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Gogny force with a finite-range density dependence
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In the present work, we have investigated an extension of the effective nucleon-nucleon Gogny interaction in
which the zero-range density-dependent term has been replaced with a finite-range term. The parameters have
been adjusted on both nuclear-matter properties and a few observables of stable nuclei. The traditional and unified
fitting procedure of the Gogny force used in Bruyères-le-Châtel ensures common basic properties between the
extended analytical form of the Gogny interaction, called D2, and the original one. In particular, symmetric infinite
nuclear-matter and neutron-matter properties as well as pairing correlations have been investigated. A few static
properties obtained in finite nuclei using the Hartree-Fock-Bogoliubov approach and the D2 parametrization
of the Gogny interaction are analyzed and compared to the results obtained with D1-type parametrizations
and experiment when it is possible. The D2 parametrization makes it possible to reproduce nuclear structure
properties with improved accuracy.
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I. INTRODUCTION

One of the great challenges of theoretical nuclear physics
is to explain nuclear structure in terms of the nucleons and
of their mutual interactions. Such a microscopic description
of nuclei presents many advantages because it proposes a
unified model from which we can deduce the properties of
every nuclear system, even the most exotic nuclei and nuclear
states unreachable experimentally. The difficulties of such
a program are well known. First, the interaction between
nucleons is not fundamental and it is necessary to determine
a priori the analytical form to use in the many-body nuclear
problem. Second, the solution of the quantum many-body
problem is itself a difficult task.

The various studies realized in mean-field and beyond-
mean-field theories to account for nuclear long-range corre-
lations and using phenomenological interactions of Skyrme
[1–14] and Gogny type [15–19] or those of the relativistic
approach [20–22] demonstrate how powerful these methods
are. They are applied to almost all nuclei, even the heaviest
ones, and make it possible to interpret a considerable number
of experimental data. One of the reasons for the good results
provided by such an approach comes from the introduction of a
density-dependent term in the parametrization of the effective
interaction, which ensures the global properties of nuclei, in
particular the saturation property. In the case of the Gogny [15]
or Skyrme interactions, this dependence is proportional to
ρα . In the Gogny interaction, α = 1/3, whereas in the
Skyrme interactions various values of α are used [23,24].
More recently, Hartree-Fock and Hartree-Fock-Bogoliubov
calculations using a semirealistic nucleon-nucleon interaction
corresponding to a modified version of the M3Y interaction
(introduction of a zero-range density-dependent term) have
been achieved [25,26].

Such approaches raise the question of the interaction that
has to be used in the effective Hamiltonian to describe the
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residual interaction, that is to say the nuclear long-range
correlations (e.g., pairing correlations, collective oscillations
of small and large amplitude, particle-vibration coupling).
Focusing now on the Gogny interaction, the studies carried out
with this interaction show that it is able to describe precisely
at least the mean field of the nucleus, the pairing correlations,
and the correlations induced by the collective oscillations
of small [at the (quasiparticle) random phase approximation
((Q)RPA) level] and large [at the generator coordinate method
(GCM) level] amplitudes [27–37].

The present work is a first step towards a new
parametrization of the Gogny interaction in which all the
components will have a finite range, including a complete refit
of the interaction. Two main reasons can be invoked to justify
this extension of the interaction. First, a finite-range interaction
exhibits properties fundamentally different from a contact
force at the mean-field approximation already. Especially, a
zero-range force leads to a local mean field, while a finite-range
force generates a nonlocal component—the exchange
field—which significantly affects the single-particle state
structure. The finite range of the effective nuclear force comes
into play also in the intensity and the structure of the long-range
correlations which affect the deformation properties of the
nuclei [17]. The second reason is motivated by the use of
the Gogny effective interaction in mean-field extensions,
as (Q)RPA, second RPA [38–40], or configuration mixings
of particle-hole type [41–43]. One way to render this point
possible is to have a fully finite-range interaction for which
the two-body residual matrix elements decrease naturally
with the transferred momentum. We note also that there exists
an attempt to go beyond the contact form within the Skyrme
community [44,45], which reinforces the importance of the
finite-range effects, long supported by the Gogny community.

The standard Gogny interaction has two zero-range terms:
the density-dependent component and the spin-orbit com-
ponent. The present work [46] is dedicated to the density-
dependent term that presents a very different behavior in
respect to the various nuclear long-range correlations. For
the usual pairing correlations between like particles, some
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theoretical arguments show that, at first order, the associated
residual interaction is not—or very little—renormalized by the
medium effects. We then expect that this part of the interaction
is nearly independent of the density. This point is still under
debate concerning the proton-neutron pairing. Alternatively,
we know that the density-dependent component is essential
for the description of RPA correlations when we use such
interactions. The consistency between the HF and the RPA is
essential to fulfill the sum rules, for which the rearrangement
terms play a significant role, as shown in Refs. [27,28]. As can
be expected, the density-dependent part can also play a very
important role for more general correlations, such as particle-
vibration coupling, for the renormalization of the mean-field
one-particle states, as well as in odd-odd nuclei [47].

In the D1-type traditional parametrizations of the Gogny
interaction [15–19,48,49], the action of the density-dependent
component has been limited to the even-triplet channel of
two-nucleon states such that only finite-range components of
the force contribute to the pairing interaction. This limitation
was necessary to apply the Hartree-Fock-Bogoliubov
(HFB) method without any arbitrary truncation of the
single-particle states space. However, such a limitation
turns out to be too restrictive for the description of other
correlations. In such cases, the density-dependent part should
be also active in other two-nucleon states than the only
even-triplet one. A finite-range density-dependent term has
two consequences: the possibility to introduce a density
dependence in all spin-isospin ST channels of the interaction
and a nonpathological behavior of the residual matrix
elements for high transferred momenta, as already mentioned.

As the spin-orbit term contributes weakly in the pairing
field and its contribution in the particle-hole matrix elements
is relatively small in the (Q)RPA and configuration mixing of
particle-hole type approaches, for example, we have postponed
to a future work the generalization of the spin-orbit component
to a finite-range term including an isospin exchange
component Pτ . We note that recently a version of the D1-type
parametrizations containing a finite-range tensor term has
been proposed, without a global refit of the interaction [50].

The article is organized as follows. In Sec. II, we discuss
the new analytical form of the density-dependent term of the
Gogny interaction. A few details concerning the fitting proce-
dure of the Gogny interaction are recalled and the parameters
of the new parametrization of the Gogny interaction, called D2
in the following, are provided. In Sec. III, the infinite nuclear-
matter properties are presented for the D2 parametrizations.
In particular, the equation of state, the incompressibility, the
effective mass, the symmetry energy, the Landau parameters,
and the pairing properties are discussed. A comparison with
the D1-type parametrization (in particular, the D1S one that
is the most tested in various mean-field-based models) as well
as empirical values is done. In Sec. IV, we first give computa-
tional details concerning the implementation of the finite-range
and density-dependent terms in the axially deformed HFB
code AMEDEE originally developed by Girod [51]. Then a few
selected properties of finite nuclei are exposed. The pairing
properties and the spin of odd isotopes in the Sn isotopic
chain, the charge and neutron distributions in the Pb isotopic
chain, the moments of inertia in rare-earth and actinide regions,

and the fission barrier heights in actinides, calculated at the
HFB approximation, are presented for the D2 parametrization.
A comparison with the results obtained with the D1-type
parametrizations is also done to make it credible. When it is
possible, a comparison with experimental data is performed.
Finally, conclusions and perspectives are given in Sec. V.

II. AN EXTENDED DENSITY-DEPENDENT
GOGNY FORCE

A. Choice of the analytical form

In the present work, we propose to replace the analytical
expression of the density-dependent term of the original Gogny
interaction [17],

V D1
dens = t0 (1 + x0Pσ ) δ (�r1 − �r2) ρα

( �r1 + �r2

2

)
, (1)

with

V D2
dens = (W3 + B3Pσ − H3Pτ − M3PσPτ )

× e
− (�r1−�r2)2

μ2
3

(μ3
√

π )3

ρα(�r1) + ρα(�r2)

2
, (2)

where the Pσ and Pτ operators are the spin and isospin
exchange operators.

As the zero-range δ function δ(�r1 − �r2) suppresses any
odd spatial component in the two-nucleon wave function,
the expression (1) acts a priori in both the even-singlet
(S = 0, T = 1) and even-triplet (S = 1, T = 0) channels.
Furthermore, in the D1-type parametrizations, the parameter
x0 has been taken to be equal to 1 so that the contribution of the
term (1) vanishes in the even-singlet channel (S = 0, T = 1).
Such a choice was made by Gogny to avoid any divergences
when the interaction is used to describe proton and neutron
pairing correlations within the self-consistent HFB approach,
assuming that the proton and the neutron pairings were close
to the bare interaction.

The physical assumption underlying this choice was that the
pairing correlations, which are a surface phenomenon, are not
affected by medium effects at such densities. The finite range
appearing in the expression (2) introduces odd and even spatial
components. The new analytical form of the density-dependent
term (2) allows all the spin-isospin exchanges and hence acts
a priori in the four ST channels.

Two other finite-range density dependencies have also been
investigated, namely with ρα( �r1+�r2

2 ) and ρ
α
2 (�r1)ρ

α
2 (�r2). All the

three propositions are equivalent in the bulk of the nucleus
but they can give different predictions when the interacting
nucleons are closed to the surface. To choose between these
three parametrizations, any physical criteria can hardly be
invoked. Indeed, these expressions have been postulated and
it is difficult to say which one simulates better the nucleon
dynamics in the nucleus. So, we considered technical criteria
to guide our choice, and it appeared that the parametriza-
tion (2) makes it easier to implement the fields in the
HFB codes.
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The new analytical expression of the Gogny interaction,
called D2, is

V (|�r1 − �r2|) =
∑
i=1,2

(Wi + BiPσ − HiPτ − MiPσ Pτ )

× e
− (�r1−�r2)2

μ2
i + (W3+B3Pσ −H3Pτ −M3PσPτ )

× e
− (�r1−�r2)2

μ2
3

(μ3
√

π)3

ρα(�r1) + ρα(�r2)

2

+ iWLS

←−∇ 12δ( �r1 − �r2) ∧ −→∇ 12(�σ1 + �σ2). (3)

The third contribution in Eq. (3) corresponds to the spin-orbit
term.

The D2 parametrization (3) of the Gogny interaction
includes 17 parameters, namely, W1, B1, H1, M1, μ1, W2,
B2, H2, M2, μ2, W3, B3, H3, M3, μ3, α, and WLS. To adjust the
values of these parameters, the original procedure proposed
by Gogny [17] has been essentially kept. The additional
parameters introduced in the new parametrization have been
fitted by adding a few extensions to the original fitting
procedure, as discussed in the following section.

B. Adjustment of the parameters

In the original fitting procedure of the Gogny interaction
developed by Gogny [16], a set of equations that depends
analytically on certain combinations of the parameters of the
interaction is used to constrain them. These equations are
chosen to govern the main nuclear properties so as to reproduce
the most important experimental data.

The Hartree-Fock (HF) approximation is used and the
single-particle wave functions are assumed to be the harmonic
oscillator ones, an approximation known in the literature as
the restricted HF approach. In this approach, four equations
are related to the binding energies and the radii of two magic
nuclei, namely, the 16O and the 90Zr. The constraint on the radii
is directly related to the oscillator parameter b = √

�/Mω,
with ω the oscillator frequency and M the nucleon mass.

To govern the pairing properties of the interaction, two
matrix elements are adjusted in the 1s and 2s states of the
singlet-even channel (S = 0, T = 1). They provide two other
equations. The values of these matrix elements are linked to the
amplitude of the pairing gap in nuclei. The parameter x0 is fixed
equal to 1 to prevent a contribution of the density-dependent
term to the pairing field.

To control the isospin properties of the interaction, the
difference 	ε between the neutron and proton 2s1/2 single-
particle energies in 48Ca is adjusted to reproduce the empirical
value of the symmetry energy. Recently, to complete this
constraint [48], the fit of the neutron-matter equation of
state has been added, leading to a new parametrization of
the Gogny force, called D1N . To satisfy this new require-
ment, the value 	ε has been changed from the D1S to
the D1N parametrization (from 	ε = −1.75 MeV to 	ε =
−2.60 MeV). The drift appearing in the binding energies
along isotopic chains when comparing theoretical results with
the D1S parametrization and experiment has been removed
with the D1N parametrization. The absence of this drift still

TABLE I. Numerical values (in MeV) of the parameters Wi , Bi ,
Hi , and Mi of the central terms of the D2 Gogny interaction. The
three ranges μi are expressed in fm.

i μi Wi Bi Hi Mi

1 0.8 −1176.440 800.000 −927.366 1115.573
2 1.3 93.741 −162.161 122.414 −223.859
3 0.6 1800.000 600.000 400.000 −600.000

manifests in the D1M [49] and the D2 parametrizations
of the Gogny interaction. These isospin properties give one
additional equation.

