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Shape-coexisting rotation in neutron-deficient Hg and Pb nuclei
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For a shape-soft nucleus, the deformation change with increasing angular momentum of rotation can be
significant. Total-Routhian-surface (TRS) calculations include the shape changes, but angular momentum is not
conserved (neither is it a good quantum number, nor is it kept unchanged in the whole TRS mesh). In the projected
shell model (PSM), the angular momentum appears as a good quantum number, but calculations have usually
been performed with fixed deformation. In the present work, by performing angular-momentum projection on
the mean-field potential-energy surface (PES), we can obtain an angular-momentum-conserved PES which gives
deformation for a rotational state at a given spin. In order to investigate the shape-changing effect, we have chosen
neutron-deficient Hg and Pb isotopes in which shape coexistence occurs. We interpret the irregular rotational
behavior of the oblate bands at low spin as arising from deformation changes which are induced by collective
rotation. At higher spin, the oblate rotational spectrum can also be influenced by the crossing between the K = 0
ground-state band and a low-K two-quasineutron band. Calculated g factors for the states of oblate bands are
given for future experimental testing, and the intrinsic structures of high-K oblate states are investigated.

DOI: 10.1103/PhysRevC.91.034309 PACS number(s): 21.10.−k, 21.60.−n, 27.70.+q, 27.80.+w

I. INTRODUCTION

Nuclear shape is essential for determining various observ-
ables, such as moments of inertia, transitional quadrupole
moments, and decay properties. The interdependence between
shape and angular momentum has long been an interesting
topic in nuclear physics. This arises from the shape coex-
istence, e.g., in neutron-deficient Hg and Pb nuclei [1–4].
For neutron-deficient Pb nuclei, it has been shown that the
mean-field potential-energy surfaces (PES’s) are dominated
by sphericity, with two subminima located on prolate and
oblate sides [5]. The two subminima are separated by a
low potential barrier at triaxial deformation, which leads to
mixing between the two shallow minima. Experimentally
this mixing effect has been confirmed by the observation of
E0 components in J → J transitions at low spins between
bands built on different shapes in 188Pb [6,7]. Due to the
Coriolis force, the increase of angular momentum induces
significant deformation changes for a shape-soft configuration.
Although coexisting 0+ states in light Hg and Pb nuclei have
been studied extensively [5,8–11], the shape-changing effect
remains unclear for high-spin states. Specifically, we seek to
explain rotational bands based on oblate and prolate shapes,
which have been observed in 184,186Hg [12,13] and more
recently in 186,188Pb [7,14,15].

The shape coexistence or deformation change can be
described by the total-Routhian-surface (TRS) calculation
based on mean-field model [16,17]. However, the mean-field
model and TRS method do not conserve a good angular
momentum, while the TRS is calculated at a given frequency
of collective rotation. For a soft nucleus, the calculation
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with a conserved angular momentum would be meaningful.
To restore the broken rotational symmetry, the angular-
momentum-projection (AMP) technique can be used. Hara and
Sun developed a so-called projected shell model (PSM) [18,19]
in which a deformed Nilsson basis is adopted and the angular
momenta of model configurations are created by the AMP.
The configurations are constructed in the quasiparticle (qp)
scheme [18,19]. The existing PSM which we use considers
zero-qp, two-qp, and four-qp configurations (for even-even
nuclei) within three major Nilsson shells [18]. It has been
shown that such PSM computation is fast and efficient [18,19].
However, the current PSM calculation is performed with
a fixed deformation, and the result is dependent on what
deformation is assumed. The choosing of the deformation
parameter relies somewhat on data usually, which limits the
predictive power of the model. In principle, if one takes a large
enough model space with more multi-qp configurations and
more Nilsson shells, the calculation should be less sensitive to
the deformation parameter chosen.

