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Nuclear Jacobi and Poincaré transitions at high spins and temperatures:
Account of dynamic effects and large-amplitude motion
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We present a theoretical analysis of the competition between the so-called nuclear Jacobi and Poincaré shape
transitions as a function of spin at high temperatures. The latter condition implies the method of choice, a realistic
version of the nuclear liquid drop model, here the Lublin-Strasbourg drop model. We address specifically the
fact that the Jacobi and Poincaré shape transitions are accompanied by the flattening of the total nuclear energy
landscape as a function of the relevant deformation parameters, which enforces large-amplitude oscillation
modes that need to be taken into account. For that purpose we introduce an approximate form of the collective
Schrödinger equation whose solutions are used to calculate the most probable deformations associated with the
nuclear Jacobi and Poincaré transitions. We discuss selected aspects of the new description focusing on the
critical-spin values for both types of these transitions.
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I. INTRODUCTION

Atomic nuclei whose properties are governed by strong
interactions acting among constituent nucleons can, to an
approximation, be considered compact because the volumes
of nuclei remain close to the sums of the volumes of these
nucleons. This fact, combined with the short range of the
nucleon-nucleon interactions and the fact that the nuclear
matter can be considered incompressible, makes it possible
to introduce a classical notion of nuclear surfaces, at first a
paradox because the nucleons and nuclei are quantum systems.
These surfaces define what is referred to as nuclear shapes.

The notion of generally nonspherical nuclear shapes re-
mains an underlying classical element of quantum mean-field
theories of the nucleonic motion in nuclei as described using
phenomenological but realistic Woods-Saxon or Yukawa-
folded nuclear potentials. These two particular realizations
of the nuclear mean field have been used in the past, combined
with the so-called Strutinsky method [1]. They were employed
to calculate very successfully various nuclear properties such
as masses, deformation energies, nuclear moments, angular
momenta of excited states, and, more generally, rotational
properties together with their evolution with nuclear spin and
temperature, to mention just a few elements on the much longer
list.

Among important characteristics of atomic nuclei are
quadrupole (or higher) charge (and/or mass) moments. Nu-
merous measurements show that the majority of the atomic
nuclei are deformed in their ground and excited states and,
strictly speaking, among nearly 3000 nuclei so far investigated
in the laboratory, only about a dozen may be considered strictly
spherical. In fact, these are the nuclei with fully occupied j
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and/or N shells such as 16O, 40,48Ca, 100,132Sn, or 208Pb and
only very few others.

It is well known that an increase of an excitation energy,
which within nuclear mean-field theories can be translated into
an increase of nuclear temperature, leads to diminishing and
possibly to a full disappearance of quantum (shell) effects.
Under such conditions, the nuclear energy can be described
as a sum of the repulsive Coulomb interactions among the
protons together with centrifugal stretching effects associated
with the collective rotation and an effective nuclear attraction
formally modeled with the help of the concept of the nuclear
surface tension. One of the simplest, but at the same time
a very successful, modeling of such a physical situation has
been achieved within the nuclear liquid drop model, whose
ingredients are indeed the competing Coulomb and surface
tension mechanisms (cf., e.g., Refs. [2–5]) possibly combined
with a collective rotation.

It then follows that the theoretical modeling of the leading
features of the motion of macroscopic charged drops, of
planets and stars, and of atomic nuclei may, under the
discussed conditions, become analogous. The shape evolution
which occurs in nuclei may take a form of what is referred
to as transitions of Jacobi [6] and Poincaré [7], following
suggestions in the above historical articles that such transitions
may be induced by rotation of certain astronomical objects.
Of course, proposing an analogy between the forms of the
behavior of stellar and nuclear objects, as suggested in Ref. [8],
may be of a certain aesthetic interest. However, predictions of
which critical-spin values and in which nuclei the considered
transitions take place constitute a totally different, challenging
issue; for early discussions of this issue, cf. Refs. [5]
and [9].

The issue of Jacobi and Poincaré shape transitions has
received some attention from both the experimental and the
modeling viewpoints also more recently as, e.g., in Ref. [10],
where a discussion of, among others, Jacobi shape transitions
represented with the help of the nuclear effective moments
of inertia in the form of “gigantic back bending” can be
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found. However, aiming at the use of the Lublin-Strasbourg
drop (LSD) approach in the present article, we would like
to mention a number of results obtained by combining the
LSD analysis with the experimental results of the Cracow-
Strasbourg collaboration during the past 10 yr or so.

In this context let us mention, in particular, a successful
determination of the presence of the Jacobi transitions in
46Ti reported in Refs. [11,12] together with another one
obtained through the observation of the high-energy γ rays
and α particles in Ref. [13]. Another interesting result in this
mass region was an observation of the preferential feeding
of the superdeformed band in cold 42Ca nuclei through the
giant dipole resonance γ decay from a very elongated (i.e.,
possessing a “Jacobi shape”) hot rotating 46Ti, followed by the
emission of an α particle [14]. A similar problem has been
studied in 88Mo; the results can be found in a more recent
Ref. [15] (cf. also the studies conducted by other groups such
as the ones on the 45Sc [16] and on the 47V nuclei [17].

In all the cases studied a good correspondence between
LSD modeling and experiments has been reported. Theoretical
predictions for 132Ce based on an extension of the LSD
approach to include the modeling of the giant dipole resonance
width [18,19] show a good correspondence with measurement
as well. Signals of the presence of very large deformations at
high spins have been obtained in several nuclei in the mass
range A ∼ 120 in an attempt at combining the search for
hyperdeformed nuclear configurations in conjunction with the
Jacobi transitions using triple-γ -coincidence measurements
[20]. Some preliminary results and discussion concerning the
predictions of the Poincaré shape transitions in a few barium
nuclei can be found in Refs. [21,22].

Before becoming more precise about the exact subject of
the present work, let us recall some earlier efforts in the
context of the shape transitions. Early calculations with the
liquid drop model suffered from inaccuracies in reproducing
the experimental fission barriers; cf. the introduction section
in Ref. [9] and references therein. Publications that followed
focused first of all on including a description of diffuseness
properties of the nuclear surface [23,24], reducing in this
way discrepancies between the model and the experimental
data. Many publications concerning the nuclear energies on
the way to fission discussed first of all the static properties
of the nuclear potential energies such as energy positions
of the minima and saddle points as a function of both the
deformation and the increasing angular momentum. Extensive
calculations in Ref. [9], in addition to reviewing the model
predictions based on the techniques of those times, addressed,
in particular, the issue of the behavior of the nuclear potential
in the vicinity of the characteristic (minima, saddle) points by
calculating the second-order Taylor expansion around those
points and allowing for a local description of the stiffness
properties.

In the present article we address first of all the rotation-
induced shape transitions in hot rotating nuclei with the help
of the liquid drop model in its so-called LSD realization
of Refs. [25,26]; cf. also Refs. [27–29]. This approach
is combined with that of the collective model, making it
possible to go beyond the traditional static description of the
nuclear shape changes and calculate, among others, the most

probable deformations or the most probable fission-fragment
mass asymmetry with the help of the nuclear collective
wave functions. Although Jacobi shape transitions have been
discussed in the nuclear-physics context by various authors,
the Poincaré shape transitions remain largely unknown at
present.

The presentation is organized as follows. The next section
contains the discussion of the position of our physics problem
together with a short description of the macroscopic energy
algorithm (LSD) chosen for this article. In Sec. III we derive
what appears to us as an efficient algorithm of treating and
analyzing the multidimensional deformation spaces in which
the total collective nuclear energies will be calculated and
possibly competing Jacobi and Poincaré transitions analyzed.
At the same time we introduce a short description of the
collective model and related Schrödinger equation in curvi-
linear spaces which will be applied, within approximations,
in Sec. VIII. Section IV describes the technical aspects of the
extension of the original LSD model with a particular accent
on possible inadequacies of the macroscopic modeling of the
nuclear neck area. Section V contains the discussion of the
technical aspects related to the classical subject of deformation
dependence of the fission barriers, whereas Sec. VI is focused
on some selected aspects of the spherical-harmonics basis
cutoff properties. In Sec. VII we address the issue of the spin
dependence of the fission barriers, followed by the discussion
of the problem of the large-amplitude motion accompanying
the shape transitions of the Jacobi and Poincaré type in
Sec. VIII. A summary and conclusions are contained in
Sec. IX.

II. PRESENT REALIZATION OF THE LIQUID
DROP MODEL

In this article we aim at a possibly realistic description of
the shape transitions induced by increasing collective rotation
in hot nuclei. By the very definition, the shape transitions of
interest are those taking place before the fission limit, i.e., at
spins lower than the critical-spin values for fission, L < Lfiss..