This system of seven equations does not constrain com-
pletely the whole set of parameters. For the central part of the
interaction, the B1 parameter and the ranges of the Gaussians,
μ1 and μ2, are left free, such as the t0 parameter of the
density-dependent term. The exponent α of the density ρ
is fixed to 1/3. These parameters are chosen to provide an
acceptable value of the incompressibility, the surface energy,
and the binding energy in 208Pb. Moreover, the intensity of the
spin-orbit WLS is chosen to reproduce the spin-orbit splitting
in 16O.

Finally, the main properties of the nuclear matter are
controlled. In particular, as discussed in Sec. III, we check
the saturation density, the total energy per particle, and its
spin-isopsin contributions, the incompressibility, the effective
mass, the symmetry energy and the Landau parameters.

With the finite-range and density-dependent term (2) of the
D2 Gogny interaction, six parameters are involved: W3, B3,
H3, M3, μ3, and α. They replace the t0, x0, and α parameters
of expression (1). As a first step, the parameters W3, B3, H3,
and M3 have been adjusted in an indirect way in the present
work, by selecting the combinations which reproduce correctly
the neutron-matter equation of state and the behavior in the
different ST channels in symmetric nuclear matter. The spin-
orbit strength WLS has been fixed to 130 MeV. Moreover, the
power of the density in (2) has been kept equal to 1/3. The
values of the parameters Wi , Bi , Hi , and Mi of the central
terms of the D2 parametrization are given in Table I.

III. INFINITE NUCLEAR MATTER WITH
THE D2 GOGNY INTERACTION

A. Nuclear-matter properties

The main properties of the D2 Gogny interaction in
symmetric nuclear matter—the saturation density ρ0, the
energy per particle E0/A, the incompressibility K∞, the
effective mass m∗/m, and the symmetry energy aτ —are
presented in Table II and compared to the ones calculated
with the D1S parametrization. The empirical values are also
indicated in the last column. The empirical saturation density
ρ0 is deduced from the charge distribution of heavy nuclei
corrected from the effects of the Coulomb repulsion and the
surface tension [52,53]. The energy per particle E0/A and the
symmetry energy aτ appear explicitly in the semiempirical
mass formula. Their empirical values are deduced from the
adjustments of the mass formula [54–58] on the experimental
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TABLE II. Nuclear-matter properties (see text) for the D2 and
D1S parametrizations of the Gogny interaction. The empirical values
are also indicated in the last column.

D2 D1S Empirical value

ρ0(fm−3) 0.163 0.163 0.17 (±0.02)
E0/A (MeV) −16.00 −16.02 −16(±1)
K∞ (MeV) 209 210 220 (±10)
m∗/m 0.74 0.70 0.70 (±0.05)
aτ (MeV) 31.1 31.1 30 (±2)

binding energies. The incompressibility value K∞ has been
microscopically determined by Blaizot et al. [29] using
different phenomenological effective interactions to correctly
reproduce experimental data of heavy nuclei such as the energy
of the breathing mode in 208Pb. It was shown that the original
range [210,220] MeV can be extended to [200,230] without
spoiling the quality of the description of experimental data.
This range of variation has still been used in the present fitting
of the D2 interaction. Recent studies, done in the context of
the Skyrme interactions, indicate that a larger value may be
used [24]. Finally, the empirical value of the effective mass
m∗/m has been deduced from the analysis of nucleon-nucleus
scattering in the framework of the optical potential [59].
Concerning this point, a complementary study related to the
calculation of the depth of the optical potential with the D2
interaction would be very meaningful.

From Table II, we see that the nuclear-matter properties
of the D2 Gogny interaction are very similar to the well-
known D1S parametrization. Only the effective mass is
slightly bigger. The differences between the D2 and the
D1N parametrizations arise from the incompressibility that
is found bigger with D1N (230 MeV vs 209 MeV) and the
symmetry energy that is smaller by 1.4 MeV. All the values
indicated in Table II are compatible with the empirical ones.
A comparison between D2 and the D1S, D1N , and D1M
parametrizations displays only small differences regarding
those global properties. This result was expected as a common
fitting procedure has been used.

B. Equations of state

1. Symmetric matter

Originally, the Gogny interaction has been fitted using
notably as a guide more fundamental calculations based on
realistic two-body interactions and the Brueckner Hartree-
Fock theory, in symmetric nuclear matter by ST channels
[15–17]. In the present fit of the D2 interaction, we have
followed the same approach but by replacing the old two-body
G matrix with a more recent one [60,61]. It is only the general
trend that is discussed in this context, as our interaction
produces good saturation properties. In Fig. 1, we display
the evolution of the potential energy according to the Fermi
momentum kF in the four ST channels. The results are
presented for the D1S (empty squares) and the D2 (empty
circles) parametrizations. The predictions of Bethe-Brueckner-
Goldstone (BBG) calculations based on the two-body AV14

FIG. 1. (Color online) Potential energy in ST channels for the
D1S (empty squares) and D2 (empty circles) parametrizations of
the Gogny interaction. The solid triangles and the solid squares
correspond to Bethe-Brueckner-Goldstone calculations without and
with 3-body interaction (BBG and BBG+3B respectively).

realistic interaction [62] (triangles) are shown [60,61]. For
comparison, we have also indicated the predictions of BBG
calculations including three-body (3B) force. In the range of
interest for the fitting procedure of the Gogny interaction, go-
ing from the low-density regime up to densities around the sat-
uration density, both BBG and BBG + 3B calculations predict
similar results. Only BBG results are used for our comments.
In each panel, the vertical dotted line indicates the saturation
point at kF = 1.33 fm−1. We observe a general improvement
of the behavior of the potential energy in the four ST channels
with the D2 parametrization, in particular in odd ones.

In the odd-singlet channel (S = 0, T = 0), the microscopic
BBG calculations predict a repulsive potential energy at any
densities. The D1S parametrization is in contradiction with
these predictions by providing a strongly attractive potential
energy beyond the Fermi momentum kF = 1.7 fm−1. The
same pathology is present in the D1N and D1M parametriza-
tions. With the D2 parametrization, this attractivity appears at
very high momenta, beyond kF = 2.8 fm−1, or equivalently at
ρ = 9.3ρ0. At such densities, the quark dynamics play a role
and the nucleons cannot be considered as the unique degrees of
freedom of the theory. Our model is valid typically for densities
up to a few times the saturation density. In this domain, the po-
tential energy calculated with the D2 interaction is repulsive.

In the odd-triplet channel (S = 1, T = 1), we see that the
D1S parametrization gives a too-flat behavior in comparison
with the BBG predictions, whereas the D2 parametrization
displays a closer behavior, even though it is a little bit steeper.
The attractivity of the D2 interaction (−0.3 MeV), developed
around the saturation density, is in good agreement with the
BBG predictions (−0.5 MeV).

In the even-singlet channel (S = 0, T = 1), the D2 in-
teraction provides a potential energy curve very close to
the ones associated with the D1S parametrization. As we
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see further when discussing the pairing properties in this
channel, this property is explained by the very low intensity
of the density dependence introduced by the D2 interaction
in this channel. The two curves are also close to the BBG
microscopic predictions, in low-density regime up to saturation
density for which the pairing phenomenon might occur in finite
nuclei.

In the even-triplet channel (S = 1, T = 0), the potential
energy calculated with the D1S parametrization follows
the BBG trends up to the saturation density ρ0. The D2
parametrization displays a behavior similar to the one of the
BBG microscopic ones up to kF = 1.5 fm−1, corresponding
to a density of ρ = 1.4ρ0.

2. Neutronic matter

The control of the isospin dependence of the nuclear
interaction is crucial, in particular in the study of the properties
of nuclei along isotopic chains, moving from the stability line
toward the drip lines. In this context, the investigation of the
neutronic matter (simulating neutron-rich nuclei) is of primary
interest [9,10,48].

The neutronic equation of state associated with the D1S
(empty squares) and D2 (empty circles) parametrizations
is presented on the Fig. 2. The variational calculations of
Friedman and Pandharipande (FP) (solid black curve) based
on the AV14 realistic interaction are also indicated [63]. The
D2 parametrization has been obtained by requiring that the FP
neutron equation of state is reproduced within the error bars
provided by their calculation. This constraint was absent in the
original fitting procedure of the Gogny interaction, in particular
in the fitting of the D1S parametrization. For densities between
ρ0/2 and ρ0, the D2 parametrization reproduces with less
accuracy the FP curve but still within the error bars. However,
beyond ρ0, the D2 parametrization produces an equation of
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FIG. 2. (Color online) Equation of state of the neutronic matter
for the D1S (empty squares) and D2 (empty circles) parametrizations
of the Gogny interaction. A comparison with the predictions of the
variational Monte-Carlo approach (FP) by Friedman and Pandhari-
pande (solid line) is done.

state capable of following the steep increase of the FP curve.
Except at very low densities, the D1S parametrization never
displays a behavior compatible with the FP predictions, in
particular the curvature appearing at ∼ρ = ρ0/2.

Systematic HFB calculations with the D1S interaction
have revealed a drift along isotopic chains when comparing
experimental and theoretical binding energies. The merit of
the D1N parametrization [48], which fit in a very accurate
way the neutronic equation of state, is to remove for the
first time this drift produced by the Gogny interaction. The
D1M parametrization minimizes the difference to experiment
(∼798 keV) [49]. Because of the adding of the constraint on
the neutronic equation of state, the drift is also absent with
the D2 Gogny interaction [46]. However, the minimization
of the difference to experiment was not one of the objectives
of the present work and has been postponed for a future work.

C. Effective mass in asymmetric matter

In this part, we discuss the splitting of neutron and proton
effective masses according to the asymmetry of the system that
is defined by the parameter β = (ρn − ρp)/ρ, where ρn and ρp

stand for the neutron and the proton densities. The microscopic
theories based on the Brueckner-Hartree-Fock (BHF) approxi-
mation of the BBG approach [64,65] predict the neutron effec-
tive mass m∗

n/m to be greater than the proton effective mass
m∗

p/m in neutron-rich matter. These theoretical predictions
are confirmed by the phenomenological study of Li [66], who
shows that the condition m∗

n/m > m∗
p/m is necessary to obtain

an energy dependence of the Lane potential in agreement with
the experimental data on nucleon-nucleus scattering.

As seen from Table II, the effective mass m∗/m calculated
in symmetric nuclear matter for the D2 parametrization
(0.74) is a little higher than the value found with the D1S
parametrization (0.70). A small compression of proton and
neutron spectra are expected with the D2 interaction in
comparison with the D1S one. The splitting of neutron (solid
line) and proton (dashed line) effective masses in asymmetric
matter is shown on Fig. 3 for the D1S (empty squares) and
D2 (empty circles) parametrizations. The BHF predictions are
also indicated (black). A global shift is obtained for proton and
neutron effective masses between the two parametrizations.

For the maximal asymmetry β = 1 (neutron matter), the
splitting obtained with the BHF-BBG calculations reaches
(m∗

n/m − m∗
p/m) = +0.16. With the D1S parametrization,

the amplitude of the splitting is twice this value and keeps
the same sign. For the new parametrization D2, the neutron
effective mass is bigger than the proton one in agreement
with the BHF-BBG predictions. The amplitude of the splitting
obtained with D2 is close to the D1S parametrization one with
(m∗

n/m − m∗
p/m) � 0.30 in neutron matter.

D. Landau parameters

Even though the determination of the numerical values of
the parameters of the interaction is done essentially at the HF
level, the Gogny interaction has been built from the beginning
so that reasonable extensions beyond the HF approximation
are meaningful. In particular, the RPA-type extensions to deal
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FIG. 3. (Color online) Neutron (solid line) and proton (dashed
line) effective mass splitting as a function of the asymmetry β for the
D1S (empty squares) and D2 (empty circles) parametrizations of the
Gogny interaction. The BBG microscopic predictions are indicated.

with collective excitations of small amplitude has been desired.
Thus, the residual part of the Gogny interaction associated with
this kind of nuclear long-range correlations has been controlled
to satisfy this requirement. In that spirit, the calculations
of Landau parameters with the different parametrizations of
the Gogny interaction are crucial and used in the fitting
procedure to select a parametrization. Indeed, at the limit
of long wavelengths, Gogny and Padjen [28] have shown
that, in infinite nuclear matter, the RPA equations reduce to
Landau transport equations [67]. In that way, the Landau
parameters can be determined from the nuclear effective
interaction. Recently, a revival of the studies related to the
Landau parameters of the effective interactions and, more
generally, to the linear response theory can be noted [68–71].