AMP calculations for neutron-deficient even-mass Pb
nuclei have also been done based on the Skyrme Hartree-Fock-
BCS (HF-BCS) [20,21] or Gogny Hartree-Fock-Bogliubov
(HFB) model [22]. In these calculations, however, the AMP
was performed with only the qp vacuum, without considering
excited qp configurations. The mixing of multi-qp configura-
tions (K mixing) is important for the description of excited
states [23]. It has been noted that the overestimated excitation
energies in the calculations of Refs. [20–22] could be related
to the absence of the K mixing in the wave functions [14,24].

The interplay between shape and qp excitation degrees of
freedom should not be neglected. Multi-qp excitations can
give rise to significant shape changes [25–27]. Also, shape
fluctuations can strongly affect K mixing and hence the
decay properties of states [28]. The projected shell model
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(PSM) [18,19], as a calculation truncated in an angular-
momentum-projected basis with qp configurations [29], is
suitable for studying the behaviors of different qp states and
mixing among them. However, the existing PSM applies to
deformation-fixed calculations, i.e., assuming a fixed defor-
mation in calculations. In principle, the shape-changing effect
can be well included in the PSM by configuration mixing if
the model space taken is large enough. For shape-soft light Hg
and Pb isotopes, the shape-changing effect could be vital and
needs to be addressed in the PSM calculations.

In the present paper, we investigate the rotational bands
based on coexisting shapes by an angular-momentum-
conserved PES calculation [30] which incorporates AMP
into the macroscopic-microscopic (MM) model. Such a PES
calculation treats both the shape-changing effect and multi-qp
excitations in a self-consistent manner, which is expected
to be important for the description of rotational states in a
soft nucleus. Similar projected energy surface method has
been suggested also by Tu and her coauthors, investigating
a well-deformed nucleus, 172W [31].

II. THE MODEL

The details of the PSM can be found in Refs. [18,32].
To avoid the spurious pairing collapse encountered in the
BCS method which is used in the existing PSM, we have
improved the pairing treatment by using the Lipkin-Nogami
approach. As noticed, the inclusion of excited qp configu-
rations is important. In the present calculation of even-even
nuclei, the configurations considered include zero-qp, two-
quasineutron, two-quasiproton, and four-qp (two quasineu-
trons plus two quasiprotons) components, i.e., {|�ξK〉} =
{|0〉,a†

νi
a†

νj
|0〉,a†

πi
a†

πj
|0〉,a†

νi
a†

νj
a†

πk
a†

πl
|0〉}, where |0〉 is the qp

vacuum. The PSM many-body wave function can be expressed
in terms of various projected configurations [18],

|�I 〉 =
∑

ξK

f I
ξKP̂ I

MK |�ξK〉, (1)

where P̂ I
MK is the AMP operator. |�ξK〉 denotes a mean-field

configuration (before projection). An axially symmetric shape
is assumed, and thus each basis state has a good quantum
number of the spin projection K onto the symmetry axis. The
coefficient f I

ξK is the corresponding weight factor which is
obtained by diagonalizing the eigenvalue equation,

∑

ξ
′
K

′

(
HI

ξKξ
′
K

′ − EINI
ξKξ

′
K

′
)
f I

ξ
′
K

′ = 0, (2)

where HI
ξKξ

′
K

′ and NI
ξKξ

′
K

′ are the matrix elements of the
Hamiltonian and the norm, respectively, defined by

HI
ξKξ

′
K

′ = 〈�ξK |Ĥ P̂ I

Kξ K
′
ξ
′
|�ξ

′
K

′ 〉,

NI
ξKξ

′
K

′ = 〈�ξK |P̂ I

Kξ K
′
ξ
′
|�ξ

′
K

′ 〉. (3)

The weight factor f I
ξK reflects the mixing amplitudes of differ-

ent qp configurations. The state |�I 〉 is a linear superposition
of various K states, i.e., K mixing is included.

