical. Other low-lying states
show similar agreement. The decomposition according to spin
S is of similar quality and not shown.

Agreement between the Cohen-Kurath and the ab initio
NCSM calculations does not mean they are both right, but it
does certainly bolster confidence in the calculations. Below,
in the case of 12C, I show some cases where there are
discrepancies, which happen to occur in states known to be
problematic.
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C. 12C

Of particular interest is 12C, in part because it it so difficult
to get its spectrum correct. As shown in Fig. 6, neither the
phenomenological Cohen-Kurath calculation nor the NCSM
calculations get the second 0+ state and the subsequent band
near the correct energy. This is the famous Hoyle state [50]
and is known to have a predominantly four-particle, four-hole
structure, with similar states found in 16O. Recent calculations
have suggested that, in a harmonic oscillator basis, the Hoyle
state mixes many states of high N [51], making it difficult to
access in standard CI shell-model calculations.

The Hoyle state is far from the only problem, not least that
recent calculations [52] get the excitation energy of the first
1+; 0 state wrong while obtaining a good value of the B(M1)
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model (NCSM) using a chiral two-body force evolved via SRG to
λ = 2.0 fm−1, with a harmonic oscillator basis frequency of �� =
22 MeV.
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FIG. 7. (Color online) Decomposition of low-lying states of 12C
into components of good L (total orbital angular momentum), com-
paring wave functions computed from the Cohen-Kurath interaction
(gray bars) and from the NCSM [hatched (red) bars].

from the first 1+; 1 state to the ground state. This problem, in
particular, inspired this work.

Figure 7 shows the L decomposition of the ground-state
band 0+ and 2+ states, as well as the excited-band 0+

2 and
2+

2 and the first 1+; 0 and 1+; 1 states. While the ground-state
band shows agreement between Cohen-Kurath and NCSM,
and is rather simple (the 4+

1 state continues this trend), the
excited-state band does not show as much agreement; and
given the above problem with the Hoyle state, one cannot be
certain which, if either, calculation is better. For the 1+ states,
1+; 1 has good agreement between Cohen-Kurath and NCSM,
while the troublesome 1+; 0 does not. It will be particularly
interesting to examine how the latter changes when an ab initio
three-body force is included in the calculation.

Given the importance and difficulty of this nuclide, I also
show the S decomposition in Fig. 8. The decomposition for
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FIG. 8. (Color online) Decomposition of low-lying states of 12C
into components of good S (total intrinsic spin), comparing wave
functions computed from the Cohen-Kurath interaction (gray bars)
and from the NCSM [hatched (red) bars].
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the 0+ states must perforce mirror the L decomposition, so I
do not show it. For the remaining states, the S decomposition
echoes the L decomposition: the 2+; 01 and 1+; 1 states show
good agreement, while there are significant discrepancies for
the 2+; 02 and 1+; 1 states.

Again, agreement does not mean that the calculations
are correct, nor does a discrepancy make any calculation
illegitimate. After all, the L-S decomposition is not something
directly measurable by experiment. On the other hand, it is
striking that the states with the clearest discrepancy between
the two calculations are states known to be problematic in
CI calculations, in particular, for the ab initio NCSM. Thus I
suggest that L-S decompositions can be useful in comparing
and contrasting calculations.

D. 9Be and rotational bands

There have been recent studies of rotational band structure
in NCSM calculations of light nuclides [53] using not only
excitation spectra but also E2 and M1 transition strengths
and electric quadrupole and magnetic dipole moments to
identify band structure. As a complement to those studies,
I use L-S decomposition to analyze rotational bands. Figure 9
compares the low-lying excitation energies of 9Be from
experiment, from the Cohen-Kurath interaction in the 0p
space, with a dimension of 62, and from an NCSM calcu-
lation, with a dimension of 5.2 million, using λ = 2 fm−1

and �� = 20 MeV. All low-lying states have T = 1/2.
Following [53] the states are plotted with J (J + 1) along the
x axis and excitation energy along the y axis, to better pick
out rotational bands; I include lines to guide the reader’s eye.

Figures 10 and 11 show the L and S decomposition
for the ground-state and excited-state bands, respectively.
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an SRG evolution parameter λ = 2 fm−1 and a harmonic oscillator
basis frequency of � = 20 MeV. As a guide for the eye, I have added
solid lines for the ground-state NCSM band and dashed lines for the
excited-state NCSM band.
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FIG. 10. (Color online) Decomposition of the ground-state ro-
tation band for 9Be, for NCSM calculation (a, b), with the same
parameters as in Fig. 9, and for Cohen-Kurath calculation (c, d).
In L-decomposition plots (a, c), for each of the members of the
rotational band 3/2−

1 , 5/2−
1 , 7/2−

1 , and 9/2−
1 , I give the fraction

of the wave function with L = 1 [(red) circles], L = 2 [(blue)
squares], L = 3 [(green) diamonds], and L = 4 [(violet) triangles]. In
S-decomposition plots (b, d), I give the fraction of the wave function
with S = 1/2 (solid black line), S = 3/2 [dashed (red) line], and
S = 5/2 [dotted (blue) line].