To fix the notations, the residual interaction between
Landau quasiparticles can be written as [72,73]

V (�k,�k′) = N−1{F(θ ) + G(θ )�σ1 · �σ2 + F ′(θ )�τ1 · �τ2

+G ′(θ )�σ1 · �σ2 �τ1 · �τ2}, (4)

where �k, �k′ are the wave vectors of the two interacting
quasiparticles at the Fermi surface (|�k| = |�k′| = kF ), N =

2m∗kF /(�2π2) is the density of states at the Fermi surface,
and F(θ ), G(θ ), F ′(θ ), and G ′(θ ) are dimensionless functions
of the angle θ between the vectors �k and �k′.

The Landau parameters, noted Fl , Gl , F ′
l , and G ′

l (l is the
orbital angular momentum), are defined through an expansion
in terms of the Legendre polynomial Pl(cosθ ) of F(θ ), G(θ ),
F ′(θ ), and G ′(θ ),

F(θ ) =
∞∑
l=0

FlPl(cosθ ), G(θ ) =
∞∑
l=0

GlPl(cosθ ),

F ′(θ ) =
∞∑
l=0

F ′
l Pl(cosθ ), G ′(θ ) =

∞∑
l=0

G ′
lPl(cosθ ). (5)

In the following, we use for the Landau parameters the
notation FST

l introduced by Gogny and Padjen [28], where S
and T are the spin and the isospin of the particle-hole pair. The
equivalence between the two notations is given by the relations

F 00
l ≡ Fl , F 10

l ≡ Gl , F 01
l ≡ F ′

l , F 11
l ≡ G ′

l . (6)

According to the derivation of Ref. [28], the Landau
parameters FST

l are calculated from the second derivative of
the energy.

For the D1-type parametrization, the explicit expressions
of the Landau parameters are

FST
0 = N

⎧⎨⎩
2∑

j=1

Gj (0)
(
AST

j + L
(0)
j BST

j

) + t0ρ
α
0 CST

⎫⎬⎭ ,

F ST
l�1 = N

⎧⎨⎩
2∑

j=1

L
(l)
j BST

j Gj (0)

⎫⎬⎭ , (7)

with ρ0 the density of the system,

Gj (k) = (μj

√
π )3e− μ2

j
2 k2

,

L
(l)
j = e− 1

2 μ2
j k

2
F

(
l + 1

2

) ∞∑
n=0

(
μ2

j k
2
F

4

)2n+l

n!(n + l + 1/2)!
, (8)

and

ST AST
j BST

j CST

00 Wj + Bj −Hj

2 − Mj

4 Mj + Hj −Bj

2 − Wj

4
3
8 (α + 1)(α + 2)

10 Bj

2 − Mj

4
Hj

2 − Wj

4
x0
2 − 1

4

01 −Hj

2 − Mj

4 −Bj

2 − Wj

4 − x0
2 − 1

4

11 −Mj

4 −Wj

4 − 1
4

. (9)

Because it can be checked easily, in the expression (7), the rearrangement terms and the second derivative of the energy
according to the density act only for l = 0 and in the channel (S = 0, T = 0).
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For the D2-type parametrization, the expressions of the Landau parameters are modified. Only the contributions related to the
density-dependent term are different. We find

FST
0 = N

⎧⎨⎩
2∑

j=1

Gj (0)
(
AST

j + L
(0)
j BST

j

) + G
′
3(0)

(
AST

3 + L
(0)
3 BST

3 + δS,0δT,0X
00
3

)⎫⎬⎭ ,

F ST
l�1 = N

2∑
j=1

L
(l)
j BST

j Gj (0) + L
(l)
3 BST

3 G
′
3(0), (10)

with G
′
3(0) = ρα

0 G3(0) and L
(l)
3 is defined from the expression (8) for the range μ3. The term X00

3 corresponds to the contribution
of the rearrangement terms and the second derivative coming from the density-dependent term. It is equal to

X00
3 = 2αA00

3 + 12α(2π )B00
3

∫
drr2 e

− r2

μ2
3

(μ3
√

π )3

j1(kF r)

kF r
j0(kF r) + α(α − 1)

{
1

2
A00

3 + 9π2B00
3

∫
drr2 e

− r2

μ2
3

(μ3
√

π )3

[
j1(kF r)

kF r

]2 }
,

(11)

where the function jn(kr) are the spherical Bessel functions.
The values of the Landau parameters FST

0 and F 00
1 are

presented in Table III for the D1S and D2 parametrizations.
The empirical values, determined by Speth, Zamick, and
Ring [74–76] from the experimental properties of the collec-
tive states measured in 208Pb (excitation energies, transition
probabilities, . . . ), are indicated, as well as those deduced
from Table II of Ref. [68].

The results obtained for the Landau parameter F 00
1 with

the D1S and D2 parametrizations are found close but a little
more negative with the D1S parametrization because of its
smaller effective mass. Indeed, the F 00

1 Landau parameter and
the effective mass are linked through the relation m∗/m = 1 +
F 00

1 /3 [77]. A comparison with both sets of empirical values
indicates that the D1S and the D2 parametrizations have com-
patible values for F 00

1 , in particular with empirical value (2).
Concerning the F 00

0 and F 01
0 Landau parameters, the two

parametrizations provide very similar values as the range
of variation of the incompressibility K∞ and the symmetry
energy aτ are narrow. Indeed, K∞ = 3�

2k2
F (1 + F 00

0 )/m∗ and
aτ = �

2k2
F (1 + F 01

0 )/6m∗ [77]. However, F 00
0 always has the

opposite sign, whatever the parametrization, if we consider
the first set of empirical values, whereas it is strongly
compatible with empirical value (2). To recover the empir-
ical value (1), the incompressibility should be larger than
300 MeV, a requirement incompatible with the range deter-
mined by Blaizot et al. [29], whose deduced value is indicated
in the last line of Table III.

TABLE III. Values of the Landau parameters, F 00
0 , F 10

0 , F 01
0 , F 11

0 ,
and F 00

1 , calculated with the D1S and D2 parametrizations of the
Gogny interaction. Empirical values deduced from [74–76] and [68]
are also indicated.

F 00
0 F 10

0 F 01
0 F 11

0 F 00
1

D1S −0.369+0.466+0.743+0.631 −0.909
D2 −0.307+0.198+0.849+0.962 −0.785
Empirical value (1) [74–76] +0.1 +1.15 +0.7 +1.45 −0.6
Empirical value (2) [68] −0.33 +0.8 +0.8 −0.9

For the F 10
0 and F 11

0 Landau parameters, they are not
directly linked to physical quantities on which the parametriza-
tions of the interaction have been adjusted. Hence, their
values are very different from one parametrization to the
other. The F 11

0 parameter influences significantly the intensity
and the energy of the Gamow-Teller resonance, especially in
208Pb [68]. The D2 parametrization is expected to give a better
description of this resonance.

In a general way, the calculated Landau parameters of the
Gogny interactions are closer to the second set of empirical
values.

The forward-scattering amplitude sum rule [28] is an
interesting probe of the restoration, at least partial, of
the antisymmetry of the scattering amplitude function 
,
also known as the total vertex function. The goal of this
calculation is to verify to what extent phenomenological
density-dependent effective interactions fulfill the elementary
physical requirement that the forward-scattering amplitude of
a particle-hole pair at the Fermi surface, at zero energy and
zero momentum transfer for like particle and parallel spins,
vanishes. This property is a direct consequence of the Pauli
principle. Using an expansion with Legendre polynomials, we
get the components of the total vertex function noted 
ST

l .
The antisymmetry requirement leads to the general forward
scattering amplitude sum rule

∑
l,ST 
ST

l = 0. More precisely,
to ensure that the scattering amplitude of a particle-hole pair
is antisymmetric in the exchange of two incoming or outgoing
quasiparticles, two sum rules S1 and S2 [73] related to the
Landau parameters can be built,

S1 ≡
∑

l

F 00
l

1 + F 00
l

/
(2l + 1)

+ F 10
l

1 + F 10
l

/
(2l + 1)

+ F 01
l

1 + F 01
l

/
(2l + 1)

+ F 11
l

1 + F 11
l

/
(2l + 1)

,

S2 ≡
∑

l

F 00
l

1 + F 00
l

/
(2l + 1)

− 3F 10
l

1 + F 10
l

/
(2l + 1)

− 3F 01
l

1 + F 01
l

/
(2l + 1)

+ 9F 11
l

1 + F 11
l

/
(2l + 1)

, (12)
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TABLE IV. S1 and S2 sum rules (see text) calculated with the
D1S and D2 parametrizations of the Gogny interaction.

S1 S2

D1S −0.162 −0.638
D2 0.014 −2.109

where each term of the summations corresponds to

ST

l .
These S1 and S2 sum rules are related to the odd-triplet and

odd-singlet channels in particle-particle coupling, respectively.
To ensure that the scattering amplitude of two quasiparticles
on the same state with momentum �k is equal to zero for
the odd partial waves, S1 and S2 have to be equal to zero.
These sum rules do not concern the state with even parity
as the scattering of two fermions on the same state with
momentum �k is not forbidden for the S partial wave. We
note also that the antisymmetry requirement refers only to the
total vertex function 
ST

l and not on the function F (F is not
antisymmetric). Actually, there is no reason why it should be,
because the F function is not a physically observable object.
However, it is known that the rearrangement diagrams coming
from the functional derivatives and included in the function
F allow to restore, at least partially, the antisymmetry of the
function 
ST

l .
The values of S1 and S2 are given in Table IV for the D1S

and D2 parametrizations. On the one hand, the first sum rule
S1 is well-verified by both parametrizations, and particularly
by the D2 parametrization. On the other hand, the second
sum rule S2 is reproduced with much less accuracy for the
different parametrizations. The D1S parametrization provides
the better result. The D2 parametrization introduces a much
larger deviation, which will have to be improved.

Concerning the stability conditions established by
Migdal [77], the Landau parameters have to satisfy the
condition FST

l > −(2l + 1) in each ST channel and for any
value of l. In Fig. 4, we display the evolution of the Landau
parameters FST

0 according to the density ρ normalized to the
saturation density ρ0 for the D1S and D2 parametrizations. In
that particular case, the stability condition gives FST

l > −1.
At the saturation density, marked by arrows, this condition
is satisfied for all the parametrizations in each ST channel.
At low density, ρ < 0.6ρ0, the stability condition is not
verified in the ST = 00 channel for all the parametrizations.
This isoscalar instability is dominated by fluctuations of the
total density and can be interpreted as a liquid-gas phase
transition (spinodal instability) [78–80]. For densities larger
than the saturation density, some instabilities may develop
for the D1S parametrization. In the ST = 01 channel, the
first instability appears at ρ ≡ ρD1S

c = 3.4ρ0. In the ST = 11
channel, it appears at ρ ≡ ρD1S

c = 2.0ρ0. On the contrary,
the D2 parametrization predicts no instability at equivalent
densities. The D2 parametrization which has a finite-range
density-dependent term provides a nuclear matter more stable
at high density than the standard D1-type parametrizations.
In particular, the homogeneous, symmetric and nonmagnetic
nuclear matter (S = 0) is stable at least at any density up to
ρ/ρ0 ∼ 6 with the D2 parametrization [46].

-2
-1
0
1
2

F 0
ST

D1S D2

ST=00 ST=10

0.0 1.0 2.0
/ 0

-2
-1
0
1
2

F 0
ST

ST=01

0.0 1.0 2.0 3.0
/ 0

ST=11

FIG. 4. (Color online) Landau parameters F ST
0 represented ac-

cording the density, in each ST channels. The results have been
obtained, in symmetric nuclear matter, with the D1S (empty squares)
and D2 (empty circles) parametrizations of the Gogny interaction.

E. Pairing properties in the S = 0, T = 1 channel

The pairing properties of the Gogny interaction in the S =
0, T = 1 channel is one of its main characteristics as this
interaction has been designed to be able to treat both the mean
and the pairing fields in a HFB approach. In this part, the D1S
parametrization is considered as the reference for the pairing
properties in the S = 0, T = 1 channel. From our knowledge
of the fitting of pairing correlations with the Gogny interaction,
we have deduced two necessary conditions to obtain a realistic
description of pairing in finite nuclei, in particular to avoid the
appearance of pairing correlations in magic nuclei. If one of
these two conditions is not fulfilled, then pairing correlations
develop in magic nuclei.

The first necessary condition stems from the observation
that the pairing energy in nuclei is very sensitive to the level of
attractivity of the potential energy in the S = 0, T = 1 channel
for densities ρ lower than ρ0/2 (kF = 1.06 fm−1). Indeed, the
relative contribution of parametrization to the potential energy
in the subspace S = 0, T = 1 (see Fig. 1) makes it possible to
presume the pairing properties of the parametrization. The
potential energy in this subspace reflects the intensity of
the pairing correlations, and thus it is deeply linked to the
description of pairing correlations. Moreover, as the pairing
manifests itself preferentially in the surface of nuclei where
the density is lower, the low-density part of this subspace is
the most determining one to adjust the pairing properties. We
have studied the link between the level of attractivity of a
Gogny parametrization in this S = 0, T = 1 subspace and the
corresponding pairing correlations Eapp obtained in 16O using
the HFB approach. The results are shown in Fig. 5. Clearly,
we are able to fix a limit under which pairing correlations are
predicted in the magic nuclei.