Let us remark in passing that the precise values of the latter
reference quantity may be difficult to determine uniquely.
What we are interested in, in the present context, are the
limiting spin values at which the nuclear system loses totally
its stability. In other words, the system’s measured lifetimes
become too short to be able to prove the presence of such
systems in nature so that it makes no sense to dwell upon
the associated shape transitions. Within the barrier-penetration
model any finite lifetime requires that the corresponding
limiting barrier height is necessarily finite. Alternatively, one
could define Lth

fiss. as the closest integer (half-integer) value
at which the calculated fission barrier totally vanishes. As
it turns out, a certain arbitrariness in this respect will have
no impact on conclusions of the present article, whereas
the notion itself will be occasionally convenient in the
discussion.

As a matter of convention, in what follows, we apply the
term transition while speaking about the sequences of shapes
as a function of an increasing spin; this choice has no impact
on the conclusions.
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A. Goal’s impact on the chosen strategy

One of the goals of this article is to investigate the
tools which can be used in studying nuclear symmetry-
and symmetry-breaking phenomena within three-dimensional
(3D) geometry (the interested reader may consult Ref. [30] for
the principles and an overview), in particular at high temper-
atures. One of the most successful tools capable of producing
the results close to the experimental data within the large-
scale calculations is the so-called macroscopic-microscopic
method of Strutinsky in which the macroscopic (read liquid
drop model) and the microscopic (read phenomenological
nuclear mean-field theory) combine to produce a joint scheme.
However, it is important to examine by comparing with the
experimental results not only both of these tools combined—
but when possible—to be able to extract the information on one
of them alone. Studying Jacobi and Poincaré shape transitions
at high temperatures offers a unique possibility of controlling—
vs experiment—the performance of the macroscopic tool
separated from the impact of shell effects (cf. examples of
the studies cited in the previous section, obtained with the use
of the LSD model) because of the disappearance of the shell
effects at sufficiently high temperatures.

Following this line, in the present article we focus on the
macroscopic part alone employing the LSD model with the
help of which some rather successful pilot projects [11–21]
have been accomplished. In the rest of this section we
discuss briefly the arguments related to the precision in the
description of the shape-transition aspect. A related, important
but a slightly technical aspect of choosing the mathematical
approach to study the properties of the nuclear potential in
multidimensional spaces is presented in Sec. III in relation to
the quantum theory of nuclear collective motion.

Any macroscopic energy expression will be capable of
providing the total potential energy maps for predefined spin
sequences and thus it will be able to predict a certain evolution
of the family of shapes with spin. However, the model which
predicts, for instance, fission barriers which are systematically
too high (too low) compared with experiment is very likely to
provide not only the incorrect/inexact overall shape evolution
with spin, but also incorrect critical-spin values at which
the competing shape transitions occur, possibly leading to
confusion. A possible undesired result would be the prediction
of certain shape transitions at spins at which a considered
nucleus does not exist anymore because of fission, but other
undesired mechanisms can also be envisaged.

In particular, one of those unwanted effects, yet likely to
occur, is related to the competition between the Jacobi and
Poincaré shape transitions involving shapes of distinct classes
and leading, within their respective classes to different types
of symmetries below and above the critical transition-spin
values, say, Lcrit.

J and Lcrit.
P , respectively. The Poincaré

transitions lead to the left-right shape asymmetry with
predicted asymmetric fission-fragment mass distributions.
Should Poincaré transitions follow (Lcrit.

J < Lcrit.
P ) the one

of the Jacobi type, the overall elongation of the nuclei
undergoing the Jacobi transition will be larger as compared to
the opposite case, the corresponding shapes very different, and
the predictions of the mass asymmetry drastically influenced.
Should the model fail to obtain the right order of the discussed

transitions, the model predictions would never be verifiable
against the experiment. This would imply a possibly very
limited usefulness of the resulting macroscopic description
with possibly misleading or erroneous conclusions and
conflicting interpretations of the experimental data.

From the above remarks it becomes clear that, through an
optimization of the description of the nuclear energies on the
way to fission, one may avoid possible undesirable effects just
mentioned. In this context there are at least two mechanisms
which seem to us obvious to be taken into account. One of them
is related to the so-called congruence-energy effect introduced
and discussed by other authors (for details, cf. the following
sections, in which the corresponding mechanism is studied in
detail). The other one is related to critical phenomena which
accompany the strong shape fluctuations present at the Jacobi-
and Poincaré-type shape transitions, a mechanism deserving a
special comment, which follows.

Jacobi- and Poincaré-type shape transitions represent not
only just a certain shape evolution, but first of all, the
characteristic symmetry-breaking transformations. In the case
of Jacobi transitions as a function of increasing spin, these
are the axially symmetric shapes which evolve quickly1

into a family of triplanar symmetry ones. Similarly, the
inversion-invariant (“left-right symmetric”) shapes before the
Poincaré transitions are replaced by the inversion-breaking
shapes after the transition. In what follows it will be practical
to introduce symbols S< and S> to denote the symmetries
“before” and “after” one of the two types of the shape
transitions. Although it does not necessarily always need to
be so, calculations show that the realistic macroscopic energy
expressions lead to the significant flattening of the energy
landscapes at spins long below the critical-spin values at which
the static equilibrium (static energy minimum) shapes change
their symmetry: S< → S>. In several domains of physics
these conditions give rise to critical phenomena with strong
fluctuations of the related observables, possibly accompanied
by the phase transitions, which often require a special
attention.

When such a symmetry change occurs, the flatness of the
energy landscape implies that it costs very little energy for
the nucleus to go from one deformation area to a neighbor-
ing one, the corresponding collective wave function varies
little, the probabilities remain comparable, and the nucleus
undergoes a large-amplitude vibrational motion. Under these
conditions the static shapes, i.e., the ones corresponding to the
static energy minimum and the most probable deformations,
which we refer to as dynamical, may (and often do) differ
considerably. So do the theory predictions, e.g., the ones
related to nuclear moments and electromagnetic transitions
or, possibly, fission-fragment mass distributions and/or other
observables, based on the static deformations as compared to
the dynamical ones. Because one of our goals is to develop the
modeling which, remaining simple, is as realistic as possible,

1The phrase “fast evolution” should be understood as a relatively
important change in shape at the equilibrium deformation, accom-
panying relatively small increase in spin, measured, e.g., in steps of
�L = 2�.
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a description of the large-amplitude shape fluctuations during
the considered transitions are taken explicitly into account.
This will be done by solving the appropriate approximate
form of the collective Schrödinger equations, as discussed in
Sec. VIII.

B. Comments about the earlier Lublin-Strasbourg drop
realization of the model

One of the relatively recent realizations of the liquid
drop model, the so-called LSD model (cf. Refs. [25,26]),
introduces some extra degrees of freedom associated with the
curvature of the nuclear surfaces. More precisely, as noticed
in the cited references, one may introduce infinitely many
geometrically distinct surfaces, which may have the same
surface area but differ in their forms. They give rise to distinct
conditions of the nucleonic motion inside of the considered
nuclei and yet, within traditional liquid drop models, they
contribute the same surface energy. The surface-curvature
term as introduced within the LSD model makes it possible
to improve the description of measurable quantities, such as
fission barriers and masses, noticeably.

Within a classical modeling of the attractive short-range
interactions among particles surrounding a given one inside a
nucleus, all their contributions will be mutually compensated,
unless we approach the nuclear surface. There, there are no
interaction partners outside of the delimiting surface, and
an uncompensated effective attraction pulling the particles
towards the nuclear interior will be created. This attraction
will depend on the number of considered particles per unit
volume, which, in turn, will be different for, e.g., locally
concave vs locally convex surface areas; hence the need to
introduce the surface-curvature considerations. It then follows
that for any varying surface with the fixed surface area, the
nuclear surface-energy contributions will be constant, whereas
the curvature contribution will vary depending on the variation
of the local curvature.

Using the concept of the curvature of the nuclear surface, the
parameters of the LSD model have been adjusted to the nuclear
masses in Ref. [25], and, as it turned out, the description
of nuclear fission barriers has been considerably improved
with respect to the best-performing preceding versions of the
liquid drop model. This has been achieved without introducing
any fit conditions related to the experimental barrier heights.
Such an improvement can be considered as a demonstration
of an intrinsic, physical consistency of the LSD model which
contains one more (and known in classical physics) effective-
interaction mechanism, the surface curvature.

An improved description of certain nuclear properties
ultimately encourages an exploration of this new version
of the liquid drop model to describe nuclear mechanisms
which, so far, were considered to correspond to a higher
level of sensitivity. Our choice here is to investigate the
rotation-induced shape transitions, whose critical spins depend
in a sensitive way on the details of the energy expression.