Figures 10(a) and 10(b) and Figs. 11(a) and 11(b) represent the
NCSM calculation, while Figs. 10(c) and 10(d) and Figs. 11(c)
and 11(d) show the Cohen-Kurath calculations; one can see
that they are qualitatively indistinguishable. Figures 10(a) and
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FIG. 11. (Color online) Decomposition of the excited-state ro-
tation band for 9Be, for NCSM calculation (a, b), with the same
parameters as in Fig. 9, and for Cohen-Kurath calculation (c, d).
In L-decomposition plots (a, c), for each of the members of the
rotational band 1/2−

1 , 3/2−
2 , 5/2−

2 , and 7/2−
3 , I give the fraction

of the wave function with L = 1 [(red) circles], L = 2 [(blue)
squares], L = 3 [(green) diamonds], and L = 4 [(violet) triangles]. In
S-decomposition plots (b, d), I give the fraction of the wave function
with S = 1/2 (solid black line), S = 3/2 [dashed (red) line], and
S = 5/2 [dotted (blue) line].
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10(c) and Figs. 11(a) and 11(c) represent the L decomposition.
All these states have a negligible L = 0 fraction. I show
the fraction of the wave function with L = 1 [(red) circles],
L = 2 [(blue) squares], L = 3 [(green) diamonds], and L = 4
[(violet) triangles]. There is a clear evolution, as one would
expect for a rotational band: in the ground-state band, 3/2−

1
dominated by L = 1, 5/2−

1 dominated by L = 2, 7/2−
1 by

L = 3, and 9/2−
1 by L = 4, while for the excited state

band 1/2−
1 is dominated by L = 1, 3/2−

2 is dominated by
L = 2, 5/2−

2 is dominated by L = 3, and 7/2−
3 by L = 4.

Figures 10(b) and 10(d) and Figs. 11(b) and 11(d) represent
the S decomposition, showing the fraction of the wave function
with S = 1/2 (solid black line), S = 3/2 [dashed (red) line],
and S = 5/2 [dotted (blue) line; only for the NCSM). S = 1/2
consistently dominates. These patterns are consistent with a
particle-rotor picture.

As with 11B, one can further decompose into proton and
neutron contributions. In the rotational bands, the S = 1/2
components are dominated (>95%) by Sp = 0 and Sn = 1/2,
while the S = 3/2 components are dominated (�80%) by
Sp = 1 and Sn = 1/2.

The reader will note that the excited-state band contains the
7/2−

3 state, not the 7/2−
2 state. Caprio et al. [53] determined

this on the basis of B(E2)s, B(M1), and moments, but here
it becomes clear on the basis of the L-S decomposition.
Although I do not plot it, the 7/2−

2 state is dominated by S =
3/2 rather than 1/2 for both the NCSM and Cohen-Kurath,
by L = 2 for the NCSM, and by a roughly equal mixture of
L = 1 and L = 2 for Cohen-Kurath wave functions, rather
than L = 4 as found in the 7/2−

3 state, a clear violation of the
rotational band pattern.

Once again, the qualitative agreement between the NCSM
and the Cohen-Kurath calculations is striking. I propose L-S
decomposition as another tool for disentangling calculations
of band structures.

E. Robustness

Above I chose specific values of �� for the harmonic
oscillator basis, Nmax for the truncation of the many-body
basis, and λ, the SRG evolution parameter. These results are
not very sensitive to the choice of these parameters, which can
be demonstrated.

Starting with a baseline 12C with Nmax = 6 and a baseline of
λ = 2 fm−1 and �� = 22 MeV, I first studied the dependence
on the basis scaling. Figure 12 shows how the L decomposition
changes with the basis frequency � as it is varied from 12
to 28 MeV. Although this corresponds to scaling the basis
length parameter by a factor of 1.5, the decomposition is
mostly robust. Once again, the states most sensitive are the
problematic 1+; 01 and the 0+; 02 states; in fact, with the latter
the third 0+; 0 state grows lower in energy as � increases and,
eventually, switches places.

The second study (Fig. 13) was the dependence of the L
decomposition on the SRG evolution parameter λ, as it goes
from 10 fm−1, which is almost the bare interaction, down to
1.8 fm−1. Values in the range 1.8 to 2.2 fm−1 are typically used
for NCSM calculations. Although there is some evolution as
λ goes below 4 fm−1, overall the dependence on λ is modest.
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FIG. 12. (Color online) L-decomposition for selected 12C
NCSM states as a function of the harmonic oscillator basis frequency
�. The states are (a) 0; 01, (b) 1; 01, (c) 0; 02, and (d) 1; 11. Shown are
the fraction of the wave functions for L = 0 (black circles), L = 1
[(red) squares], and L = 2 [(blue) diamonds].