The second necessary condition concerns the spatial form
of the pairing interaction that has to be similar to a molecular
potential shape. In particular, a too-strong attraction (lower
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FIG. 5. (Color online) Contributions in the S = 0, T = 1 channel
of various D2-type parametrizations of the Gogny force which differ
only by the pairing attractivity.

than −100 MeV) when the two nucleons are in contact
creates a pathological pairing in finite nuclei. In Fig. 6, we
display the spatial shape of the pairing interaction produced
by the D2 parametrization for 100 densities ranging from 0 to
ρ0 with a step of 	ρ = 0.01ρ0. The shape of the potential
associated with the D1S parametrization is also indicated
(black circles). The crosses point out the minima. One sees
that the D2 parametrization satisfies this second condition. At
r = 0, the pairing interaction V S=0,T =1 is always larger than
∼−100 MeV. One remarks that the potential is very sensitive
to the density and consistent with the fact that contribution of
the density dependence of the D2 parametrization has been
chosen to be repulsive in the pairing channel. Finally, for the
D1S parametrization, the minimum is found at r = 1.0 fm.
For the D2 parametrization, it ranges between 0.8 and 1.4 fm
when ρ ranges from 0 to the saturation density ρ0.

Another important piece of information related to the
pairing interaction is given by the shape of the pairing gap
	F in nuclear matter as a function of the Fermi momentum
kF . In Fig. 7, one shows the evolution of the pairing gap 	F

according to kF in symmetric nuclear matter for the D1S

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r [fm]

-100

-50

0

50

100

150

200

250

V
S=

0,
T

=1
 [M

eV
]

/ 0

0.0

0.5

1.0

D2

D1S

FIG. 6. Spatial shape of the pairing interaction for the D1S (black
open circles) and D2 parametrizations. On each curve, the crosses
indicate the position of the minima.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
kF (fm-1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F 
(M

eV
)

Paris

D1S

D2

FIG. 7. (Color online) Pairing gap in ST = 01 channel, in sym-
metric nuclear matter, according to the Fermi momentum kF . The
results are shown for the D1S (empty squares) and D2 (empty
circles) parametrizations. The curve associated with the realistic Paris
potential is also presented (solid line).

(empty squares) and the D2 (empty circles) parametrizations.
The results of the realistic Paris interaction are also displayed
(solid line) [81].

If a parametrization of the Gogny interaction would
reproduce, at all densities, the pairing gap of the realistic
Paris interaction, it would not produce enough pairing in finite
nuclei. To obtain enough pairing in nuclei, it is necessary that
our parametrizations produce a gap greater than the one of the
Paris interaction in a certain range of density. For the D1S
parametrization, this range concerns densities greater than
ρ0/2, the volume-pairing part. For the surface density, the
D1S parametrization is very similar to the bare interaction.
The maximum of the curve is obtained at kF = 0.75 fm−1

with a value around 2.3 MeV. The D2 parametrization
has a relatively small repulsive contribution of the density-
dependent term in the ST = 01 channel: W3 − B3 − H3 +
M3 = 200 MeV fm3(α+1). The shape of the gap is very similar
to the one obtained with the D1S parametrization. However,
we note an amplitude that is a bit stronger (∼2.7 MeV). To ap-
proach the curve of the gap obtained with the D1S parametriza-
tion, it would have been sufficient to decrease the value of the
combination of parameters W3 − B3 − H3 + M3 in the fitting
procedure. The introduction of a slight repulsion for this com-
bination of parameters has allowed to improve the behavior of
the potential energy in all ST spin-isospin channels.

IV. A FEW FINITE NUCLEI PROPERTIES WITH
THE D2 GOGNY INTERACTION

A. Computation details

The new analytical form D2 of the Gogny interaction
proposed in this article has been implemented in the ax-
ially deformed HFB code with parity conservation, called
AMEDEE [51], originally developed by Girod for the D1-type
analytical form. In this code, the HFB equations are solved
using an expansion on an axial harmonic oscillator (HO) basis
with one center (see Appendix A). Moreover, only the pairing
between like particles is considered. With the D2 interaction,
the density-dependent term acts in both mean field and pairing
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field. Because of its more general form, it brings contributions
to the concerned neutron-neutron, proton-proton, and proton-
neutron fields. The expressions of the fields are given in
Appendix B. To program these expressions by optimizing
the computation time to the maximum is a real challenge by
itself. In the following, we describe the algorithm employed
to implement the density-dependent term of the D2 Gogny
interaction into the AMEDEE HFB code.

In the HFB method whose equations are solved in an
iterative way, the convergence towards the self-consistent
solutions is obtained when the coefficients Uμa and Vμa of the
transformation between particles and quasiparticles operators
(see Appendix B) no longer vary from one iteration to the
other. To reach the self-consistent solution, up to 300 or 400
iterations are sometimes necessary. At each iteration, both the
normal density ρ and the abnormal density κ as well as the
fields 
ac, ∂
ac, 	ac, and ∂	ac, expressed in the HO basis
and defined in Appendix B, have to be calculated. As an
example of computation time, we consider in the following
the exchange part of the field 
ac in the case ma = mc = m
of Appendix B. As this term is the most difficult to calculate
during one iteration, its computation time gives a good estimate
of the speed of the code. In the following, we consider only
the first term 
 [1]q�=m+s

mνa,mνc
(E) defined by [see Appendix B,

Eq. (B38)]


 [1]q�=m+s
mνa,mνc

(E) =
∑

m′�0νbνd

〈mνam
′νb|G(r)F [ρ]|m′νdmνc〉

×R
qs
m′νdνb

, (13)

where R
qs
m′νdνb

contains the dependence in the density matrix ρ
and is equal to

R
qs
m′νdνb

=
∑

q

[
(M + H − (B + W )δqq ′ )�(m′ + s)

× ρ
q ′m′+s
m′νd ,m′νb

+ (M − Bδqq ′ )�(m′ − s)ρq ′m′−s
m′νd ,m′νb

]
.

(14)

The m, m′, and νi quantities represent the axial HO quantum
numbers. Their meanings are explained in Appendix A. The
index q is the projection of the isospin quantum number and s
the projection of the intrinsic spin. Both take the values ±1/2.

Concerning the spatial part of the interaction, defined by the
product G(r)F [ρ], we have studied two cases, G(r) = e−r2/p2

with F [ρ] = 1 and G(r) = e−r2/p2
with F [ρ] = [ρα(�r1) +

ρα(�r2)]/2. Here �r represents the relative coordinates of the
two-nucleon system. It is defined as �r = �r1 − �r2.

1. Case 1: G(r) = e−r2/ p2
and F[ρ] = 1

In this first considered case, the full expression of the
interaction takes the form

v̂12 = (W + BP̂σ − HP̂τ − MP̂σ P̂τ )e−r2/p2
. (15)

According to Appendix B, the spatial part of the matrix
element of the interaction (15), noted Imνaνc,m′νbνd

, is written
simply in the HO basis as

Imνaνc,m′νbνd
= 〈mνam

′νb|G(r)F [ρ]|m′νdmνc〉
=

∑
νμνμ′

T
νμ

mνa,m′νd
T

νμ′
m′νb,mνc

〈00,00|G|m′ − mνμ,m − m′νμ′ 〉. (16)

The analytical expression of the quantities T appearing in Eq. (16) are given in Appendix B by Eq. (B43). The expression of
the quantity 〈00,00|G|rμ,rμ′ 〉 is

〈00|G|rμrμ′ 〉 = δmμ+mμ′ ,0 β⊥p2

(2 + β⊥p2)n⊥μ+n⊥μ′ +|mμ|+1

(n⊥μ + n⊥μ′ + |mμ|)!
[n⊥μ! (n⊥μ + |mμ|)! n⊥μ′ ! (n⊥μ′ + |mμ′ |)!]1/2

× (−)(nzμ−nzμ′ )/2 p
√

βz

(2 + βzp2)(nzμ+nzμ′ +1)/2

(nzμ + nzμ′)!

[(nzμ + nzμ′)/2]!

√
2−nzμ−nzμ′

nzμ! nzμ′!
, (17)

where the first line corresponds to the radial matrix element
and the second to the z matrix element.

The expression (13) of the first term of the exchange field
becomes


 [1]q�=m+s
mνa,mνc

(E) =
∑

m′�0νbνd

Imνaνc,m′νbνd
R

qs
m′νdνb

. (18)

The quantity Imνaνc,m′νbνd
is independent of the density

matrix ρ and is calculated once and for all at the beginning
of the code. However, the field term 
 [1]q�=m+s

mνa,mνc
(E) has to

be recalculated at each iteration as it depends on the one-body
density ρ through the quantity R

qs
m′νdνb

. In the calculation of this
field term, the summation is numerically achieved by loops on

the indices m′, νb, and νd . These loops are themselves inserted
in another loops on m, νa , νc, q, and s. Apart from the spin s
and isospin q indices, the other indices describe a set of values
limited by the size of the HO basis whose size is N0.

2. Case 2: G(r) = e−r2/ p2
and F[ρ] = 1

2 [ρα(�r1) + ρα(�r2)]

In the present case, the full expression of the interaction
takes the form

v̂12 = (W + BP̂σ − HP̂τ − MP̂σ P̂τ )e−r2/p2

× ρα(�r1) + ρα(�r2)

2
. (19)
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From the expression (B56), we deduce the expression of
the spatial part of the matrix element,

〈mνa m′νb|G(r)F [ρ]|m′νd mνc〉
= π

∫
d2r̃ ρα( r̃ )

[
φ|m|νa

( r̃ )φ|m′|νd
( r̃ )G̃m′νb,mνc

( r̃ )

+φ|m′ |νb
( r̃ )φ|m|νc

( r̃ )G̃mνa,m′νd
( r̃ )

]
, (20)

where the function φ|m|ν( r̃ ) are the HO wave functions defined
in Eq. (A6) of Appendix A left without their phase eimϕ and
r̃ ≡ (r⊥,z), with r⊥ the projection of �r on the plane xOy and
z its projection along the symmetry axis Oz. The quantities
G̃miνi ,mj νj

( r̃ ) are defined by Eq. (B54) of Appendix B.
That leads to


[1]q�=m+s
mνa,mνc

(E) =
∑

m′�0 νbνd

π

∫
d2r̃ Jmνaνc,m′νbνd

( r̃ )

× ρα( r̃ )Rqs
m′νdνb

. (21)

As the quantity R
qs
m′νdνb

, the spatial density ρ( r̃ ) depends
on the one-body density matrix ρ and has to be recalculated
at each iteration. Moreover, the integral appearing in Eq. (20)
is approximate numerically by a summation on the Laguerre-
Gauss and Hermite-Gauss points r̃ = (r⊥,z),∫

d2r̃ f ( r̃ ) =
∫

r⊥dr⊥dz f (r⊥,z)

�
∑
i,j

viwj r⊥ie
r⊥i ez2

j f (r⊥i ,zj ), (22)

where vi and wj are the Laguerre-Gauss and Hermite-Gauss
weights.

Then the calculation of the term of the field takes the form


[1]q�=m+s
mνa,mνc

(E) =
∑

m′�0 νbνd

∑
i,j

Lmνaνc,m′νbνd
(r⊥i ,zj )

×Rqs
m′νdνb

(r⊥i ,zj ), (23)

where

Lmνaνc,m′νbνd
(r⊥i ,zj ) = π viwj r⊥ie

r⊥i ez2
j

×Jmνaνc,m′νbνd
(r⊥i ,zj ) (24)

and

Rqs
m′νdνb

(r⊥i ,zj ) = ρα(r⊥i ,zj )Rqs
m′νdνb

. (25)

Then, at each iteration, the calculation of the field term

 [1]q�=m+s

mνa,mνc
(E) requires a loop on each index q, s, m, νa , νc,

m′, νb, νd , i, and j . As in Case 1, apart from the spin s and
isospin q indices, the other indices describe a set of values
limited by the size of the HO basis whose size is N0.

3. Computation time of � [1]q�=m+s
mνa,mνc

(E)

In this part, we are first interested in evaluating the
computation time of an algorithm in which the loops on the
various indices are nested and the algebraic operations are done
in the most internal loop. Inside the loops, the instruction that
builds the summation contains two operations, a multiplication
and an addition. By noting as t[×] the execution time of a

TABLE V. Computation time (in seconds) of one iteration of
the AMEDEE HFB code, according to the size N0 of the HO basis.
Calculations have been done on a standard computer using one
processor.