The macroscopic nuclear liquid drop model energy in
its LSD form can be expressed using a number of terms
representing the nuclear energy as a function of the proton
and the neutron numbers, Z and N , respectively, as well as the

nuclear deformation in the form

Etotal(N,Z; α; L)

= E(N,Z) + ECoul.(N,Z; α) + Esurf. (N,Z; α)

+Ecurv.(N,Z; α) + Erotat.(N,Z; α; L), (1)

where L denotes the nuclear collective angular momentum and
α represents the ensemble of all the deformation parameters
used. In the above expression, we find the deformation-
dependent electrostatic Coulomb, ECoul.(N,Z; α), the surface,
Esurf.(N,Z; α), and the curvature, Ecurv.(N,Z; α), energy terms
(the latter characteristic of the LSD realization of the model)
and the rotational energy, Erotat.(N,Z; α; L), respectively. The
first term on the right-hand side in Eq. (1) denotes by defini-
tion the combined, deformation-independent terms, possibly
including the original, deformation-independent version of the
so-called congruence-energy expression; see below.

The above expression can be standardized to represent the
atomic mass. In such a case the deformation-independent term
is given by (for a complete atomic mass formula used here; cf.
also Ref. [25] and references therein)

E(N,Z) = ZMH + NMn + Eelect.(Z)

+Evol.(N,Z) + Econg.(N,Z), (2)

where Eelect.(Z) = −belect.Z
ε , with ε = 2.39 and with belect. =

1.433 × 10−5 MeV. The latter term parametrizes the bind-
ing energy of the electrons, whereas the other two terms
represent Z masses of the hydrogen atom and N masses
of the neutron, respectively. The deformation-independent
congruence-energy term, as used in the literature in the past,
is replaced with a deformation-dependent one; cf. Eq. (9) and
the surrounding text.

The volume energy in Eq. (2) is parametrized as

Evol.(Z,N ) = bvol.(1 − κvol.I
2)A, (3)

where I = (N − Z)/(N + Z). [All the parameters appearing
implicitly in Eq. (1), such as bvol. and κvol. and the ones which
appear below, are collected in Table I.]

The Coulomb liquid drop model (LDM) term in its
“traditional form” reads

ECoul.(N,Z; α) = 3

5
e2 Z2

rch
0 A1/3

BCoul.(α) − C4
Z2

A
, (4)

TABLE I. The parameters of the LSD model fitted to the measured
atomic masses only, i.e., without using the information about the
fission barriers (from Ref. [25]).

Term Units LSD

bvol. MeV −15.4920
κvol. 1 1.8601
bsurf. MeV 16.9707
κsurf. 1 2.2938
bcurv. MeV 3.8602
κcurv. 1 −2.3764
rch

0 fm 1.21725
C4 MeV 0.9181
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with the mass number A = Z + N , the electric charge unit
denoted e, and the so-called charge radius parameter rch

0 . The
term proportional to Z2/A represents the nuclear charge-
density diffuseness correction, whereas the deformation-
dependent term, BCoul.(α), denotes the Coulomb energy of
a deformed nucleus normalized to that of the sphere with the
same volume.

The surface energy in its “traditional” LDM form reads

Esurf.(N,Z; α) = bsurf.(1 − κsurf.I
2)A2/3Bsurf.(α). (5)

Here the deformation-dependent term, Bsurf.(α), is defined as
the surface energy of a deformed nucleus normalized to that
of the sphere of the same volume.

The curvature term is given by

Ecurv.(N,Z; α) = bcurv.(1 − κcurv.I
2)A1/3Bcurv.(α), (6)

with

Bcurv.(α) =
∫ π

0
dϑ

∫ 2π

0
dϕ

[
1

R1(ϑ,ϕ; α)
+ 1

R2(ϑ,ϕ; α)

]
,

(7)

where R1 and R2 are deformation-dependent principal radii of
the nuclear surface at the point position defined by spherical
angles ϑ and ϕ.

The parameters entering all the above expressions are given
in Table I.

These parameters are kept without modification in
the present article, whereas the deformation-dependent
congruence-energy term introduces a new parametric freedom
as discussed in the following section.

Finally, the rotation-energy term is defined, as usual, by

Erotat.(Z,N ; α; L) = �
2

2J (Z,N ; α; L)
L(L + 1), (8)

with the classical moment of inertia J calculated at the
given deformation α. In the following applications we assume,
without losing generality, that rotation takes place about the
Oy axis (for more details, see below).

C. Comments about the precision of the numerical integration
at the extreme elongations

The numerical realization of the algorithm calculating the
geometrical factors in Eqs. (4)–(6), i.e., BCoul., on the one
hand and Bsurf. and Bcurv. on the other, involves the fourfold
and the twofold integrations, respectively. The corresponding
integrals over the spherical angles 0 � ϑ � π and 0 � ϕ �
2π (in the case of the double integrals and, additionally, over
0 � ϑ ′ � π and 0 � ϕ′ � 2π in the case of the fourfold ones)
are performed using the standard Gauss-Legendre quadrature
expressions.

Among the three integrals needed, the Coulomb term is
usually considered the most demanding because it involves,
in principle, the sixfold integration. One can demonstrate
that with the help of the double application of the Gauss-
Ostrogradsky theorem the corresponding integrals can be
transformed to a double surface-integration form (cf., e.g.,
Ref. [31]), and this approach has been used here.

TABLE II. Convergence properties of the double integrals needed
to calculate the surface- and curvature-energy terms, for increasing
number of the Gaussian order parameters Nϑ . We have selected an
axial-symmetry shape that resembles two touching ellipsoids with
α20 = 3.0, α40 = 0.2; in the case of the axial symmetry, the integration
does not depend on ϕ.

Nϑ Bsurf. Bcurv.

34 1.280 102 1.584 938
50 1.280 036 1.574 277
66 1.280 017 1.567 360
82 1.280 010 1.563 163
98 1.280 008 1.560 719
112 1.280 007 1.559 463
128 1.280 006 1.558 625

To assure the requested precision without unnecessary
losses of the CPU time the performance of the integrations
can be optimized by adjusting appropriately the orders of the
Gauss quadratures Nϑ , Nϕ , Nϑ ′ , and Nϕ′ for each integration
separately, taking into account the specificity of the integrands
and the physicist’s needs as far as the level of precision is
concerned. In particular, the identical Gauss orders for the
integrations over ϑ and ϑ ′ as well as ϕ and ϕ′ should be
avoided for the Coulomb energy related integration, because
of the singularities of the ∼|�r − �r ′ |−1 term in the Coulomb
integral.

The techniques in question are quite standard by now and
have been in frequent use for some time in the present or
similar contexts; cf. Ref. [32] and, in particular, Refs. [33,34].
Because, however, the illustrations of the stability issue for the
typical integrals needed for the macroscopic nuclear energy
have not been published, a few illustrative aspects will be
presented in Tables II–V.

In Table II we illustrate the convergence properties of Bsurf.

and Bcurv. as functions of the increasing numbers of the Gauss-
integration nodes at the deformation point chosen in such a
way that the corresponding shape is very close to the form of

TABLE III. Similar to the results in the preceding table at an
exotic shape with exotic nonaxialities. The shape is defined by α20 =
2.0, α22 = 0.8, α40 = 0.8, α44 = 0.4, α66 = 0.2, and α88 = 0.1. The
combination of α20 and α22 above implies the quadrupole triaxiality of
γ ≈ 30◦. We have fixed the number of nodes for the Gauss integration
over ϑ at Nϑ = 128, the last value tested for the axial configuration
in Table II.

Nϕ Bsurf. Bcurv.

34 1.420 029 36 1.480 921 42
64 1.420 026 80 1.481 236 47
88 1.420 026 46 1.480 984 81
112 1.420 026 47 1.480 998 87
136 1.420 026 47 1.481 001 63
160 1.420 026 47 1.481 000 48
180 1.420 026 47 1.481 000 69
200 1.420 026 47 1.481 000 73
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TABLE IV. Convergence properties of the Coulomb
energy terms. Here we have selected a deformation point
characteristic of two separating ellipsoids as in Table
II. Because of the axial symmetry the results depend
on Nϑ and Nϑ ′ . For the Coulomb energy, a very good
stabilization is obtained at the level of 50–70 Gauss-
integration points.

Nϑ Nϑ ′ BCoul.