Finally, I studied how well the L decomposition had
converged in Nmax. In Sec. III B, I demonstrated the the
L decomposition is unchanged for 10B as one goes from
Nmax = 6 to Nmax = 8, even though the ground-state angular
momentum changes. To study a broader range of Nmax, I
chose a lighter system, 7Li, where I could compute models
spaces up from Nmax (dimension = 663 527) up to Nmax = 12
(dimension = 252 million) on a desktop computer. Figure 14
shows that the L decomposition does not change much even
as the model space increases nearly three orders of magnitude.

As a final note, the mirror nuclide 7Be has been identified as
having a rotational band in the yrast 1/21, 3/21, 5/21, 7/21, . . .
states [53]. I find these states dominated by S = 1/2, though
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FIG. 13. (Color online) L-decomposition for selected 12C
NCSM states as a function of the SRG evolution parameter λ. The
states are (a) 0; 01, (b) 1; 01, (c) 0; 02, and (d) 1; 11. Shown are the
fraction of the wave functions for L = 0 (black circles), L = 1 [(red)
squares], L = 2 [(blue) diamonds], and L = 3 [(violet) triangles].
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FIG. 14. (Color online) L-decomposition for selected 7Li NCSM
states as a function of the model-space truncation Nmax, with the SRG
evolution parameter λ fixed at 2 fm−1 and the harmonic oscillator
basis frequency fixed at 22 MeV. All states have T = 1/2. The
states are (a) 7/2−

1 , (b) 5/2−
1 , (c) 7/2−

2 , and (d) 5/2−
2 . Shown are

the fraction of the wave functions for L = 1 [(red) squares], L = 2
[(blue) diamonds], L = 3 [(violet) upward triangles], and L = 4
(black downward triangles).

the 1/21 and 3/21 states are dominated by L = 1, while the
5/21 and 7/21 states are dominated by L = 3, as shown above.
This differs from the rotational structure seen in 9Be above,
where the states in both the ground and the excited bands
(Figs. 10 and 11) are dominated by L = 1,2,3,4, successively.
This may be due to the difference between the chiral nucleon-
nucleon force used here [32] and the JISP16 force [54] used
in [53] (although I include isospin breaking in my calculation,
both 7Li and 7Be yield very similar results); but also, of all the
Be isotopes in [53], the ground band of 7Be exhibits the most
irregular behavior with regards to the magnetic dipole moment
and M1 transition strengths. (I find that 3/22, 5/22, and 7/22

are all dominated by S = 3/2, with L = 1 for 3/22 and 5/22

and L = 2 for 7/22; a second band is not investigated in [53].)
Further investigation may be warranted in future.

IV. CONCLUSIONS

I have taken NCSM wave functions computed with
ab initio two-body interactions from chiral effective-field

theory, softened with SRG, and decomposed them into their
L (total orbital angular momentum) and S (total spin) com-
ponents, for selected p-shell nuclides. Somewhat remarkably,
there is rather good agreement with the decomposition of wave
functions for the same nuclides using the phenomenological
Cohen-Kurath force, despite vastly different origins and a
nearly six orders of magnitude difference in the dimensions of
the model spaces. I think this helps assure us, if we need such
assurance, that both the old guard and the new have mostly
captured the correct physics.

As examples of the utility of L-S decomposition, I have
looked at states in 12C known to be difficult to calculate, where
the strongest discrepancies between the NCSM and the Cohen-
Kurath wave functions occurred, and also shown how in 9Be
the rotational band structure showed a clear pattern consistent
with a particle-rotor model. It will be interesting in the future to
investigate other rotational bands in more detail, in particular,
7Li/Be.

The results are fairly robust even when the basis is changed,
and not very sensitive to the SRG evolution—-although there
is some sensitivity at the end of SRG evolution. It will be
very interesting therefore to use three-body forces: both “true”
three-body forces and those induced by SRG. The former is
known to affect spin-orbit coupling, and it will be interesting
to see if it brings the NCSM results closer to or farther from the
Cohen-Kurath results; the latter should decrease the sensitivity
to SRG evolution. In principle, of course, one should also
evolve the L̂2 and Ŝ2 operators, which should also decrease
the sensitivity to SRG evolution [55].

Therefore an important future step will be to look at chiral
interactions including ab initio three-body forces [42,43] and
alternate ab initio approaches such as the JISP16 interaction
[54], which has off-shell matrix elements tuned to best match
the binding energies and, thus, reduce the need for three-body
forces.
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