N0 4 6 8 10 12 14 16 18

TD1 0.003 0.011 0.056 0.167 0.494 1.212 2.976 8.616

TD2 0.099 0.803 7.224 33.50 142.9 476.4 1527 5592

T
′
D2 0.012 0.068 0.309 1.087 3.218 8.741 17.31 36.04

TD2
TD1

33 73 129 201 289 393 513 649

T
′
D2

TD1
4.0 6.2 5.5 6.5 6.5 7.2 5.8 4.2

multiplication and t[+] the one of an addition, the execution
time T1 of the loops of Case 1 is

T1 = N1 (t[×] + t[+]), (26)

with N1 = 2 × 2 × Nm × Nνa
× Nνc

× Nm′ × Nνb
× Nνd

,
where the various quantities Nk appearing on the right side of
Eq. (26) represent the number of possible values taken by the
quantum number k for a given HO basis whose size is N0.

The execution time T2 of the loops of Case 2 is

T2 = N2 (t[×] + t[+]), (27)

where N2 = N1 × Ni × Nj and (Ni , Nj ) are the number of
Laguerre-Gauss and Hermite-Gauss points, respectively.

The execution times have been evaluated for the D1-type
and D2 Gogny forces. We note that the execution times of the
zero-range terms are so fast that they have been neglected. We
deduce that the time TD1 corresponding to the D1-type Gogny
force, for the calculation of the field term 
 [1]q�=m+s

mνa,mνc
(E),

can be approximate as

TD1 � 2T1. (28)

With the new analytical form D2 of the Gogny force, this
time, noted TD2, is evaluated as

TD2 = 2T1 + T2 = (2 + NiNj )T1

= (
1 + 1

2NiNj

)
TD1. (29)

In a case of spherical nuclei, the dependence Ni=Nj=2N0,
which is a realistic prescription for the evaluation of the
integrals, has been chosen for the numbers Ni and Nj of
Laguerre-Gauss and Hermite-Gauss points.

The execution times TD1 and TD2 of one iteration are
indicated in Table V, according to the size N0 of the HO basis.
We see that the execution time TD2 is excessively larger than
TD1 (up to a factor ∼649 for N0 = 18) when a naive program
writing is done.

To improve in a significant way TD2, we have proposed a
restructuring of the loops. To explain this restructuring, we
start with a simple example to understand its main idea. We
consider the following quantity s that is to be calculated from
functions fi which depend on indices (a,b,c) in the following
way:

s =
N∑

a=1

N∑
b=1

N∑
c=1

f1 (a) f2 (a,b) f3 (b,c) . (30)
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FIG. 8. The simplest loop structure to calculate s (see text).

As seen from Eq. (30), the functions fi are assumed to be
linked by common indices.

From a numerical point of view, the multiple summa-
tion (30) is programmed as a set of nested loops. There are
several ways of organizing these loops; some are more time
expensive. The simplest loop structure is represented on Fig. 8.
Inside the loops, three mathematical operations are achieved:
two multiplications and one addition. The corresponding
execution time Ts is thus

Ts = N3 (2t[×] + t[+]) , (31)

where N is the number of values taken by the three indices
(a,b,c).

To show that there exists a loop structure which reduces
the number of mathematical operations, we use a graphical
representation whose prescription can be defined in the
following way. The quantity s contains a summation on the
set of indices (a,b,c). These indices are linked by functions;
for example, the function f2(a,b) correlates the indices a
and b. Consequently, these functions make up indivisible
blocks, f2(a,b) �= f2.a(a).f2.b(b), which can be represented
by points. Moreover, these various functions are connected
between themselves by their common indices. We represent
a connection between two functions with a line labeled by
their common index. Using this graphical prescription, the
representation of the quantity s is shown on Fig. 9.

The following step consists of determining the index of the
summation that have to be achieved first. In the present simple
case, we see the following.

(i) The summation on the index a is related to the
functions f1(a) and f2(a,b). Two loops are necessary,
one on the index a that is summed up and the other on
the spectator index b.

(ii) The summation on the index b is related to the
functionsf2(a,b) and f3(b,c). Three loops are nec-
essary, one on the index b that is summed up and two
on the spectator indices a and c.

(iii) The summation on the index c concerns only the
function f3(b,c). Two loops are necessary, one on
the index c that is summed up and the other on the
spectator index b.

FIG. 9. Graphical representation of the quantity s (see text).

FIG. 10. Graphical representation of the quantity s (see text).

This small analysis shows that it is not advantageous to
do the summation on b first. Concerning the summations
on the indices a and c, the graphical representation shown
in Fig. 9 allows us to conclude that the first summation
that we have to do is the one on c. Indeed, a linked is
labeled by the index a, which is not the case for the index
c. This link represents the multiplication between the func-
tions f1(a) and f2(a,b). This multiplication, which is time
expensive, discriminates the summation on the index a. The
summation on c implies the definition of the function g(b) =∑

c f3(b,c). With this presummation, the new expression for
s is s = ∑

a,b f1(a)f2(a,b)g(b). The corresponding graphical
representation is given on Fig. 10. The new graph (10) shows
that indices a and b see the same type of environment: one
function with one variable, one function with two variables
and one link. Hence, the summation on a and b are equivalent
from the point of view of the execution time. For example, if
we choose to do first the summation on b, s can be written as
s = ∑

a f1(a)h(a), with h(a) = ∑
b f2(a,b)g(b).

The final structuring of the loops is shown on Fig. 11.
Within this new loop structuring, the presummation calculation
g(b) corresponds to N2 additions. The second pre-summation
h(a) gives rise to N2 multiplications and the same number
of additions. Hence, the execution time T

′
s of this new loop

structuring is

T
′
s = N2t[+] + N (N + 1)(t[×] + t[+]). (32)

From a numerical point of view, t[+] � t[×]. Then we
obtain for Ts and T

′
s

Ts = 2N3 t[×]
T ′

s = N (N + 1) t[×]

}
⇒ T ′

s � Ts for all N � 1. (33)

We have used the same reduction procedure for the calcu-
lation of the various fields appearing in the HFB equations.

FIG. 11. Structuring of the loops that optimizes the execution
time of the quantity s (see text).
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For the quantity 
[1]q�=m+s
mνa,mνc

(E), the situation is much more
complicated than in the previous example because they are
much more indices and different functions. The final ordering
of the loops (external to internal) that is obtained is

∑
i ,

∑
j ,∑

m′>0,n⊥b
,

∑
νb

,
∑

m′>0,n⊥d
, and

∑
νd

. The execution times
T

′
D2

are indicated in Table V. We see that the increase of the
execution time owing to the finite-range, density-dependent
term is equal now to only a factor ranging from 4.0 to 7.2,
depending on the size N0 of the HO basis. The restructuring
of the loops makes the HFB code with the D2 interaction still
very competitive in time.

B. Tin isotopic chain

1. Spin of odd isotopes

The ground states and excited states of many odd Sn
isotopes have been produced experimentally. In Fig. 12, we
report their measured spin, parity, and excitation energies
(EXP) extracted from the ENSDF data base of the National
Nuclear Data Center [82]. The predictions of our HFB
calculations (without breaking of time-reversal symmetry),
using the D1S and D2 parametrizations, are also presented
for 11 odd isotopes, ranging from 111Sn to 131Sn (the D2A
parametrization is similar to the D2 parametrization but differ
by a stronger surface pairing). They are all found to be
spherical.

For 111Sn, the results with the two parametrizations predict
the spin parity 7/2+ for the ground state, in agreement with
the experiment. Until 119Sn, the measured spin parities 1/2+
of the ground state and the first two excited states are correctly
reproduced by the Gogny parametrizations (no experimental
spin and parity are available for the second excited states in
111Sn and 113Sn). The 121Sn is the first isotope for which
the theoretical predictions do not reproduce the measured
spin parity 3/2+ for the ground state. It is still possible that
the particle-vibration coupling induces a permutation of the
1/2+ and 3/2+ states, for they are very close in energy. In
123Sn, the measured ground state has a spin parity 11/2−,
correctly reproduced with the D1S parametrization. The D2
parametrization fails to reproduce this spin-parity and still
predicts the ground state as 1/2+. In the isotopes 129Sn and
131Sn, the experimental spectra are built on a 3/2+ ground
state. The predictions of the D1S and D2 parametrizations
fail to reproduce the spin parity of the ground state. They
predict a 11/2− ground state.

To conclude, excitation energies obtained within a self-
consistent blocking of the HFB approach are in general found
in better agreement with the D2 parametrization than the D1S
parametrization, even though noticeable disagreement is found
around the N = 82 shell closure. Moreover, we remark that
the desired accuracy of the theoretical predictions has to be
of the order of ∼100 keV, or even less, to reproduce the
experimental spectra for the heavier isotopes. The difference

FIG. 12. Spin, parity, and excitation energies 	(E) (in MeV) of the ground and the first excited states in 11 odd Sn isotopes, with a number
of neutron ranging from 61 to 81. Experimental results as well as the predictions of the D1S and D2 parametrizations are indicated. The D2A

parametrization is similar to the D2 parametrization but differs by a stronger surface pairing.

034312-13



F. CHAPPERT, N. PILLET, M. GIROD, AND J.-F. BERGER PHYSICAL REVIEW C 91, 034312 (2015)

FIG. 13. (Color online) Spatial distribution of the neutron den-
sity in the 116Sn isotope calculated with the D1S (empty squares) and
the D2 (empty circles) parametrizations.

in energy between the HFB calculations and the experiment is
consistent with the magnitude of the particle-vibration effect
in odd nuclei [17,83].

2. Spatial distribution of nucleons and correlated pairs

The spatial distribution of nucleons with isospin τ (proton
or neutron) is characterized by the local density ρτ (�r) defined
by

ρτ (�r) =
∑
i,j,σ

φ∗
i (�r,σ,τ )φj (�r,σ,τ )ρji, (34)

where �r , σ , and τ denote the position, the spin, and the
isospin; φi(�r,σ,τ ) the wave function of the state i in a given
representation; and ρij the density matrix.

In Fig. 13, the neutron local density ρn(�r) calculated within
the HFB approach is displayed in the case of 116Sn for
both the D1S (empty squares) and the D2 (empty circles)
parametrizations. As this nucleus is spherical, the density is
isotropic and depends only on the norm r of the position �r .
Moreover, the structure of the local density is given by the
spatial form of the single-particle orbitals that are filled or
partially filled. One observes that the neutron local density
is very similar for large values of r (r > 5 fm) for the two
parametrizations. Differences appear in the center and in
the surface of the nucleus. The largest difference is found
in the center where, a depression is obtained for the D2
parametrization. This difference comes from the filling of s
states that are the only ones to contribute to the density in the
center of the nucleus.

To further interpret this difference, we have investigated
the spatial distribution of the neutron correlated pairs. In the
HFB approach, this distribution is characterized by the pairing
tensor κτ (�r):

κτ (�r) =
∑
i,j,σ

φi(�r,σ,τ )φj (�r,σ,τ )κji . (35)

It is known that only the states i and j close to the Fermi
level contribute significantly to the pairing tensor [84,85]. The

FIG. 14. (Color online) Spatial distribution of the correlated neu-
tron pairs κn(r) in the 116Sn isotope, calculated with the D1S (empty
squares) and the D2 (empty circles) parametrizations.

spatial distribution of the neutron correlated pairs κn(r) in 116Sn
is shown on Fig. 14 for both the D1S (empty squares) and D2
(empty circles) parametrizations. One observes that the main
differences between the two parametrizations occur for the
same value of r as observed in the neutron density ρn(r). For
116Sn, the neutron chemical potential is located between the
3s1/2 and the 2d3/2 single-particle states. Clearly, the difference
obtained for the neutron local density in the center of the
nucleus arises from the 3s1/2 orbital that is less populated with
the D2 parametrization than with the D1S parametrization.
The pairing correlations are accountable for these results. The
fluctuations around the surface (r ∼ 4 fm) come mainly from
the 2d3/2, which is more filled with the D2 parametrization
than in the case of the D1S parametrization. This result shows
that the pairing strength of the D2 parametrization is a bit
stronger than the D1S parametrization (more surface pairing).
It is consistent with the pairing gap curve (Fig. 7) found in
nuclear matter. From these results, it is difficult to discriminate
between different parametrizations. Indeed, concerning the
neutron density profile in 116Sn, no experimental data are
known.