18 28 0.834 097 34
26 36 0.834 098 13
34 44 0.834 098 02
42 52 0.834 098 14
50 60 0.834 098 14
58 68 0.834 098 14

two touching ellipsoids. This is a particularly demanding test
for the curvature-dependent term. The results in Table II show
that the stability of the integration is achieved for sufficiently
(although not extremely) large number of integration points.2

Results of a similar test but for a strongly nonaxial shape
are presented in Table III at the less extreme elongation of
α20 = 2, yet with a pretty well formed neck. To stabilize the
integration result at the level ≈10−6, one would need twice as
many integration points as in the case of the Coulomb energy
(cf. Tables IV and V).

A similar test but for the Coulomb energy term which
involves generally the fourfold integration, is illustrated in
Tables IV and V. As before, the selection of the numbers of the
Gauss-integration nodes for the four variables is, to an extent,
arbitrary and should guarantee acceptable accuracy at the

2The length of the integration interval for the second variable, ϕ,
is double the one for the fist variable, ϑ , and one may be tempted to
nearly double the number of Gauss-integration points for the former
one. However, the specificity of the parametrization used here is such
that the nuclear elongation and neck formation (convex vs concave
forms) are mainly “taken care of” by the dependence on ϑ , whereas
the nonaxiality effects that usually do not involve concave surfaces
are mainly described by ϕ. One can use this property to optimize Nϕ

at less than 2Nϑ .

TABLE V. Convergence properties of the explicitly fourfold
integrals when calculating the Coulomb energy contribution for
increasing number of the Gaussian node numbers Nϑ and Nϕ as
well as Nϑ ′ and Nϕ′ . Here we use the same deformation point as
in Table III with an exotic nonaxiality. A very good stabilization is
obtained at the level of 50–70 Gauss-integration points.

Nϑ Nϕ Nϑ ′ Nϕ′ BCoul.

18 26 28 34 0.820 430 84
26 34 36 42 0.820 453 68
34 42 44 50 0.820 470 42
42 50 52 58 0.820 470 64
50 58 60 66 0.820 470 63
58 66 68 74 0.820 470 66

possibly small number of integration points. The illustrations
give certain indications about the precision cost in terms of the
node numbers.

D. Comments about the deformation-dependent
congruence-energy term and critical spins

The congruence-energy contribution to the nuclear LDM
was originally introduced in a purely phenomenological
manner in Ref. [4], without taking into account its possible
deformation dependence. It was modified next by introducing
a multiplicative shape-dependent factor [35,36], aiming at the
improvement of the description of the fission process and,
in particular, the transformation of an original parent nucleus
into two separated fission fragments. The shape-dependent
factor in Ref. [35] was defined in terms of the ratio between
the radius of the neck and the mean value of the radii of the
nascent fragments [cf. Eqs. (5) and (7) in the quoted reference],
whereas in Ref. [37] it was defined in terms of the cross sections
through the neck and the maximum cross section through the
smallest nascent fragment.

The phenomenological definitions are usually based on the
intuition that for geometrically compact shapes, i.e., relatively
far from the neck formation, the congruence energy should not
be sensitive to small deformation changes. On the contrary,
this factor is expected to have an increasing impact on the
total nuclear energy, caused by the congruence mechanism for
the more and more necked-in shapes. It should be emphasized
at this point that the intuitive argumentation quoted can by
no means be treated as a replacement for a better founded
microscopic one (which, however, to our knowledge, does not
exist in the literature so far).

The arguments in favor of introducing the deformation
dependence in the congruence-energy term bring us to the
necessity of a modification of the structure of the original
LSD expression in Eq. (1), in that

E(N,Z) → E0(N,Z) + Econg.(N,Z; α), (9)

where the new deformation-independent term becomes
E0(N,Z) = ZMH + NMn − 0.000 014 33 Z2.39 + Evol.. The
modified, deformation-dependent congruence-energy contri-
bution is denoted Econg.(N,Z; α) from now on.

To optimize the description of the observables that can
be tested experimentally, we need, among others things,
to determine the critical spin values corresponding to the
onset of the triaxial (Jacobi) and the left-right asymmetry
(Poincaré) shape transitions. Introducing the deformation-
dependent congruence-energy term plays an important role in
improving the description, especially for certain mass regions
(cf. Sec. IV). This information is used in conjunction with
the quantum description of large-amplitude shape fluctuations
driven by the flattening of the nuclear energy surfaces
accompanying such transitions, Sec. VIII.

Analogous considerations which explicitly include thermal
shape fluctuations, describe rather satisfactorily the strength
function of the giant dipole resonance (GDR). The latter have
been excited and successfully analyzed [12] in a few hot
rotating compound nuclei to study the Jacobi shape transition.
This encourages the extension of this type of technique to a
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more systematic analysis of various nuclear shape fluctuations
after improving further the performance of the LSD approach.

In the following sections we illustrate and discuss our
present realization of the LSD model in which we include a
deformation-dependent congruence-energy contribution in an
attempt to improve further the description of the experimental
data on fission barriers. This leads to an extension of the
range of applicability of the macroscopic model at hand
to a more refined level of precision. In such a way we
could better approach a delicate balance between Jacobi and
Poincaré shape transitions at high spins especially in the
presence of the dynamical effects accompanying the large-
amplitude oscillations and, moreover, introduce a simplified,
approximate description of these dynamical effects when
discussing the nuclear behavior at scission.

III. COLLECTIVE MOTION AND POTENTIAL-ENERGY
HYPERSURFACES IN MULTIDIMENSIONAL SPACES

We wish to emphasize that employing the potential-energy
surfaces in the description of the nuclear collective motion—
to provide theory predictions comparable to experiment—is
ultimately related to the problem of the deformation-dependent
collective inertia. Indeed, the role of the inertia tensor briefly
summarized in this section represents the sine qua non condi-
tion for the theoretical estimates of, e.g., fission lifetimes as
well as those of the shape isomers—but, of course, practically
of all the observables associated with the collective motion,
such as transitions and their probabilities—within microscopic
theories.

The role of the collective inertia tensor is at the same time
one of the most difficult elements for the direct comparison
with experiment. This is because such comparison can only
be performed at a certain significance level after solving the
collective Schrödinger equation [Eq. (13) in Sec. III A] in the
spaces of sufficiently rich dimensionality and for sufficiently
many nuclei. This is a very complex and challenging task
which, to our knowledge, has not been achieved yet, except
for some selected and rather limited situations.

One of the important consequences of the quantum and
dynamical nature of the nuclear collective problem is that many
apparently important details of the potential hypersurfaces, as
well as certain variations of the inertia tensor (the latter present
only at the low-temperature limit), are “smeared out” when
the solutions of the Schrödinger equation in the multidimen-
sional spaces are sought. This is because the corresponding
solutions are obtained after diagonalizing the Hamiltonian
matrix composed of the integrals in which, e.g., certain types
of fluctuations in the integrand are mutually compensated
and play no explicit role anymore. As a consequence, the
information about the “very, very exact” numerical properties
of the local minima and the saddle points is usually lost on
the way to the final result expressed in terms of probabilities
or the collective wave functions which depend on the integrals
in question. The precise analysis of the numerical values
characterizing the saddle points is a nontrivial problem as
stated by other authors and briefly discussed below. This
information (without discouraging as precise as possible a
numerical calculation) may allow for a certain flexibility in

seeking an optimum between numerical rigor and the computer
CPU time, a message particularly worth considering in the case
of the large-scale calculations.

A. Guidelines implied by quantum theory of collective motion

Let us briefly summarize the general framework of the
quantum theory of the collective nuclear motion. For this
purpose we briefly reintroduce the principal notions such
as the deformation-dependent mass tensor or curvilinear
spaces of collective variables. This will place the issue
of the potential-energy hypersurfaces at a perspective of
one among several factors which combine together in the
quantum description of the collective effects. Even though,
for the mathematical simplicity reasons, we do not use the
microscopically calculated mass tensor in this particular article
(such project is in progress and the results will be published
elsewhere), we wish to recall a few underlying properties.
This part of the discussion at the same time serves as an
introduction to the treatment of the large-amplitude motion
which in this article is based on an approximate version of the
general formalism (cf. Sec. VIII for illustrations).

The number of nuclear collective variables necessary to
describe the shape effects realistically needs to be larger than
two, which implies that the easy analyses that can immediately
be tested using two-dimensional contour plots will not be
directly applicable. Mathematically, our problem consists of
calculating, analyzing, and interpreting the behavior of a
scalar function, say V (the nuclear potential energy), of a
vector argument built out of contravariant tensor components
{α1,α2, . . . ,αn} ≡ α, as well as a symmetric n × n, covariant
inertia tensor, Bij (α), in an n-dimensional vector subspace
of collective coordinates. [In our case these collective spaces
(subspaces) are spanned by the spherical tensors αλμ playing
the role of the expansion coefficients in terms of the spherical
harmonics; cf. Eq. (14) below.]