The Hamiltonian takes the following form, which in-
cludes the quadrupole-quadrupole (QQ) interaction and the
monopole plus quadrupole pairings [18]:

Ĥ = Ĥ0 − χ

2

∑

μ

Q̂
†
2μQ̂2μ − GMP̂ †P̂ − GQ

∑

μ

P̂
†
2μP̂2μ,

(4)

where Ĥ0 = ∑
α eαc†αcα with eα for spherical Nilsson single-

particle energies [18]. The monopole-pairing strength GM is
determined by the average gap method [33]. The quadrupole-
pairing strength GQ is taken to be proportional to GM , with
a constant factor of 0.24, i.e., GQ = 0.24GM . We discuss the
strength χ of the QQ interaction in more detail later.

In the PSM calculations, one usually needs a cutoff of the
model space to reduce the computational task. The existing
PSM considers three major Nilsson shells in calculations [18].
This means that the energy 〈�I |Ĥ |�I 〉 given by the PSM
wave function |�I 〉 in Eq. (1) is not the total energy of the
nucleus but the energy of the valence particles. We can well
assume that the angular momentum of an excited state is
generated by the valence particles, but the total energy (not
only the energy of valence particles) should be used in the
determination of nuclear shape by minimizing the energy with
respect to deformation. In the MM model, nuclear shape can be
obtained by plotting the total energy surface. A similar method
has also been adopted in the cranking shell model in which the
total energy (in the body-fixed frame) of a rotational state is
written as the total energy of the nucleus at rest and the energy
change due to rotation [16,34]. Also, only the valence particles
are taken into account in cranking calculations. Therefore, we
can write the projected total energy for an excited state at spin
I as

EI (N,Z,β̂) = EMM(N,Z,β̂) + EI
rot(N,Z,β̂), (5)

where β̂ represents a set of deformation parameters.
EMM(N,Z,β̂) is the total energy of the nucleus at rest, which
can be calculated by the MM model including the macroscopic
energy, the microscopic shell correction, and the pairing
energy in the standard Strutinsky method. EI

rot(N,Z,β̂) gives
the energy gain due to rotation (including possible intrinsic
excitation energy if the rotational state has, e.g., a broken-pair
intrinsic structure), defined by

EI
rot = 〈�I |Ĥ |�I 〉

〈�I |�I 〉 − 〈0|Ĥ |0〉
〈0|0〉 . (6)

The first term is the energy of the valence-particle system at
spin I , which is calculated by the projected wave function
|�I 〉. The second term is the energy of the valence-particle
system before AMP, which is calculated by the unprojected
qp vacuum |0〉. Note that the energy EI

rot is not equal to zero
even for the I = 0 ground state of even-even nucleus. For
ground-state case, it is in fact an energy correction due to the
restoration of the rotational symmetry. This energy correction
can be sensitive to deformation and therefore would play a
significant role in the determination of the shape of a soft
nucleus, even for the ground state.

We should point out that the energy calculations by
〈�I |Ĥ |�I 〉 and 〈0|Ĥ |0〉 in Eq. (6) have the double-counting
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problem. This is because the PSM uses the Hamiltonian
[see Eq. (4)] in which the energy (except the QQ and
residual pairing interactions) is written as a simple summation
of one-body Nilsson single-particle energies. Though the
double-counting effect should be largely canceled due to
calculating the energy difference at spins I and zero in
Eq. (6), it is not removed completely. Therefore, Eq. (6)
gives an approximation of the energy change due to rotational
excitation. The deformation-fixed PSM has the same problem.
This situation appears also in the TRS method, where the
energy change due to rotation is given by 〈�ω|Ĥ ω|�ω〉 −
〈�ω|Ĥ ω|�ω〉ω=0 with the deformed Nilsson or Woods-Saxon
potentials used [16,17,35]. The double-counting problem is
not encountered in modeling based on the HF or HFB
approximation with a microscopic two-body interaction (e.g.,
Skyrme or Gogny force), in which the Hamiltonian of the
many-body nucleus is not simply written as a summation of
one-body plus residual two-body pairing terms. For example,
the recent works by Bally et al. [36] and by Satuła et al. [37]
applied angular-momentum and particle-number (or isospin)
projections to no-core calculations based on the Skyrme HF
or HFB approximation, in which the double-counting problem
does not appear.