3. Odd-even mass difference

The odd-even mass difference is the pertinent observable
to quantify the pairing correlations in nuclei. Indeed, it has
been identified at the beginning of nuclear physics [86]
and explained through the existence of pairing correlations
between the nucleons [87]. Different studies [88,89], based on
the microscopic analysis of the mean-field and pairing-field
contributions, have shown that the three-point mass difference
	(3)(A), centered on an odd nucleus, gives an estimation of
the pairing gap magnitude. This difference is defined as

	(3)(A) = (−1)A

2
[E(A + 1) − 2E(A) + E(A − 1)] , (36)

where E(A − 1), E(A), and E(A + 1) represent the binding
energies of the systems with A − 1, A, and A + 1 nucleons,
respectively.
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FIG. 15. (Color online) Odd-even mass difference 	(3) according
to the number of nucleons A in the Sn isotopic chain. The results
are shown for the D1S (empty squares) and D2 (empty circles)
parametrizations and compared to the experimental data (EXP) (solid
squares).

In Fig. 15, the values of 	(3)(A) calculated at the HFB
approximation with the blocking prescription [90] for the
odd nuclei, are compared with the experimental values (solid
squares) [91]. The theoretical curve obtained with the D1S
parametrization (empty squares) reproduces correctly the
shape of the experimental curve. Especially, it has a minimum
at A = 115, in agreement with the experimental curve. This
minimum is linked to the decrease of the pairing correlations
at the shell closure 1g7/2 in 114Sn. With the D2 parametrization
(empty circles), the minimum of the mass differences 	(3)(A)
is postponed to A = 119. However, these results do not include
the residual interaction effects beyond the mean field, such as
the particle-vibration coupling, that are known to be important
especially in odd nuclei. To leave room to treat explicitly
these particular correlations, the Gogny interaction is fitted
to provide odd-even mass differences in Sn isotopes larger
than the experimental values. Originally, Gogny estimated that
the effect of the particle-vibration coupling is of the order of
∼300 keV [17,83]. This value is still in use in the fitting
procedure.

To compare the pairing strength of the two different
parametrizations, we have displayed in Fig. 16 the neutron
pairing energy Eapp in the even-even Sn isotopes ranging from
A = 100 to A = 138. As already noticed in the nuclear-matter
pairing study, the neutron pairing energy is systematically
found to be a bit stronger with the D2 parametrization than
with the D1S parametrization.

C. Lead isotopic chain

1. Charge and neutron distributions in 208Pb

The role played by the 3s1/2 orbital can be studied through
the charge distribution in 208Pb, as it is located in the proton
Fermi sea in this nucleus. In Fig. 17, bottom curves, the charge
distributions are represented for the D1S (empty squares)
and the D2 (empty circle) parametrizations. They have been
calculated at the HF approximation and taking into account the
proton form factor. Results deduced from a RPA calculation
with the D1S parametrization as well as the experimental data
are also indicated.

FIG. 16. (Color online) Neutron pairing energy Eapp (in MeV)
of a few Sn isotopes, calculated with the D1S (empty squares) and
D2 (empty circles) parametrizations.

For the D1S parametrization, the charge distribution
obtained with the HF method reproduces reasonably well the
experimental data (EXP) beyond r = 2 fm. Indeed, at the level
of the HF approximation, it is not expected to reproduce
such experimental data with the Gogny interaction. In the
center of the nucleus, r < 2 fm, the HF calculation is different
from the experimental curve by predicting a too-pronounced
maximum. This maximum at the origin [ρ(0) = 0.077 fm−3]
comes from the contribution of the 3s1/2 and overestimates
the experimental value [ρ(0) = 0.063 fm−3]. The adding of
correlations in the ground state using the RPA method
improves significantly the agreement with the experimental
distribution. The discrepancy to experiment is reduced by a
factor of 2 [92,93].

For the D2 parametrization, only calculations at the HF
level are discussed. In comparison with the D1S parametriza-
tion, the value at the center of the nucleus is reduced by
0.002 fm−3. This slight improvement of the theoretical results

FIG. 17. (Color online) Spatial distribution of the neutron den-
sity in the 208Pb isotope calculated with the D1S (empty squares) and
the D2 (empty circles) parametrizations.
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FIG. 18. (Color online) Isotopic variation of charge radii 	r2
c for

the Pb isotopes according to the mass A. The theoretical prediction
obtained at the HFB approximation for the D1S, D1M , and D2
parametrizations are compared to the experimental ones (EXP).

obtained at the HF level goes in the right direction. It would be
very interesting to complete this calculation with a RPA one.

The neutron distribution is experimentally less easily
determined, in particular in the center of the nucleus. In
Fig. 17, top curves, the neutron densities (experimental and
theoretical) are displayed. The experimental error bars are
represented by vertical black lines. In the central region,
r < 3 fm, the distribution obtained with the D1S parametriza-
tion at the HF and HF-RPA approximations displays oscilla-
tions with an amplitude that is slightly too strong according
to the experimental value. With the D2 parametrization, the
amplitude is reduced and the distribution obtained at the HF
approximation is compatible with the error bars.

2. Isotopic variation of charge radii

The isotopic variation of charge radii is a stringent test of
our theoretical models. The experimental values, deduced from
spectroscopy with Laser beam, are known with a high accuracy
along isotopic chains [94,95]. In the Pb isotopic chain, the
experimental charge radii display an angular point at the 208Pb
isotope. This effect can be seen in Fig. 18 where the quantity
	r2

c defined as

	r2
c = r2

c (A) − r2
c (208) (37)

has been plotted. In expression (37), rc(A) is the charge radius
of the isotope of mass A. For all the curves, the reference point
is 208Pb. The curve denoted EXP corresponds to experimental
charge radii. For the other curves, the charge radii have been
calculated at the HFB approximation using the D1S [35],
D1M [49], and D2 parametrizations. The predictions for
D1M and D2 are very similar.

The D1S parametrization predicts a negligible changing of
slope. A slight improvement is obtained with the D2 and D1M
parametrizations. Moreover, we remark that, for the isotopes
with mass A < 208, the D2 and D1M parametrizations
reproduce with a very good accuracy the experimental isotopic

FIG. 19. (Color online) (Top) Pairing energy calculated at the
HFB approximation. (Middle) Moments of inertia. (Bottom) Axial
deformation β. Calculations have been done for a few nuclei of the
rare-earth region with the D1S (blue) and D2 (red) parametrizations.
Experimental data are indicated with black points.

variation of the charge radii up to 196Pb. For the lightest
isotopes (190–194Pb), collective beyond-mean-field correlations
begin to play a role. Indeed, Ref. [51] shows clearly that these
isotopes are no longer rigid. This effect is confirmed by the
changing of slope on the experimental curve before 196Pb.
From other studies (relativistic and nonrelativistic) [26,96,97],
it seems that the isovectorial component of the spin-orbit term
may play a role for a better agreement with the experimental
kink. The actual spin-orbit term of the Gogny interaction is a
contact term and acts only in the odd-triplet channel (S = 1,
T = 1). Its isovectorial dependence is very particular. Adding
a finite range to this component would allow a contribution in
the even-triplet channel (S = 1, T = 0).

D. Moments of inertia in rare-earth and actinide regions

In rare-earth and actinide regions, low-energy collective
states of many even-even nuclei have been experimentally
produced. The energies of the first excited states built on the
0+ ground state have been measured. The first excited state, in
most even-even nuclei, has spin parity 2+. The experimental
values of the excitation energy for this state, E(2+), are
compiled in Ref. [98].

The axial deformation β of the ground states of a few
rare-earth and actinide nuclei are displayed in Figs. 19 and 20,
bottom panels. The experimental deformations are indicated
with solid circles whereas the theoretical results obtained at
the HFB approximation correspond to solid squares (D1S
parametrization) and stars (D2 parametrization). As is well
known, the experimental results are characterized by the
occurrence of strong axial deformations, with a β deformation
ranging typically from 0.25 to 0.35. Except for 174Hf and
174W, for which the HFB theory overestimates experiment,
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FIG. 20. (Color online) Same as Fig. 19 for a few actinides.

the theoretical predictions, done at the HFB level, provide a
deformation β in good agreement with the experimental data.

As a consequence of the strong experimental deformation
in the two mass regions, the first excited states follow a
rotational spectrum law. Thus, the experimental values of
the moment of inertia can be deduced from the measured
energy of the first 2+ state, as JEXP = 3/E(2+) (MeV−1).
The experimental moments of inertia are represented with
black circles in Figs. 19 and 20, middle panel. The theoretical
predictions obtained with the D1S and D2 parametrizations
(blue and red points, respectively) have been calculated at
the Inglis-Belyaev [99,100] approximation, following the
procedure proposed by Girod et al. [101] to reproduce the
values deduced from the Thouless-Valatin method [102].

For the rare earths 164Dy, 168Er, and 170Yb, the calculated
moments of inertia reproduce correctly the experimental
data, with an accuracy of 5 MeV−1. This theory-experiment
agreement is much worse in 174Hf and 174W, as for the
deformation β. Experimentally, the strong relation between
moments of inertia and deformation has been proved and can
be parametrized as [90]

JEXP � β2
EXPA

7/3

400
(MeV−1). (38)

Applying the relation (38) to the theoretical results, the
difference (β2

D1S − β2
EXP) = 0.056 in 174W is equivalent to a

difference (JD1S − JEXP) = 23.7 MeV−1. Looking at Fig. 19,
the difference is, in fact, a little bit smaller (15.3 MeV−1) but
still of the same order of magnitude. We note that the two
parametrizations provide close results.

Finally, we display in Figs. 19 and 20, top panel, the
pairing energy Eapp obtained for the various isotopes. Both
parametrizations show similar pairing contents with the defor-
mation.
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FIG. 21. (Color online) Potential energy evolution EHFB accord-
ing to the axial quadrupole deformation parameter β for a few
actinides (see text). The calculations have been done for the D1S

(empty squares) and D2 (empty circles) parametrizations. The curves
corresponding to the D2 parametrization have been translated in order
that their minimum correspond to the ones calculated with the D1S

parametrization.

E. Fission barriers in actinides

The theoretical modelization of the fission process needs
to know both the static and the dynamic properties of the
fissioning system. Especially, the static nuclear configurations
out of equilibrium, the coupling between collective and single-
particle degrees of freedom, as well as the dynamics of the
large amplitude collective motions have to be considered. The
main microscopic approaches to fission, in particular the one
using the Gogny interaction, consists of two steps, a static
calculation that determines the potential energy surfaces and
the collective inertia, a dynamical calculation based on the
static results that describes the time evolution of the system up
to scission. In the present work, we discuss only the static step
by determining, at the HFB approximation under constraint,
the potential energy curves (PECs) of various actinides along
the symmetric fission path. Indeed, special attention has to be
applied to the height of the fission barriers predicted by an
effective interaction.

On Fig. 21, we display the evolution of the PECs obtained
for 238U, 240Pu, 242Cm, and 250Cf according to the axial defor-
mation parameter β. For each nucleus, the HFB calculations
have been done for the D1S (empty squares) and the D2
(empty circles) parametrizations. For the D2 parametrization,
the PEC has been vertically translated so that its minimum
is the same as for D1S parametrization. Furthermore, the
zero-point energy rotational corrections have been taken into
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TABLE VI. Experimental and theoretical fission barrier heights
(expressed in MeV) for nine actinides [103,104]. For the theoretical
predictions, the calculations have been done with the D1S and D2
parametrizations.

234U 238U 238Pu 240Pu 244Pu

BEXP
I 4.8 6.3 5.6 6.1 5.7

BD1S
I,a 8.7 10.6 10.3 11.1 12.2

BD2
I,a 8.0 9.5 9.4 10.2 9.9

242Cm 244Cm 250Cf 252Cf
BEXP

I 6.7 6.2 5.6 5.3
BD1S

I,a 11.2 11.4 12.3 10.7
BD2

I,a 10.2 10.5 10.8 10.1

account so that the curves represent the collective potential
of the fissioning system. We recall that the D1S interaction
was created to have a realistic description of the second
barrier that was found to be too high with the original D1
parametrization [18,19]. The surface tension of the interaction
was then decreased.

The PECs obtained with the D1S and the D2 parametriza-
tions have, in general, relatively similar shapes. They display
two wells whose minima are located around β ∼ 0.3 and
β ∼ 0.9. The two wells, which correspond to the ground state
of the system and to the fission isomer, are separated by a
first barrier whose height BI,a is measured from the bottom
of the first well. In the four presented nuclei, BI,a is found
to be smaller by ∼1 MeV with the D2 parametrization than
with the D1S parametrization. More systematic calculations
seem to generalize this result in actinides for which this
difference ranges between 500 keV and 2 MeV. In Table VI,
the experimental fission barrier heights are presented for nine
nuclei as well as the theoretical predictions of the D1S and
D2 parametrizations.

However, a direct comparison between experiment and
our theoretical calculations have to be nuanced. On the one
hand, the experimental barrier heights are defined according
to the ground state of the nucleus. The zero-point energy in
the first well is of the order of 500 keV; then the theoretical
barrier has to be decreased by the same quantity. On the other
hand, the calculation with the D1S parametrization shows
that the heights of the triaxial barriers are reduced by 2
to 3 MeV in comparison with the axial values BI,a . With
these reductions, the heights of the barriers obtained with the
D1S parametrizations still overestimate by 1 to 2 MeV
the experimental values. The reduced values obtained with
the D2 parametrization seem to go in the right direction.