As is well known, in principle, the description of the
nuclear motion with the help of the nuclear surface is a fully
quantum process described within the collective Hamiltonian,
the collective model of Bohr being one of the best known
examples. In such an approach one begins with the concept
of the inertia tensor entering a classical (to start with) kinetic
energy expression,

Tclass. = 1

2

∑
i,j

Bclass.
ij (α)α̇i α̇j , (10)

where the symbols {αi} represent the contravariant realization
of the collective coordinates defining the equation of the
nuclear surface (for details cf., e.g., Ref. [38]). The inertia
tensor must appear here in its covariant form, in which case it
is expressed in the units of MeV s2.

The mass tensor whose components are used to write the
Schrödinger equation of the collective nuclear motion are usu-
ally calculated microscopically, employing rather advanced
methods of the perturbation theory. In relation to, for instance,
the usual phenomenological mean-field Hamiltonians such
as those based on the deformed Woods-Saxon or Yukawa-
folded potentials, the corresponding formulas can be obtained
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explicitly following the proposition in Ref. [39], though the
calculations must be performed numerically. (An extended
discussion of this problem can be found in Ref. [38], whereas
for an alternative approach applying the generator coordinate
method in the description of the nuclear inertia, the reader is
referred, e.g., to Ref. [40].)

The quantum version of the Hamiltonian with the classical
kinetic energy as in Eq. (10) is obtained using the standard by
now, a quantization procedure; cf. Refs. [41,42]. The collective
Schrödinger equation, whose an approximate version is solved
below in Sec. VIII, is obtained with the Hamiltonian whose
form, after Schrödinger’s original article about his quantiza-
tion,3 reads

Ĥquant. = −�
2

2
√

B

n∑
i,j=1

∂

∂αi
(
√

BBij )
∂

∂αj
+ V. (11)

Here B ≡ | det[Bij ]| is the absolute value of the determinant
of the covariant representation of the mass tensor, whereas
V is the collective nuclear potential, e.g., the one calculated
using the Strutinsky method or, as in our case, the LDM.
[Recall that

∑
j BijB

jk = δk
i and, consequently, the units

of the components of the contravariant representation of
the inertia tensor are reciprocal to those of the covariant
representation. The units of the covariant components are
[Bij ] = MeV s2; however, in the case of the applications in the
context of the Schrödinger equation in the curvilinear spaces
one often finds in the literature [Bij ] = �

2 MeV−1. The units
of the determinant factor are [| det B|] = MeVn s2n so that
the generalized kinetic energy in Eq. (11) is expressed, as
expected, in MeV.]

The tensor of inertia enters not only on the level of the
equations of the motion with the Hamiltonian in Eq. (11), but
very importantly through a “reinterpretation” of the probability
of finding the system in the curvilinear space. The latter
probability is given by

dPN (α) = ∗
N (α)N (α)

√
B(α) dα, (12)

where N are the solutions of the collective Schrödinger
equation,

Ĥquant.N = EN N. (13)

Very importantly, in multidimensional spaces it is then suffi-
cient that a few components of the inertia tensor increase in
a certain range of the deformation space and the determinant
factor in Eq. (12) grows very quickly as a function of the
products of various components of the tensor. This mechanism
may turn out being occasionally very important in that the
calculated maximum probabilities, strictly speaking, follow
neither the stationary points on the potential hypersurfaces nor
the steepest descent valleys. How importantly the probability
expression in Eq. (12) may change the simplified interpreta-
tions based on the static potential-energy hypersurfaces can be
seen, e.g., from the illustrations in Figs. 1–3 in Ref. [43].

3There exist several alternative, equivalent forms of the Laplacian
expression written in the Riemannian (curvilinear) spaces. Here we
use the one which is the simplest formally; cf. Ref. [42].

The collective model schematized above has been applied
rather rigorously in the description of the leading quadrupole
nuclear collective motion by several authors; the reader
is referred to the review in Ref. [44]. This is a rather
exceptional, and indeed rare, case in the present context, where
the principles of the quantum and microscopic theories are
followed down to the final solutions including the calculations
of the electromagnetic transition probabilities.

In contrast, in the applications to the large-amplitude
motion, as for example in the case of nuclear fission, extra
simplifying assumptions have been often employed. They
consist in combining the 1D approximation with the path
integral and the Ritz-Rayley methods (cf., e.g., Ref. [45]) or in
using, typically, 2D projections to avoid working with the full
n-dimensional space. The idea of considering probabilities
for passing through a given area of the deformation space
surrounding, e.g., a static minimum point to another area
surrounding another static characteristic point (e.g., another
minimum, saddle or scission points) along a single path
has been implicitly criticized;4 cf., e.g., Ref. [46]. Indeed,
the authors of the cited article stress the importance of
yet another mechanism that takes the form of “dynamical
corrections,” those originating from the mechanism of the
zero-point motion.

We can summarize this part of the discussion in the
following way.

(i) The description of the nuclear quantum systems,
especially in the regime of the large-amplitude motion,
should employ a quantum formalism such as, e.g., one
of the realizations of the collective model.

(ii) The corresponding description of the motion should
take into account the dynamical effects modeled with
the help of the inertia tensor, at the expense of a
considerable complication of both the formalism and
the complexity of the computing algorithm.

(iii) The nuclear potential energy calculated, e.g., with
the help of either Hartree-Fock or Strutinsky meth-
ods, or, alternatively, with the help of the classical
parametrization using macroscopic models (LDM,
LSD, etc.), plays the role of the quantum potential
in the collective Schrödinger equation [cf. Eq. (13)].

(iv) Static approaches can be considered as certain ap-
proximations to the quantum-collective description.
In this sense, drawing the experiment-comparable
conclusions about the nuclear quantum systems out
of static energy landscapes alone can be seen as an
approximation to the collective-model description.

4More precisely, because the deformation space is composed
of an infinite number of densely distributed points and because
the probability of reaching any point of null measure is null, in
strictly mathematical terms the probability of passing through any
preselected point is zero. Accordingly, the physical significance is
rather attributed to the probabilities in the form of dPN (α) of Eq. (12),
as well as some derived integral forms, and/or the appropriate
weighted averages in the quantum formalism of collective model.
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This being said, the collective model is again a certain
convenient approximation to the description of the nuclear
many-body problem. In the present article, we address the
question of the shape transitions using potential energies calcu-
lated with the macroscopic model and solving an approximate
version of the collective nuclear Schrödinger (thus quantum)
equation; see Sec. VIII.

B. Guidelines implied by the multidimensional character
of the collective motion

The starting point in the construction of macroscopic (and
macroscopic-microscopic) nuclear models consists of defining
the underlying class of geometrical surfaces describing the
nuclear shapes and of parametrizing these shapes with the
collective coordinates within a “reasonable” subset of Rn.
One of the strategies found in the literature relies on focusing
on a very limited number of parameters while preserving the
necessary minimum of “really needed” degrees of freedom.
For instance, parametrizations employing two spheroids, either
overlapping or smoothly joined, were in use as, e.g., the ones
joined by another spheroid or a hyperboloid to choose between
necked-in and already separated systems [47]. A discussion of
the latter and some alternative, few-parameter, choices can be
found in Ref. [37]. Some other choices involve the nuclear
elongation, triaxiality, and left-right asymmetry.

The issue of the parametrization of the nuclear shape is
closely related with the mathematical implications on the
level of determining the characteristic points of physical
interest, such as saddle points or local minimum points in
multidimensional spaces. This problem is not trivial and far
from being solved. In particular, as pointed out in the recent
Ref. [48], which discusses the uncertainties related to the
saddle points in multidimensional spaces

(i) every point that appears as stationary (e.g., minimum)
on the energy surface in an n-dimensional space will, in
general, not be stationary in the m-dimensional space
for m > n;

(ii) every point that appears as a saddle in an n-dimensional
space will, in general, not be a saddle point in the
m-dimensional space with m > n.

The latter item has natural implications for the present
project: Because we wish to study a possible coexistence
between the shape transitions of two competing distinct
symmetries; for this type of the project it will be of advantage
to keep a certain flexibility in terms of the dimensions of the
deformation space. In other words, we will consider a shape
representation in terms of an n-dimensional subset of the (in
principle infinite) basis set of functions, with n playing a role of
the control, basis cutoff parameter. This will make it possible
to test the reactions of the model with respect to varying
hypotheses concerning the symmetry and/or the number of the
basis elements. In particular, the axial and nonaxial shapes will
enter the tests simultaneously (and flexibly with the possibility
of increasing or decreasing the number of basis functions) to
be able to treat the Jacobi and Poincaré shape transitions on
the same footing.