In the present calculations, the macroscopic energy is
calculated by the new version of the liquid-drop model (called
“new” liquid drop (NLD) in Ref. [38]) with the inclusion of a
Gauss-curvature term, which takes the following form [38]:

Emac(N,Z,β̂) = bvol(1 − κvolI2)A + bsurf(1 − κsurfI2)

×A2/3Bsurf(β̂) + bcurG(1 − κcurGI2)A0

+ 3

5
e2 Z2

rch
0 A1/3

BCoul(β̂) − C4
Z2

A
+ EW, (7)

where I = (N − Z)/A. bvol, κvol, bsurf , κsurf bcurG, κcurG, rch
0 ,

and C4 are the liquid-drop model parameters. The Wigner term
EW is given as EW = −10e−4.2|I| according to Refs. [38,39].

The original values of the parameters in the liquid-drop
model were determined by calculating binding energies and
fitting data, without considering explicitly the rotational
symmetry. The effect from the restoration of the symmetry
exists even in the spin-zero ground state as mentioned above.
Therefore, we calibrate the NLD parameters by refitting
binding energies, including the effect from restoring the
rotational symmetry. In our previous paper [30], we have
given a detailed explanation of the parameter readjustment,
where we selected 150 nuclei covering the regions with
masses of ∼60, 180, and 240. The refitted result give a
root-mean-square deviation of 0.725 MeV for binding energies
between calculations and data [30] for the 150 nuclei. Also,
the readjusted parameters have led to the better results of
fission barriers, compared to experiments and other model
calculations [30].

The PES is calculated in the (β2,β4) deformation space. In
the deformation-fixed PSM calculations, the QQ interaction
strength χ is determined by the assumption that the PSM
Hamiltonian gives the same QQ interaction as that derived
from the Nilsson model [18]. In the present calculations, we
obtain a χ value at each deformation point of the (β2, β4)

lattice using the method above. At the same time we can
obtain the PES of the ground state, which is analyzed for
the determination of the χ parameter. Note that the χ value
thus obtained can change slightly with changing deformation
in the PES lattice. We assume that the χ value obtained at the
ground-state PES minimum should be the most reasonable
value. With such a χ value, we perform the deformation-
variable PSM calculations, obtaining the projected PES for
each given angular momentum. The excitation energy and
deformation at a given spin are obtained by minimizing the
corresponding projected PES. Several different PES’s at the
same spin I may be obtained, corresponding to different
intrinsic configurations.

The g factor which reflects the magnetic properties of a
state is a sensitive probe of the multi-qp structure. It is defined
by

g(I ) = gν(I ) + gπ (I ), (8)

with gτ (I ) (π for protons and ν for neutrons) given by

gτ (I ) = 1

μN

√
I (I + 1)

[
gτ

l 〈�I ||ĵ τ ||�I 〉

+ (
gτ

s − gτ
l

)〈�I ||ŝτ ||�I 〉], (9)

where |�I 〉 is the wave function of Eq. (1). In the present
work, we use the standard values for gl and gs (i.e., gπ

l =
1, gν

l = 0, gπ
s = 5.586 × 0.75, and gν

s = −3.826 × 0.75). gπ
s

and gν
s are both reduced by a quenching factor of 0.75 from

the free-nucleon values to account for the core-polarization
and meson-exchange current corrections [40].