V. CONCLUSION

In this work, we have investigated a new analytical form
for the Gogny effective interaction by including a finite-range
density-dependent term. This generalization is a first step
towards a fully finite-range Gogny interaction. Indeed, the
use of the effective interaction in mean-field extensions like
(Q)RPA and second RPA or, more generally, in methods based
on multiparticle-multihole expansions imposes a nonzero-
range effective interaction. In such cases, the residual matrix

elements have to be well behaved; they have to tend to zero at
high transfer momenta.

The parameters of the new Gogny interaction have been
adjusted to obtain the D2 parametrization. The properties of
this parametrization have been investigated in both nuclear
matter and finite nuclei at the mean-field level. The D2
parametrization displays similar properties than the D1-type
Gogny parametrizations in nuclear matter. A few properties
are even improved, as the behavior of the energy per particle
in the ST spin-isospin channels. Because of the presence of
the density-dependent term in the pairing channel (S = 0,
T = 1) that has been chosen to be repulsive, the pairing
produced by the D2 parametrization seems to be a bit stronger
and more surface than the one of the D1S parametrization.
The presence of the finite range provides a nuclear matter
that is much more stable than the D1-type parametrizations.
The various quantities calculated in finite nuclei at the HFB
level with the D2 parametrization show that this new Gogny
interaction displays properties similar to those of the standard
parametrization, owing to the unified set of constraints of the
fitting procedure. The D2 interaction offers a better description
of binding energies along isotopic chains with the removal
of the drift of the energies observed for increasing neutron
number with the D1S parametrization. The height of the fission
barriers seem to be improved, with a decreasing between
500 keV and 2 MeV in actinides. For the other nuclear
properties investigated in this study, the D2 parametrization
gives the same quality of description as the D1S interaction.

The perspectives of the present work are numerous. We
cite only a few of them. A beyond-mean-field analysis of
the D2 parametrization should be completed to test its
residual interaction. In this context, the new parametrization
should be implemented in RPA, QRPA, second RPA, and
configuration mixing methods. A systematic study of the
low-lying spectroscopy would be important. An improvement
in the description of binding energies is still needed as the one
done in the context of the D1M interaction. The properties
associated with the proton-neutron pairing are also a very
interesting and possibly relevant as the density-dependent term
that acts in the ST = 10 channel is now with a finite range.
The generalization of the spin-orbit component of the Gogny
interaction with a finite-range term has to be done in a similar
way, with a complete refit of the interaction.
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APPENDIX A: THE AXIAL HARMONIC
OSCILLATOR REPRESENTATION

We denote |a〉 as the axial HO states with a = (αa,ra),
αa = (qa,sa), and ra = (ma,νa) ≡ (ma,n⊥a,nza). The quan-
tum numbers qa and sa are the projections of the isospin and the
intrinsic spin. The quantities nza and n⊥a represent the number
of quanta on the symmetry z axis and on the perpendicular
direction. By definition, the states |a〉 are eigenstates of jz

034312-18



GOGNY FORCE WITH A FINITE-RANGE DENSITY . . . PHYSICAL REVIEW C 91, 034312 (2015)

with the eigenvalue �a = ma + sa . By noting

a = (αa,ra) = (qa,−sa,−ma,νa)

= (qa, − �a, − ma,νa), (A1)

the states |a〉 and |a〉 correspond by the time-reversal opera-
tor T̂ :

T̂ |a〉 = σa|a〉, T̂ |a〉 = −σa|a〉,
T̂ +|a〉 = −σa|a〉, T̂ +|a〉 = σa|a〉, σa = 2sa. (A2)

We denote as a > 0 the states with �a > 0 and as a < 0 those
having �a < 0. We write c+

a as the operator associated with

the state |a〉 in second quantization and c+
a as its time reversal.

The relations (A2) are then equivalent to

c+
a ≡ T̂ c+

a T̂ + = σac
+
a , T̂ c+

a T̂ + = −σac
+
a ,

T̂ +c+
a T̂ = −σac

+
a , T̂ +c+

a T̂ = σac
+
a . (A3)

The states of the axial HO are eigenstates of the parity P̂ with
the eigenvalues πa = (−)ma+nza :

P̂ |a〉 = (−)ma+nza |a〉. (A4)

Finally, the wave functions of the axial HO can be written
as

�a(�r,σ,τ ) = φra
(�r) χsa

(σ )χqa
(τ ), (A5)

where the functions χ are the standard two-dimensional
spinors for spin and isospin degrees of freedom. The spatial
wave functions φra

decompose into two parts (a part related to
the z axis and a part related to the perpendicular direction) and
can be written as

φra
(�r) = φman⊥anza

(�r) = φmaνa
(�r⊥,z) = φman⊥a

(�r⊥) φnza
(z),

(A6)

where their respective oscillator lengths β⊥ and βz are given
by

β⊥ = Mω⊥
�

� �ω⊥
41.47

, βz = Mωz

�
� �ωz

41.47
, (A7)

with M the nucleon mass.
The explicit expression of the spatial wave functions

φmn⊥ (�r⊥) and φnz
(z) appearing in (A6) are

φmn⊥(�r⊥) =
(

β⊥
π

)1/2 [
n⊥!

(n⊥ + |m|)!
]1/2

e− 1
2 β⊥r2

⊥

× (r⊥
√

β⊥)|m|L|m|
n⊥ (β⊥r2

⊥) eimϕ,

φnz
(z) =

(
βz

π

)1/4 1(
2n

znz!
)1/2 e− 1

2 βzz
2
Hnz

(z
√

βz), (A8)

where the functions L
|m|
n⊥ and Hnz

are the Laguerre and Hermite
polynomials, respectively.

APPENDIX B: CONTRIBUTION OF THE FINITE-RANGE
AND DENSITY-DEPENDENT TERM OF

THE D2 GOGNY INTERACTION TO THE
HARTREE-FOCK-BOGOLIUBOV FIELDS

In this Appendix, we first recall the basics of the HFB
method to introduce the various fields appearing in the
formalism and to specify our notations. Then, only the part
of the mean-field 
 that is necessary for the discussion of the
Sec. IV A will be detailed.

1. Basics of the Hartree-Fock-Bogoliubov method

The HFB ground state |̃0〉 of a system is described by
an antisymmetrized product of independent quasiparticle (qp)
wave functions,

|̃0〉 =
∏
μ

ξμ|0〉, (B1)

where |0〉 is the particle vacuum. The set of ξμ are the qp
operators is defined by

ξμ =
∑

a

(Uμaca + Vμac
†
a). (B2)

The operators (c†a , ca) represent creation and annihilation

operators of one particle in the state a. The operators c
†
a , ca

are the time-reversal operators obtained from the operators
c
†
a , ca . The quantities Uμa , Vμa are the coefficients of

the transformation between particle and qp operators (B2).
Moreover, the HFB ground state is taken as a direct product
of a proton by a neutron wave function. Here only the pairing
between like particles is considered.

In the present work, we assume that the HFB ground state
|̃0〉 is invariant by rotation around the symmetry axis Oz (axial
symmetry), invariant by time reversal T̂ , potentially invariant
by parity P̂ , and invariant by reflection according to the plane
xOz, i.e., by �̂2 = P̂ R̂y(π ). Under these symmetries, the qp
states ξ+

μ are eigenstates of t̂z, ĵz, and potentially P̂ . Thus, we
write μ = (q,�,n) and

ξ+
μ = ξ+

q�n, (B3)

where q and � are the eigenvalues of t̂z and ĵz and n is the
number that distinguishes the qp’s with the same q and �.
Moreover, the action of T̂ on the ξ+

μ is assumed to have the
form

ξ+
q�n ≡ T̂ ξ+

q�nT̂
+ = (−)1/2−�ξ+

q−�n. (B4)

Considering the previous properties, we expand the qp
states on the axial HO states (see Appendix A):

ξq�n =
∑
ra

(
Uq�

n,ra
cq�ra

+ V q�
n,ra

c+
q�ra

)
. (B5)

The summation on ra = (ma,νa) is limited to the values ma =
� ± 1/2 (and potentially to the values that conserves parity).
The U and V represent real matrices. In double representation,
the Bogoliubov-Valatin transformation (B5) writes(

ξμ

ξ+
μ

)
=

∑
a

(
U V

−V U

)
μa

(
ca

c+
a

)
. (B6)

034312-19



F. CHAPPERT, N. PILLET, M. GIROD, AND J.-F. BERGER PHYSICAL REVIEW C 91, 034312 (2015)

The matrix

B =
(

U V
−V U

)
is orthogonal, which implies the following relations:

UT U + V T V = I, UT V − V T U = O. (B7)

The U and V matrices are solutions of the HFB equations(
h 	

−	∗ −h∗

)(
Uμ

Vμ

)
= Eμ

(
Uμ

Vμ

)
, (B8)

where hac = Kac − λ + 
(tot)
ac is the mean field with a kinetic

component (Kac), a Lagrange parameter λ to ensure the
preservation of the mean value of the particle number, and
a potential component 
(tot)

ac . The field 	 is the pairing field
and the set of Eμ comprises the qp energies.

The total HFB energy is given by the expression

EHFB = K + V + Epair, (B9)

where

K =
∑
ac

〈a|K̂|c〉ρca (B10)

is the kinetic energy,

V = 1

2

∑
abcd

〈ab|̂v(a)
12 |cd〉ρcaρdb (B11)

is the potential energy of the mean field, and

Epair = 1

4

∑
abcd

〈ac|̂v(a)
12 |bd〉σcσdκcaκdb (B12)

is the pairing energy. The quantities σi correspond to 2si ,
where si is the projection of the intrinsic spin of the state i.
We have noted v̂

(a)
12 = v̂12(1 − P̂r P̂σ P̂τ ) the antisymmetrized

interaction. In the following, we consider a central interaction
of the type

v̂12 = (W + BP̂σ − HP̂τ − MP̂σ P̂τ )G (r) F [ρ] , (B13)

with

G (r) = e−r2/p2
, F [ρ] = 1

2 [ρα (�r1) + ρα(�r2)], (B14)

and �r = �r1 − �r2.
The density matrix ρ and the pairing tensor κ appearing

in expressions (B10)–(B12) are real and symmetric matrices
defined by

ρca = 〈̃0|c+
a cc |̃0〉, κac = 〈̃0|cacc |̃0〉 = σa 〈̃0|cacc |̃0〉. (B15)

The invariance of |̃0〉 by T̂ has for consequences the
following relations:

ρca = σcσa ρca, κac = σaσc κac. (B16)

Moreover, as |̃0〉 is axial, the matrices ρ and κ are diagonals
in �. They are also diagonal in q in such a way that

ρca = δqaqc
δ�a,�c

ρqa�a
mcνc,maνa

,

κca = δqaqc
δ�a,�c

κqa�a
mcνc,maνa

. (B17)

When the parity is imposed, ρ and κ are diagonal according
to the parity quantum number π ,

ρca = δqaqc
δ�a,�c

δπa,πc
ρqa�aπa

mcνc,maνa
, (B18)

with πa = (−)ma+nza .
The potential 
(tot) is composed by three terms. In the HO

representation, its expression is


(tot)
ac = 
ac + ∂
ac + ∂	ac, (B19)

whose definitions of the three terms are given by


ac =
∑
bd

〈ab|̂v(a)
12 |cd〉ρdb, (B20)

∂
ac = 1

2

∑
bdb′d ′

〈bb′|∂v̂
(a)
12

∂ρca

|dd ′〉ρdbρd ′b′ , (B21)

and

∂	ac = 1

4

∑
bdb′d ′

〈b′d
′|∂v̂

(a)
12

∂ρca

|bd〉σd ′σdκd ′b′κdb. (B22)

The pairing field is

	ac = 1

2

∑
bd

〈ac|̂v(a)
12 |bd〉σcσdκdb. (B23)

The interaction being invariant by rotation, parity, and time
reversal, the fields 
, 	, ∂
, and ∂	 have the same diagonal
structure (B17) and (B18) as ρ and κ . They obey similar
relations as (B16) when the indices a,c are changed to a,c.