C. The issue of shape parameterization and minimization
scheme in multipole space {αλμ}

In the present realization of the LSD model we wish to
make the results of the calculations possibly independent of
the limitations mentioned. This can be done at the expense of
the time of the numerical calculations, and the only way to
achieve such a goal is to expand the nuclear surface in terms
of a basis set of functions such as spherical harmonics {Yλμ}.
The latter have been used for a long time in the present context
(e.g., Refs. [49–51]),

R(ϑ,ϕ) = R0c(α)

⎡
⎣1 +

λmax∑
λ=2

λ∑
μ=−λ

αλμYλμ(ϑ,ϕ)

⎤
⎦ , (14)

where α ≡ {αλμ} and where function c(α) is obtained from
the nuclear volume conservation condition. (Let us mention
in passing that the contravariant tensor αλμ is proportional to
α∗

λμ and that the two can be identified with the help of an
appropriate choice of the phase conventions.)

The maximum multipolarity used, λmax, plays the role of
the basis cutoff parameter and replaces the generic symbol
for the space dimension, n, used so far. It is an advantage of
such an approach that by increasing the cutoff we can test and
decide about achieving (or not) the stability of the final result
with respect to the selected set of the basis functions under the
user-chosen stability criteria; cf. Secs. IV–VI.

Let us remark at this point that an axially symmetric analog
of the expansion in terms of the spherical-harmonic basis
has been used in Ref. [52] with the Legendre-polynomial
expansion, which can be considered as a particular case of the
spherical-harmonics series. However, in contrast to Eq. (14),
in which certain exotic forms cannot be obtained, when the
point position on the nuclear surface cannot be expressed as
a unique function of ϑ and ϕ, in the quoted reference the
expansion variable used was the distance from the nuclear
axis to the nuclear surface, thus allowing for a description of
shapes going beyond the binary-fission configurations (with,
e.g., a possibility of parameterizing three- or four-fragment
configurations). An extension of the discussed choice has
been introduced in Ref. [9], making it possible to consider
the triplanar forms with the possibility of parameterizing
simultaneously the multineck configurations.

The present parametrization in terms of spherical harmonics
does not include such possibilities. Instead, it offers a series of
advantages in certain nuclear structure theory developments
that go beyond the pure macroscopic model aspects. For
instance, in the regime of low or, at the extreme limit,
zero temperatures, one is interested in the strongest shell
effects whose research is largely facilitated by combining the
mean-field and the point-group theory techniques, the latter
using preferentially the spherical harmonics representation
(the interested reader is referred to Refs. [30,53] and references
therein). Another important context in which the use of
spherical harmonics largely facilitates the modeling concerns
the uniqueness of the transformation between the intrinsic
and laboratory reference frame (the so-called problem of
the symmetrization group) when calculating electromagnetic
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transition probabilities out of the solutions of the collective-
model Hamiltonian; cf. Ref. [54].

Minimization of a scalar function depending on vector ar-
guments is a task whose complexity increases with increasing
dimension of space and with the degree of nonlinearity of
the function studied. In this context the macroscopic model
provides simplifications (incomparable to the complexity of
the self-consistent Hartree-Fock or relativistic mean-field
approaches) that are inherent to the physical nature of the
macroscopic energy problem.

(i) The minimized function, the nuclear macroscopic
energy, can be considered a very regular function
of its arguments αλμ in the physical range of their
application.

(ii) With the exception of α20, which parametrizes the
nuclear elongation, the majority of the deformation
parameters remain not very far from the origin {αλμ =
0} of the deformation-space reference frame. They
seldom approach 1, except for α30 and α40, and even
this only at the very large elongations.

(iii) Within the physical range of (so to speak not too
“extravagant”) shapes, on the average, the larger the
multipolarity, the smaller the variation range of αλμ,
especially within the near energy range, say, several
MeV, from the absolute minimum.

(iv) With increasing multipolarity λ the nuclear surface
area increases rather quickly, followed by a rapid
increase in the (positive) surface energy. Those latter
energy regimes are avoided by the minimization
algorithms.

These properties considerably facilitate the use of the
minimization algorithm in terms of both the stability of
the minimization process converging towards the absolute
minimum and the computer CPU time.

In the present approach we employ what is sometimes
referred to as stochastic technique of projections as briefly
described in the rest of this section. It consists of calculating
the projections of the total energies on the preselected 2D sub-
spaces, by repeating the minimization starting from randomly
selected initial points for every projection point. Possible dis-
advantages of the stochastic technique of projections have been
discussed in Ref. [48] focusing on the case of self-consistent
iterative approaches such as the Hartree-Fock method.

In this article we illustrate the LSD calculation results
introducing either 1D energy projections and minimizing the
energy over various multipole deformations as a function
of the elongation α20, or, alternatively, two types of 2D
projections. In this second case—to address the issue of the
Jacobi shape transitions—we project the total energy on the
plane of the leading (quadrupole) deformation parameters
{α20,α22} using, equivalently, the {β,γ } representation.
Alternatively, we employ the {α20,α30} projections minimized
over a number of multipole deformations to illustrate the
Poincaré-type transitions.

In all the three cases described above we use the Levenberg-
Marquardt nonlinear minimization algorithm that is known
for its stabilized linear-search properties, which increase an

overall stability of the method. In this article, minimization al-
gorithm is combined with the standard multi-restart procedure
according to which

(i) the initial minimization points are selected at random
in a large hypercube containing, as a rather small
subset, the physical space of interest;

(ii) we use Nrest. random restarts to control the obtained
consistency and continuity of the final surface (curve)
of interest, as well as the independence of the final re-
sult of the starting point selected for the minimization
routine;

(iii) each time the minimization stops when the zero-
gradient condition is verified within the predefined
criterion, the consistency of the results obtained from
various starting points is analyzed and the solution
satisfying the continuity criteria chosen;

(iv) this technique makes it possible, in particular, to detect
the mechanism of “crossing valleys” as discussed in
Ref. [48]; otherwise, it is very difficult to treat with
the help of automatized search routines.

As is well known, stochastic approaches do not offer
mathematical guarantees for satisfying the properties for
which no mathematical criteria can be formulated. However,
using these methods one can increase the probability of
reaching a success: the best one can do under the discussed
mathematical conditions.

In the calculations presented below we employ the min-
imization over up to 12 deformation coordinates simultane-
ously with λmax � 16, after having verified that the stability of
the final result has been achieved in the context of interest.

Extensive tests of the minimization algorithm applied in
the variable dimensions of the deformation spaces used in this
article convince us of the absence of possible discontinuities
and/or other irregularities in the present context.

IV. EXTENDED LSD-MODEL FORMULATION

In this section we discuss first the properties of the stability
of the final results with respect to the spherical-harmonic
basis cutoff in terms of the axial symmetry subset of the
basis (Sec. IV A) and the axial asymmetry (Sec. IV B).
Having examined the convergence properties of the algorithm,
we obtain a parametrization of the deformation-dependent
congruence-energy term with certain criteria specified below
(Sec. IV C), finishing with a few comments about the neck
description properties in Sec. IV D.

A. Basis stability conditions: Axial symmetry

Let us recall at this point that the extended LSD energy
expression developed in this article contains the deformation-
dependent congruence-energy term whose presence strongly
influences the quality of the comparison of the nuclear fission
barriers with experiment; for illustration, cf. Table VI. When
discussing the stability with respect to the basis cutoff in this
section we use the full, extended LSD expression, including
the deformation-dependent congruence-energy term, despite
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the fact that the parametrization of the congruence contribution
is presented and illustrated in Sec. IV C only.

We start by examining the conditions of the basis cutoff
in relation to the order λ of the spherical-harmonic basis
{Yλμ}, for the axial-symmetry deformations αλμ=0. Because
we are interested, in particular, in the Jacobi shape transitions
involving nonaxial (to the first order, triaxial) shapes we
specifically illustrate also the role of the higher-order triaxiality
degrees of freedom, α42 and α62. They can be seen as
the “natural partner” deformations possibly coupling with
the quadrupole-triaxial deformation α22 as discussed in the
following section.

An undesirable feature of the description of nuclear surfaces
in terms of any set of basis functions is an appearance of local
surface fluctuations. They, sooner or later, become physically
meaningless and yet are an unavoidable consequence of
expanding a given function in terms of the basis functions
which, one way or another, involve the polynomials of an
increasing order. We are confronted here with contradicting
tendencies well known in the discussed context. On the one
hand, the tendency to increase the basis size to improve
the variational minimization conditions and lower the energy
of the final solution. This, on the other hand, increases
the presence of (to an extent meaningless) small-amplitude
fluctuations on the nuclear surface. To examine the behavior of
the LSD energy expression as a function of the increasing basis
cutoff parameter, λmax, we have performed two types of tests.