In principle, one can use the particle representation to
construct the model configurations and truncate the model
space by making, e.g., a configuration energy cutoff, which
is similar to usual shell-model calculations. However, the
existing PSM takes a simple phenomenological Hamiltonian
in which the residual two-body force is written as the pairing
interaction. In this case, the paired qp representation should
be more effective to give the important configurations. It is
understood naturally that the qp-vacuum, two-qp, and four-qp
configurations construct the most important configurations for
the low-energy states of even-even nuclei. The model space
is also dramatically dependent on how many shells are taken.
In the existing PSM, three harmonic oscillator (HO) shells
are taken. The limit on the numbers of qp configurations
and HO shells is to reduce the dimension of the model.
However, a too small model space would give unstable results
against the dimension or other parameters. It is found that
the deformation-fixed PSM calculation is sensitive to the
deformation parameter assumed. In principle, the calculation
should be insensitive to the deformation parameter if a large
enough model space is taken. The deformation-changing effect
can be included by sufficient configuration mixing. We have
not verified the stability of the model itself against the model
space, but assume that this problem has been well tested
previously by the authors of the existing PSM [18,19]. In the
present work, we develop a projected PES to give the optimal
deformation (which can be variable with angular momentum)
for the model-space-limited PSM calculation.

034309-3



JIAO, SHI, LIU, XU, AND WALKER PHYSICAL REVIEW C 91, 034309 (2015)

III. CALCULATIONS AND DISCUSSIONS

Among neutron-deficient Hg and Pb isotopes in which
shape coexistence happens, 184,186Hg and 186,188Pb are of
particular interest. Owing to the fact that both prolate and
oblate rotational bands have been observed in these nuclei, they
provide an excellent testing ground for the shape-changing
effect. In the classic picture, if the shape of an object keeps
unchanged, the rotational spectrum should obey the regular
I (I + 1) pattern. However, it was observed that in 184,186Hg
and 186Pb, the oblate levels are compressed when compared to
the regular I (I + 1) pattern [12–14]. Whether the origin of the
irregular behavior involves significant shape change remains
an open question [14].

The present projected PES calculations are restricted to
positive-parity states and axial symmetry. We have performed
such PES calculations for light even-even Hg and Pb nuclei,
with particular attention to 184,186Hg and 186,188Pb. Figure 1
plots the projected PES’s for 186Hg against the β2 deformation.
It is seen that the ground-state calculation without AMP gives
a soft shape (i.e., a relatively flat potential energy curve), while
the projection significantly enhances the depths of the minima
appearing at both prolate and oblate deformations. Figure 1
also shows the calculated excited states. One can see that
the shape changes with increasing spin. In Fig. 2, we plot
the calculated spectra of prolate bands in light Hg and Pb
nuclei. The calculated energies are in good agreement with
experimental data.

To understand the anomaly in oblate bands, we have carried
out various calculations and compared with experimental
data for 186Hg as a detailed example, shown in Fig. 3. It
can be seen that the calculation with fixed deformation and
no multi-qp mixing [Fig. 3(a)] overestimates remarkably the

FIG. 1. (Color online) Calculated angular-momentum-
conserved PES’s for 186Hg at different spins. At each β2 value, the
energy has been minimized with respect to the β4 deformation. The
dashed line indicates the ground-state energy curve without AMP.

FIG. 2. (Color online) Comparison between calculated and ex-
perimental lowest-energy prolate bands in 184,186Hg and 186,188Pb.
Experimental data are taken from Refs. [7,12–14].

energies of the experimental states. If we allow deformation
to change with spin (i.e., the deformation is determined self-
consistently by minimizing the projected PES), the calculation
is improved significantly [Fig. 3(b)] though no multi-qp mixing
is considered. However, the 8+ level is still significantly higher
than the observed energy. The calculation with considering
both shape change and multi-qp mixing (K mixing) reproduces
well the experimental spectrum [Fig. 3(c)]. For the 2+, 4+,
and 6+ levels of the oblate band, the comparison between
calculations without and with multi-qp mixing tells us that the
multi-qp excitation contribution to the irregularity is small.

FIG. 3. Comparison between calculated and experimental spectra
of the oblate band in 186Hg: (a) calculation with fixed deformation
at the ground state (β2 = −0.15, β4 = −0.01) and no multi-qp
admixture; (b) calculation without multi-qp admixture but consider-
ing self-consistent deformation change (i.e., deformation determined
self-consistently by minimizing the projected PES); (c) calculation
with the inclusion of both shape change and multi-qp admixtures.
Experimental data are taken from Ref. [13].
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Figure 1 shows that the oblate deformation increases from
|β2| = 0.15 to 0.20 when spin increases from I = 0� to 6�.
Therefore, the irregularity for the oblate 2+, 4+, and 6+ levels
should be mainly attributed to the deformation change induced
by collective rotation.