We note also that, according to the previous relations,

V = 1

2

∑
ac


acρca, Epair = 1

2

∑
ac

	acκca. (B24)

2. Expression of the field �

In the following, we are interested in discussing the field

. By making explicit the indices in Eq. (B20) and taking into
account the fact that 
 and ρ are diagonal in q and �, we
obtain


q�
rarc

=
∑

q�′rbrd

〈qsamaνa q ′sbmbνb |̂v(a)
12 |qscmcνc q ′sdmdνd〉

×ρq ′�′
rd rb

, (B25)

with � = ma + sa = mc + sc, �′ = mb + sb = md + sd , and
ra = (ma,νa). Moreover,

v̂
(a)
12 = ŴD G(r)F [ρ] + ŴE G(r)F [ρ]P̂r , (B26)

where

ŴD = W + BP̂σ − HP̂τ − MP̂σ P̂τ ,

ŴE = M + HP̂σ − BP̂τ − WP̂σ P̂τ , (B27)

are the spin-isospin components of direct and exchange fields
(in space). We calculate explicitly only the exchange field.
The direct field can be deduced by replacing the parameters
W,B,H,M with M,H,B,W in the expressions and by omitting
P̂r in the spatial matrix elements.
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Separating the spatial and the spin-isospin parts of the
matrix elements of the interaction, the exchange field 
(E)
is


q�
rarc

(E) =
∑

q�′rbrd

〈maνa mbνb|G(r)F [ρ]P̂r |mcνc mdνd〉

× 〈qsa q ′sb|ŴE|qsc q ′sd〉ρq ′�′
rd rb

. (B28)

The spin-isospin matrix element is

〈qsa q ′sb|ŴE|qsc q ′sd〉
= 〈sasb|(M − Bδqq ′ ) + (H − Wδqq ′ )P̂σ |scsd〉
= (M − Bδqq ′ )δsasc

δsbsd
+ (H − Wδqq ′ )δsasd

δsbsc
. (B29)

Then


q�
rarc

(E) =
∑

�′mbmd

νbνd

〈maνa mbνb|G(r)F [ρ]P̂r |mcνc mdνd〉

×Rqsasc�
′

mdνdmbνb
(E), (B30)

with

Rqsasc�
′

mdνdmbνb
(E) =

∑
q ′

[
(M − Bδqq ′ )δsasc

δmb,md
+ (H − Wδqq ′ )

× δmb,�′−sc
δmd ,�′−sa

]
ρq ′ �′

mdνdmbνb
. (B31)

We assume that � > 0. As ma and mc are positive or equal
to zero, differing at maximum by 1 and as 
 is symmetric,
we distinguish two cases: ma = mc = m and ma = m, mc =
m + 1. We discuss only the first case ma = mc = m. Thus,
we have sa = sc = s. We note � = m + s. The interaction v̂12

commutes with Ĵz and Ŝz. Consequently, we have mb = md =
m′ in expression (B30). This leads to


q�=m+s
mνa,mνc

(E) =
∑

�′m′νbνd

〈mνa m′νb|G(r)F [ρ]P̂r |mνc m′νd〉

×R
qss�′
m′νdm′νb

(E) (B32)

and

R
qss�′
m′νdm′νb

(E) =
∑
q ′

[M − Bδqq ′ + (H − Wδqq ′ )δ�′,m′+s]

× ρ
q ′ �′
m′νdm′νb

. (B33)

By limiting the summation to �′ > 0, we obtains


q�=m+s
mνa,mνc

(E) =
∑
�′>0

m′νbνd

[〈mνa m′νb|G(r)F [ρ]P̂r |mνc m′νd〉Rqss�′
m′νdm′νb

(E)

+〈mνa − m′νb|G(r)F [ρ]P̂r |mνc −m′νd〉Rqss−�′
−m′νd−m′νb

(E)
]
. (B34)

According to Eqs. (B33) and (B16),

R
qss−�′
−m′νd−m′νb

(E) =
∑
q ′

[M − Bδqq ′ + (H − Wδqq ′ )δ−�′,−m′+s]ρ
q ′ −�′
−m′νd−m′νb

=
∑
q ′

[M − Bδqq ′ + (H − Wδqq ′ )δ�′,m′−s]ρ
q ′ �′
m′νdm′νb

= R
q−s−s�′
m′νdm′νb

(E). (B35)

We can replace in Eq. (B34) the summation
∑

�′>0 m′ with
∑

m′�0

∑
�′=m′±s �(�′), where � is the Heaviside function:

�(�) =
{

0 if � < 0,
1 if � > 0.

(B36)

We obtain

R
qs
m′νdνb

=
∑

�′=m′±s

�(�′)Rqss�′
m′νdm′νb

(E) =
∑
q ′

{
[M + H − (B + W )δqq ′ ]�(m′ + s)ρq ′ m′+s

m′νdm′νb
+ (M − Bδqq ′ )�(m′ − s)ρq ′ m′−s

m′νdm′νb

}
.

(B37)

By taking into account (B35), we obtain (including P̂r )


q�=m+s
mνa,mνc

(E) =
∑

m′�0 νbνd

[〈mνa m′νb|G(r)F [ρ]|m′νd mνc〉Rqs
m′νdνb

+ 〈mνa −m′νb|G(r)F [ρ]|−m′νd mνc〉Rq −s
m′νdνb

]
. (B38)
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3. Spatial matrix elements

The spatial matrix elements appearing in Eq. (B38) can be written with the help of the functions (A5):

vrarb,rcrd
= 〈maνa mbνb|G(r)F [ρ]|mcνc mdνd〉 =

∫∫
d3r1d

3r2 φ∗
maνa

( �r1) φ∗
mbνb

( �r2)φmcνc
( �r1) φmdνd

( �r2) G(| �r1 − �r2|)

× ρα( �r1) + ρα( �r2)

2
. (B39)

Starting from the generator functions of the HO functions, it is easy to show a property concerning the product of two HO
functions,

φ∗
maνa

(�r) φmcνc
(�r) =

∑
νμ

T
νμ

maνa,mcνc
φ00(�r) φmc−ma,νμ

(�r), (B40)

where the summation on νμ = (n⊥μ,nzμ) is limited by

(|Xa − Xc| − |ma − mc|)
2

� n⊥μ � (Xa + Xc − |ma − mc|)
2

and |nza − nzc| � nzμ � nza + nzc, (B41)

with

Xa = 2n⊥a + |ma|, Xa = 2n⊥c + |mc|, mμ = mc − ma. (B42)

It can be shown that the T functions appearing in Eq. (B40) can be decomposed into two parts:

T
νμ

maνa,mcνc
= T

n⊥μ

man⊥a ,mcn⊥c
× T

nzμ

nza ,nzc
. (B43)

The expressions of the functions T
n⊥μ

man⊥a ,mcn⊥c
are given by

T
n⊥μ

man⊥a ,mcn⊥c
= [n⊥a

! (n⊥a
+ |ma|)! n⊥c

! (n⊥c
+ |mc|)!n⊥μ

!(n⊥μ
+ |mc − ma|)!]1/2

× (−)n⊥a +n⊥c +n⊥μ

∑
m

[(
X + m

2

)
!

(
X − m

2

)
!

(
X′

a + m + ma

2

)
!

(
X′

a − m − ma

2

)
!

(
X′

c + m + mc

2

)
!

×
(

X′
c − m − mc

2

)
!

]−1

, (B44)

with

X = Xa + Xc − Xμ

2
, X′

a = Xa − Xc + Xμ

2
, X′

c = Xc − Xa + Xμ

2
. (B45)

The quantities X, X′
a , and X′

c are integer. The summation on m is limited by the arguments of the factorials that have to be
integer and positive or equal to zero. The index has the same parity as X and its value is between Max(−X,−X′

a − ma,−X′
c − mc)

(maximum value) and Min(X,X′
a − ma,X

′
c − mc) (minimum value).

The expressions of the functions T
nzμ

nza ,nzc
are given by

T
nzμ

nzanzc
= (nza! nzc! nzμ!)1/2( nza+nzc−nzμ

2

)
!
( nza−nzc+nzμ

2

)
!
( nzc−nza+nzμ

2

)
!
, (B46)

with nzμ having the parity of nza ± nzc.
Using the property (B40), we obtain for the expression (B39)

vrarb,rcrd
= 1

2

∫
d3r ρα(�r)

∑
νμ

[
φ∗

maνa
(�r) φmcνc

(�r) T
νμ

mbνb,mdνd
Gmd−mb,νμ

(�r) + φ∗
mbνb

(�r) φmdνd
(�r)T

νμ

maνa,mcνc
Gmc−ma,νμ

(�r)
]
, (B47)

with

Gmμνμ
(�r) =

∫
d3r ′ G(|�r − �r ′|) φ00(�r ′) φmμνμ

(�r ′). (B48)

The quantity Gmμνμ
(�r) can be calculated analytically. Its expression is

Gmμνμ
(�r) = (πp2)3/2

G
2n⊥μ+|mμ |+2

2
⊥ G

nzμ+1
2

z

φ000

( �r⊥√
G⊥

,
z√
Gz

)
φmμn⊥μnzμ

( �r⊥√
G⊥

,
z√
Gz

)
, (B49)
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with

G⊥ = 1 + β⊥p2, Gz = 1 + βzp
2, (B50)

where βz and β⊥ are the parameters of the HO along the z axis and �r⊥. One sees that Gmμνμ
depends on the angle ϕ contained in

�r⊥ only through the phase eimμϕ of φmμn⊥μnzμ
. Then we can write

Gmμνμ
(�r) = eimμϕG|mμ|νμ

( r̃ ), (B51)

with

G|mμ|νμ
( r̃ ) = (πp2)3/2

G
2n⊥μ+|mμ |+2

2
⊥ G

nzμ+1
2

z

φ000

(
r⊥√
G⊥

,
z√
Gz

)
φ|mμ|n⊥μnzμ

(
r⊥√
G⊥

,
z√
Gz

)
. (B52)

We have denoted φ|m|ν( r̃ ) as the HO wave function left without its phase eimϕ and r̃ = (r⊥,z). Substituting Eq. (B51) in
Eq. (B47), we see that the integration on the angle ϕ implies ma + mb = mc + md because the density ρ(�r) is axial and depends
only on r̃ . This equality was expected as the interaction G(r)F [ρ] in (B39) preserves Ĵz. Hence,

vrarb,rcrd
= π

∫
d2r̃ ρα( r̃ )

∑
νμ

[
T

νμ

maνa,mcνc
φ|mb|νb

( r̃ ) φ|md |νd
( r̃ ) + T

νμ

mbνb,mdνd
φ|ma |νa

( r̃ ) φ|mc|νc
( r̃ )

]
G|mc−ma |νμ

( r̃ ). (B53)

It is convenient to define

G̃maνa,mcνc
( r̃ ) =

∑
νμ

T
νμ

maνa,mcνc
G|mc−ma |νμ

( r̃ ). (B54)

The quantity (B54) is symmetric in maνa and mcνc and it is invariant in the simultaneous exchange ma in −ma and mc in −mc,

G̃maνa,mcνc
( r̃ ) = G̃mcνc,maνa

( r̃ ) = G̃−maνa,−mcνc
( r̃ ), (B55)

because the coefficient T has the same properties.
Finally, we obtain

〈maνa mbνb|G(r)F [ρ]|mcνc mdνd〉 = π

∫
d2r̃ ρα( r̃ )

[
φ|ma |νa

( r̃ )φ|mc|νc
( r̃ )G̃mbνb,mdνd

( r̃ ) + φ|mb|νb
( r̃ )φ|md |νd

( r̃ )G̃maνa,mcνc
( r̃ )

]
.

(B56)

The field (B38) has for expression


q�=m+s
mνa,mνc

(E) = π

∫
d2r̃ ρα( r̃ )

∑
m′�0νbνd

φ|m′|νd
( r̃ )

{[
φ|m|νa

( r̃ )G̃mνc,m′νb
( r̃ ) + φ|m|νc

( r̃ )G̃mνa,m′νb
( r̃ )

]
R

qs(+)
m′νdνb

+ [
φ|m|νa

( r̃ )G̃mνc,−m′νb
( r̃ ) + φ|m|νc

( r̃ )G̃mνa,−m′νb
( r̃ )

]
R

qs(−)
m′νdνb

}
, (B57)

with

R
qs(±)
m′νdνb

=
∑
q ′

{
[M + H − (B + W )δqq ′ ]�(m′ ± s)ρq ′ m′±s

m′νd ,m′νb
+ (M − Bδqq ′ )�(m′ ∓ s)ρq ′ m′∓s

m′νd ,m′νb

}
. (B58)

The expressions with F [ρ] = 1 are obtained by taking α = 0. Moreover, if we replace G(r) with δ(�r), we recover the
expression of the zero-range density term of the standard Gogny interaction.
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23 (2006).
[25] H. Nakada, Phys. Rev. C 68, 014316 (2003).
[26] H. Nakada, Phys. Rev. C 87, 014336 (2013).
[27] J.-P. Blaizot and D. Gogny, Nucl. Phys. A 284, 429 (1977).
[28] D. Gogny and R. Padjen, Nucl. Phys. A 293, 365 (1977).
[29] J. P. Blaizot, J. F. Berger, J. Dechargé, and M. Girod,
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