First, we have tested the total energy behavior as a
function of the increasing quadrupole deformation α20, also
referred to as the nuclear elongation parameter, at spin zero
by minimizing the total energy over the axial-symmetry
deformation parameters αλμ=0, for the increasing even-order
index λ.

Results in Fig. 1 show the energy differences,

δEλmax.
(α) ≡ Eλmax.−2(α) − Eλmax.

(α), (15)

for λmax. = 10,12,14, . . ., for three nuclei representing the
mass ranges on which we focus in this article. Because above
we subtract the result with the richer basis size from the result
with the poorer basis size, the corresponding difference is
necessarily non-negative and we keep this convention for the
graphical convenience.

It can be seen from Fig. 1 that, between the vanishing
deformation at α20 = 0 and up to a certain value of the
elongation which varies from α20 ≈ 1.3 for 173Lu to α20 ≈
1.7 for 70Se, the discrepancies in terms of the difference
[Eλmax.=16(α) − Eλmax.=18(α)] are of the order of 1 keV and
do not exceed 15 keV at α20 = 2.

In Fig. 1 we have somewhat arbitrarily placed vertical
reference lines to mark the points further on referred to as
αstab.

20 . By definition, at these points the discrepancy caused
by the strongest-diverging pair of multipolarities is equal to
20 keV. The latter symbol and the reference lines facilitate the
discussion below. Observe that the position of the “stability
limit,” αstab.

20 , decreases with increasing nuclear mass, as shown
in Fig. 1.

Figure 2 (left-hand side) shows the neck radius for the
three nuclei discussed as a function of their elongation. The
crossing points between the curves and the vertical lines,
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FIG. 1. (Color online) Axial-basis cutoff stability test for three
nuclei representative for the mass ranges illustrated in this article. The
curves correspond to minimizing the nuclear energy at each α20 over
other axially symmetric deformations with increasing λ � λmax. Here
we select, as a measure of stability, the energy differences in Eq. (15).
By definition, vertical lines indicate the elongation at which the
biggest contribution equals 20 keV. Observe that, characteristically,
the convergence is not monotonic (behavior of the form “the higher
the λ value, the smaller the discrepancy” does not apply here). (For
comments, see Figs. 2 and 3 and discussion in the text.)

whose positions are copied from Fig. 1, define the “degree”
of the neck formation. Recall that for the neck radii in the
range, typically (0.3 to 0.4) R0, the nuclei which are still
described with the help of one common surface should rather
be considered as effectively two separate nuclear objects, with
vanishing probability of returning to the original compact
configuration.

Positions of the vertical lines in Figs. 1 and 2 indicate that
the basis-instability areas clearly correspond to the advanced
stages of the neck formation, and thus further analysis of these
instabilities will be focused on the description of the nuclear
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FIG. 2. (Color online) (Left) Neck radius as a function of the nuclear elongation for increasing multipolarity in the nuclear surface
expansion, in units of the corresponding spherical radius R0. Positions of the vertical lines are the same as those in Fig. 1; for more details,
see the text. (Observe a perfect stabilization of the nuclear neck-radius curves in terms of the multipole expansion.) (Right) Illustration of the
decomposition of the nuclear neck radii in terms of the increasing multipolarity. Observe a nonmonotonic behavior of various contributions
with increasing λmax..

neck. This is illustrated in the right-hand side of Fig. 2 by
showing the neck-radius contributions coming from various
multipolarities. Here, following the convention in Fig. 1,
we take as a measure of those contributions the differences
between the neck radii obtained with a given λmax. and λmax. −
2, denoted symbolically R(10) − R(12), R(12) − R(14), etc.
Despite the fact that the neck-radii themselves are pretty robust
in terms of the stability of the multipole basis expansion, the
detailed contributions of various multipolarities to the neck
radius are again not monotonic.

Let us emphasize at this point that from the microscopic
point of view, the neck zones are, in fact, the scenes of complex
quantum few-body processes in the dilute (decreasing density
of) nuclear matter, governed by the two-body and, possibly,
three-body correlations, occasionally influenced by the cluster

formation, etc. This suggests the existence of a competition
among several quantum mechanisms, whose description with
the help of classical concepts and a single 2D surface is
clearly impossible. Incidentally, the “erratic” fluctuations in
question, which could be interpreted as a certain weakness of
the spherical-harmonic expansion around the neck zones, as
pointed out already in Sec. III C, appear within the area of the
limited applicability of the macroscopic energy formula. This
limits to an extent the importance of the possible inaccuracies
of the multipole expansions in the “neck regime.”

It will be instructive to pursue a short discussion of the
neck geometry properties within the macroscopic algorithm.
The mechanism is further illustrated in Fig. 3 in which the
distance x from the nuclear axis Oz is shown as a function
of z for a large value of the elongation. As can be seen from

034301-12
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FIG. 3. (Color online) Illustration of the shape fluctuations in the
neck region in terms of the increasing order of the axially symmetric
multipole contributions for 70Se as an example at α20 = 2.5. Given
the fact that the model cannot claim the adequacy of the description
of the neck area at the zone illustrated, the fluctuations shown which
remain at the level of 1% of the original radius can be considered
“harmless” in the context.

the figure, fluctuations occur with no “evident convergence
scheme” behind the order of the curves. Similar neck profiles
can be drawn for the smaller elongation, with the conclusion
that although the amplitude of the fluctuations decreases with
the decreasing elongation, the sequence of the curves on the
diagrams of this type does not follow any simple regularity.

From the above illustration and from the results of similar
calculations for nuclei in the mass range considered, we
conclude that in the deformation regions of the neck formation,
the energy contributions of the multipole deformations in
excess of λ = 12 are not monotonic when λmax. increases, but
remain small. There exists no reliable way of fitting the model
predictions at this point to any observable directly related to
the properties of the nuclear neck. Because the macroscopic
model cannot assure the adequacy of the description of the
dynamics of the neck formation, we believe that the energy
fluctuations of this order certainly do not exceed the generic
uncertainties of the model itself.

B. Basis stability conditions: Nonaxial shapes

In preparation for the calculations of the Jacobi shape
transitions, we have also performed the test calculations at
and near the critical spins, using at first the usual [{β,γ } ↔
{α20,α22}]-plane minimization, but next allowing for the extra
minimization over the similar triplanar geometry deforma-
tions, α42 and α62, at each {α20,α22} point.

The results corresponding to the “usual” in the present
context {β,γ }-plane minimization over all the even-λ axial-
symmetry deformations αλμ=0 for λ � λmax. = 16, however,
with neither α42 nor α62 extra minimization, are given in Fig. 4
for two representative nuclei in the mass range studied. These
energy maps are meant to define the energy scale within which
the basis cutoff instability tests will be analyzed. The potential
energies of Fig. 4 will be labeled E22 for further reference, de-
spite the fact that minimization over several axially symmetric
deformations is performed at each {β,γ } point.
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FIG. 4. (Color online) Total energy projections for the nuclei
indicated at spins in the vicinity of the Jacobi shape transitions.
We use the “traditional” quadrupole deformation parameters (β,γ ).
The vertical axis corresponds to γ = 60◦ (oblate), with the nuclear
spin directed along the symmetry axis. The path to fission (γ = 0◦

axis) has 30◦ inclination with respect to Ox axis. Downsloping lines
correspond to γ = −60◦, oblate shapes with the nucleus turning
about an axis perpendicular to the symmetry axis. Finally, the
γ = −120◦ axis corresponds to the prolate shapes with the nuclear
spin aligned with the symmetry axis. At each {β,γ } point the energy
was minimized over the even-λ deformations αλ0 for λ � 16.

Next we define two extra energy {β,γ }-plane projections.
The first one differs from the one illustrated in Fig. 4 in that
in addition to the minimization over all even-λ deformations
αλμ=0 with λ � 16, the minimization over α42 is performed at
each {β,γ } point. The corresponding energies are denoted by
E22,42 for short. In the second projection, an extra simultaneous
minimization over α42 and α62 is performed at each {β,γ }
point, with the resulting energies abbreviated to E22,42,62.