As discussed above, the multi-qp admixture plays an
important role in the description of the oblate 8+ state in Fig. 3.
The calculated PSM wave functions show that the lowest
oblate 8+ states in 178−186Hg and 186−194Pb are dominated
by the Kπ = 8+, π9/2−[505] ⊗ π7/2−[514] configuration,
meaning that oblate multi-qp excitations become significant
at I � 8�. This has been supported by the observation of
the Kπ = 8+ isomers in even-even 190−196Pb [4], and the
configuration is supported further by g-factor measurements
in the neighboring nuclei 198,200Po [41]. At oblate shape,
high-πh9/2 orbits appear near the proton Fermi surfaces of
Z = 80 and 82, which leads to the two-quasiproton Kπ = 8+
state being more favored energetically than the collective
oblate 8+ state. The behavior of oblate states at spin I � 8�

can be influenced significantly by multi-qp components.
A low-K rotation-aligned band (known as s band) can cross

with the 0-qp ground-state band (g band) and become yrast.
However, when the Fermi surface lies in the middle of the
νi13/2 orbits, bands with high-K configurations (known as
t bands) may compete with the g and/or s band [42–44]. To
illustrate the rotational behavior of each multi-qp configuration
as well as its relative energy compared to other components,
we can plot rotational bands built on different multi-qp
configurations without K mixing in one figure, i.e., a band
diagram [18]. The band diagram for a given qp configuration
is given by [18]

EI
ξK =

〈�ξK |Ĥ P̂ I
Kξ Kξ

|�ξK〉
〈�ξK |P̂ I

Kξ Kξ
|�ξK〉 , (10)

where |�ξK〉 is a qp configuration [cf. Eq. (1)].
Figure 4 displays the low-lying oblate band diagram

for 186Hg. For simplicity, we only plot the most impor-
tant configurations. Our calculation shows that the two-
quasiproton Kπ = 8+, π9/2−[505] ⊗ π7/2−[514] band is
lower than the K = 0 g band. The two-quasineutron Kπ =
1+, ν9/2+[624] ⊗ ν7/2+[633] band shows a typical aligned
behavior of the s band, crossing with the g band at I ≈
8� and again with the two-quasiproton Kπ = 8+ band at
I ≈ 10�. It is seen that the two-quasineutron Kπ = 8+ band
with the ν9/2+[624] ⊗ ν7/2+[633] configuration crosses with
the Kπ = 8+ two-quasiproton band at I ≈ 12�. This is
because the ν9/2+[624] and ν7/2+[633] orbits from the
νi13/2 shell have large angular-momentum projections on both
the deformation axis and the collective rotation axis, which
would lead to Fermi alignment (i.e., alignment to an axis
intermediate between the deformation axis and the collective
rotation axis) [45]. The Fermi alignment lowers the energy
of two-quasiproton Kπ = 8+ t band and hence results in
competition between the s band and the t band, which is
similar to the t-band crossing observed in 180W [43]. At higher
spins, a four-qp Kπ = 16+ (ν9/2+[624] ⊗ ν7/2+[633] ⊗
π9/2−[505] ⊗ π7/2−[514]) configuration is predicted to
form the lowest oblate 16+ states in 184−188Hg and 186−190Pb.

FIG. 4. (Color online) Calculated band diagrams and β2 defor-
mations of the oblate states for 186Hg. The Kπ = 8+(#1) and
Kπ = 1+(#1) bands are based on the π9/2−[505] ⊗ π7/2−[514]
configuration. The Kπ = 8+(#2) and Kπ = 1+(#2) bands are based
on the ν9/2+[624] ⊗ ν7/2+[633] configuration. The Kπ = 16+

band is based on the ν9/2+[624] ⊗ ν7/2+[633] ⊗ π9/2−[505] ⊗
π7/2−[514] configuration. The “yrast (oblate)” band denotes the
lowest oblate states with K mixing.

This is because the neutron Fermi surfaces of 104 � N � 108
are near the ν9/2+[624] and ν7/2+[633] orbits. Also, Fig. 4
gives a clear example of significant shape changes which
are induced by multi-qp excitations. The β2 value changes
drastically after the crossing of bands with different intrinsic
structures.

A 16+ isomer with a half-life of 20 ns was observed in
190Pb [46]. Its configuration remains unclear. The experimental
16+ isomer decays to the oblate two-quasiproton Kπ = 11−
band rather than to the (νi13/2)−4 multiplets which feed the
nearly spherical 12+ isomer. This suggests that the 16+ isomer
observed in 190Pb is unlikely to be a nearly spherical seniority-
four multiplet [46]. Instead, we propose it as a candidate for
the predicted oblate Kπ = 16+ state with a two-proton–two-
neutron configuration. Table I lists the detailed results for
the oblate Kπ = 8+ and Kπ = 16+ states, compared with
available experimental energies of the levels that are assigned
as oblate 8+ and 16+ states [7,12–14,46,48]. Our calculations
reproduce well experimental values. Also, our obtained defor-
mations of the oblate Kπ = 8+ states are in good agreement
with configuration-constrained PES calculations which give
slightly higher energies (by 250–400 keV) [47]. We have
explored the single-particle energies given by the Woods-
Saxon potential employed in the configuration-constrained
PES calculations [47] and the Nilsson potential used in the
present work. It is found that, at β2 ≈ −0.18, the energy
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TABLE I. Calculated deformations, g factors, and excitation
energies Ecal. (in keV) for the oblate Kπ = 8+ (π9/2−[505] ⊗
π7/2−[514]) and Kπ = 16+ (ν9/2+[624] ⊗ ν7/2+[633] ⊗
π9/2−[505] ⊗ π7/2−[514]) states in neutron-deficient Hg and Pb
isotopes. Experimental data are taken from Refs. [7,12–14,46,48].

Nuclei Kπ β2 β4 g factor Ecal. Eexp.

178Hg 8+ −0.19 0.008 0.930 2612
180Hg 8+ −0.19 0.007 0.928 2009
182Hg 8+ −0.19 0.004 0.926 2291
184Hg 8+ −0.19 0.001 0.927 2227 2057

16+ −0.20 0.005 0.352 4887
186Hg 8+ −0.19 −0.003 0.869 2147 2156

16+ −0.20 0.005 0.341 4381
186Pb 8+ −0.18 0.013 0.873 2205 2162

16+ −0.19 0.014 0.341 4539
188Pb 8+ −0.18 0.009 0.873 2094 2299

16+ −0.19 0.010 0.341 4325
190Pb 8+ −0.18 0.002 0.874 2116 2252

16+ −0.19 0.004 0.342 4420 4517
192Pb 8+ −0.18 −0.005 0.875 2251 2304
194Pb 8+ −0.17 −0.009 0.890 2473 2438

difference between the π9/2−[505] and π7/2−[514] orbits
obtained with the Woods-Saxon potential is about 300 keV
larger than that given by the Nilsson potential, which gives
rise to the higher calculated energies of the oblate Kπ = 8+
states in Ref. [47]. For the oblate two-quasiproton Kπ = 8+
states, the calculated g-factor values are about 0.9. We use
g = gR + (gK − gR) · K2

I (I+1) and assume gR = 0.28 [49] to
obtain |gK − gR| ≈ 0.7 for the Kπ = 8+ states. This large
|gK − gR| value indicates that the M1 cascade transitions are
more favored than the E2 crossover transitions within the
Kπ = 8+ band, which is compatible with the observation in
192Pb [50].

Experimentally, rotational bands associated with oblate
shapes have been extended to spin I > 10� in 186Pb [14,15]
and 188Pb [6,7], which opens up the possibility to investigate
the predicted bandcrossing between the g band and the
two-quasineutron s band. Figure 5 shows the rotational
energies (relative to an arbitrary rigid rotor) of the oblate
bands in 186,188Pb. For 188Pb, the calculated oblate g band
and two-quasineutron s band give a good description of the
observed oblate levels. The downward trend starting from
I ≈ 10� in experimental energies can be attributed to the
bandcrossing with the two-quasineutron oblate band. For
186Pb, the behavior of the oblate levels is similar. The present
calculations overestimate the excitation energies of the oblate
states in 186Pb. Nevertheless, the calculated trend of energies
is in accord with the observation, and the discrepancy could be
an indication of strong mixing between the g-band and s-band
configurations which is not fully incorporated in the present
calculation.

A crucial test for the predicted bandcrossing is to measure
the g factors of the states before and after crossing. As the
states have different structures, their g factors would give
clear indications. Figure 6 shows the calculated g factors for
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FIG. 5. (Color online) Energies (relative to an arbitrary rigid
rotor) for oblate bands in 186,188Pb. Experimental data are taken from
Refs. [7,14].

the oblate bands in 188Pb and 186Pb, with decomposition of
the total g factor into proton and neutron contributions. Both
contributions show a reduction at spin I = 12�, which makes
the total g factor fall to about zero. This sudden change is
due to the two-quasineutron band crossing with the g band.
Further measurements of g factors for oblate states are needed.

FIG. 6. (Color online) Calculated g factors for the oblate bands
in 186,188Pb, with decomposition of the total g factor (dots) into proton
(circles) and neutron (squares) contributions.
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FIG. 7. Mean-field PES’s for the ground states of 180,184Hg
and 186,192Pb calculated with the nonaxial deformed Woods-Saxon
potential. The energy difference between neighboring contours is
200 keV. The solid circles, squares, and triangles denote the first,
second, and third lowest minima, respectively. A low-lying flat region
at oblate shape (γ = 60◦) is indicated by shading.

It provides not only a testing of our prediction but also direct
information about the role of the νi13/2 orbits in the very
neutron-deficient region.

The present projected PES calculations are limited to
axially symmetric shapes. However, the shallow prolate
and oblate minima given by such calculations may become
triaxially deformed with inclusion of the γ degree of freedom.
Figure 7 displays the mean-field PES’s calculated in the
(β2,γ,β4) deformation space with the nonaxial deformed
Woods-Saxon potential for neutron-deficient Hg and Pb
isotopes. It can be seen that no minimum appears for triaxial
shapes in the ground-state PES’s for the investigated Hg

and Pb isotopes. Therefore, it is justified for us to limit the
angular-momentum-conserved PES calculations to the (β2,β4)
deformation space in this work. Nevertheless, it would be
interesting to explore the combined effect from both K mixing
and prolate-oblate shape mixing in future work.

IV. SUMMARY

Investigation of shape-coexisting rotational states in
178−186Hg and 186−194Pb has been carried out by using angular-
momentum-conserved potential-energy-surface calculations
which incorporate the AMP into the macroscopic-microscopic
model. It is found that both shape-changing effects and multi-
qp excitations are essential for the description of rotational
states in the shape-soft neutron-deficient Hg and Pb isotopes.
The irregular rotational behavior of the oblate states at low
spins is interpreted as arising from shape changes which are
induced by collective rotation. At higher spins, the rotational
spectrum is strongly influenced by the bandcrossing between
the K = 0 ground-state band and a two-quasineutron low-K
band. We have calculated g factors for future experiments to
test our predictions. Also, the intrinsic structures of oblate
Kπ = 8+ and Kπ = 16+ states are investigated, combined
with an analysis of their g factors.
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A. O. Macchiavèlli, P. Fallon, and R. M. Clark, Phys. Rev. C 67,
051301(R) (2003).

[7] G. D. Dracoulis, G. J. Lane, A. P. Byrne, T. Kibédi, A. M. Baxter,
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