To estimate the impact of the triaxial deformations α42 and
α62, we constructed the differences of the form E22 − E22,42

and E22,42 − E22,42,62, representing the contributions of each
single triaxial deformation parameter mentioned. The results
of the two energy differences for the lightest among the nuclei
considered, 46Ti, are illustrated in Fig. 5, showing no impact
whatsoever in the deformation areas surrounding the energy
minima. The differences of the order of 200 keV at most
represent the energy-gain when minimizing in addition over
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FIG. 5. (Color online) Energy differences for 46Ti at spins, repre-
senting the energies from the preceding figure minus the projections
minimized in addition with respect to α42, according to the notation
introduced in the text: E22 − E22,42 (left column). The three maps on
the right-hand side represent the difference E22,42 − E22,42,62. Other
minimization conditions are same here as in Fig. 4.

the α42 deformation. They superpose with the energies at the
range of 5 to 10 MeV above the minimum, as can be seen
from the left-hand side of Fig. 4. Therefore, they have no
impact on one of the central issues in the focus of this article:
the dynamical (most probable) deformations that accompany
large-amplitude shape fluctuations associated with the Jacobi
shape transitions. In the energy scale, the corresponding states
are close to the nuclear ground states; i.e., they lie within,
approximately, 1 MeV above the potential minimum. A similar
conclusion applies for the effect of the α62 deformation as seen
from the three maps on the right-hand side column in Fig. 5.

For 142Ba representing the heavier-mass nuclei considered
in this article, the relative impact of the higher-order triaxial
deformations is even weaker. Here the small maxima in Fig. 6
should be compared with the total energies of the order of 15
to 20 MeV above the ground-state minimum. This can be seen
directly from the three maps on the left-hand side of Fig. 6
representing the effect of the α42 deformation and, similarly
from the three maps on the right hand-side of the figure for α62.

Analogous results apply to other nuclei in the mass range
considered in this article and we conclude that the effect of the
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FIG. 6. (Color online) Analogous to the preceding figure, here
for 142Ba, representative for heavier nuclei studied in this paper.

higher-order triaxial deformations α42 and α62 is negligible for
the Jacobi shape transitions in the nuclei studied.

C. Parameterization of the deformation-dependent
congruence energy

As mentioned in Sec. II, there exist in the literature a few
types of phenomenological assumptions about the form of
the deformation-dependent congruence-energy term and, to
an extent, they give similar results as far as improvements
of the description of the fission barriers are concerned (cf.
Refs. [35], [55], or [27]; in the latter the deformation-
dependent congruence-energy term of Ref. [35] was used in
conjunction with the LSD approach). One of the tendencies
in the past was to focus on the parametrizations with possibly
a small number of adjustable parameters. To our knowledge,
there are no rigorous arguments behind the phenomenological
expressions used in the literature. This does not make it pos-
sible to construct the clear-cut physics criteria discriminating
one approach against the other. Under these circumstances we
propose a functional form, in which the only leading idea is
to have a certain parametric flexibility making it possible to
test the reaction of the model with respect to “accelerated or
slowed-down turning on the congruence term with increasing
elongation,” while improving the description of the fission
barrier heights—otherwise, the functional form used below
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TABLE VI. Comparison of the barrier heights for the nuclei listed. Columns 2–4 contain Experimental values (Exp.), the reference of the
origin (Ref.), LSD model results with the congruence ignored, and the congruence contribution from Myers and Świa̧tecki (denoted C. M.-S.)
[35]. The last three columns represent the results obtained using the hypotheses aneck = 0.5, 1.0, and 1.5.

α0
20 A-dependent

Nucleus Exp. Ref. No. C. C. M.-S. aneck = 0.5 aneck = 1.0 aneck = 1.5

70Se 39.4 [59] 50.618 43.337 38.973 40.393 41.825
76Se 44.5 [59] 54.323 49.624 43.944 45.084 46.068
75Br 41.0 [60] 52.603 47.062 42.169 43.410 44.599
90Mo 42.0 [61] 50.890 45.519 40.995 42.308 43.359
98Mo 46.0 [61] 54.571 50.651 46.495 47.443 48.132
173Lu 29.0 [62] 28.707 25.635 27.433 26.797 26.616
228Ra 6.3 [62] 6.204 6.013 6.204 6.186 6.120

remains an ad hoc postulate—similarly to the other forms
discussed in the literature.

Below we use the experimental information about the
fission-barrier heights in nuclei, in which this information
is available, to optimize parameters of the following simple
analytical expression here referred to as neck factor:

Fneck(α20) = 1 + 1
2

{
1 + tanh

[(
α20 − α0

20

)/
aneck

]}
. (16)

Above, α0
20 and aneck are two, at this time yet-unknown,

adjustable constants. With the above assumption the
deformation-dependent congruence-energy contribution are
defined as

Econg.(N,Z; α)
df= W0(Z,N )Fneck(α20), (17)

where the so-called Wigner energy term (cf. Refs. [56,57]),
denoted W0, is still parametrized as in Ref. [58], i.e.,

W0(Z,N ) = −C0 exp(−W |I |/C0), (18)

with I ≡ (N − Z)/A, C0 = 10 MeV, and W = 42 MeV. The
rest of this section is devoted to the description of the
determination of the phenomenological parameters, α0

20 and
aneck, of the nuclear neck formation.

For the present applications it is convenient to intro-
duce an A dependence through a simple linear form, i.e.,
α0

20 → α0
20(A), in which we “arbitrarily parametrize the α0

20
parameter” as a function of the mass number

α0
20(A) = αmin.

20 +
(
αmax.

20 − αmin.
20

)
(Amax. − Amin.)

(A − Amin.), (19)

where αmin.
20 , αmax.

20 , Amin., and Amax. are predefined a priori as

αmin.
20 = 1.5, Amin. = 70, (20)

αmax.
20 = 3.5, Amax. = 220, (21)

so that effectively only the aneck parameter can be seen as a
truly adjustable constant.

By repeated minimization of the nuclear macroscopic
energy over the multipole deformation parameters αλ0 with
λ ∈ [3,16] as a function of the elongation, α20, for various
parameter values of aneck, we have verified that the values
aneck = 0.5,1.0,1.5 presented in Table VI can be considered as

an acceptable approximation when minimizing the discrepan-
cies between the model and the experimental fission barriers.5

The LSD model energy expression in Eq. (1), together with
the modification which aims at including the deformation-
dependent congruence-energy term, Eqs. (16) and (17)–(21),
is referred to as LSD-C, with “C” standing for “congruence.”

D. Some more comments about the nuclear neck

The very notion of the nuclear neck is, of course, a
fully classical, geometrical concept in the present approach.
As is well known, the nuclear mean-field interaction can
be parametrized phenomenologically using, e.g., the Woods-
Saxon potentials with the diffusivity parameter a ≈ 0.6 fm.
With the latter value, the nuclear skin thickness defined as the
distance for which the potential decreases from 10% to 90%
of its minimal value, corresponds to 4 a ≈ 2.5 fm. In other
words, the radius value at which the potential falls to its 90%
of the minimum value is R90% = R − 2a ≈ R − 1.2 fm.

Let us consider a nucleus with A = 125 nucleons for which
the radius estimated as usual is R = r0A

1/3, which with r0 =
1.2 fm gives R = 6 fm. At the neck value of the order of
0.4 × R = 2.4 fm, the Woods-Saxon potential is equal to its
90% depth at R0.4

90% ≈ (2.4 − 1.2) fm, ≈ 1.2 fm, which is of
the order of the half of the nucleon size. We conclude that there
is no way that the macroscopic model with the concept of the
classical surfaces can approach any realistic description of this
part (neck) of the nucleus.

When the neck radius approaches this range, one may
say that the spatial nucleonic content of this part of the
nucleus is “merely composed of the nuclear skin” and that the
corresponding configuration nears the scission configuration.
As already mentioned, for heavy and moderately heavy
nuclei the corresponding typical neck size for deformations
neighboring the scission configuration can be expressed, rather
roughly, as Rscission ≈ (0.3 − 0.4) R0, where R0 = r0 A1/3 and
where r0 ≈ 1.2 fm.

5The experimental values in Table VI have been obtained similarly
as in Ref. [35], i.e., subtracting the shell-energy contribution at
spherical shapes and using the fact that the shell energies at the
saddle points can be considered negligible according to Świa̧tecki’s
“topological property.”
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FIG. 7. (Color online) Neck radii of the nuclei indicated as a
function of the quadrupole deformation. Plotted values are normalized
to the radii of the corresponding spherical nuclei, the former defined
by R0 = r0 A1/3, with r0 = 1.2 fm. The horizontal line shows the
geometrical scission reference defined by Rscission = 0.3R0. Let us
emphasize that the latter quantity can be seen as a somewhat arbitrary
reference value.

In what follows it is instructive to obtain a global infor-
mation about the neck evolution with increasing quadrupole
deformation α20, which, within the multipole parametrization
of the nuclear surface used in this article, is a leading
component in describing the nuclear elongation. To obtain such
an illustration, we have calculated, as before, the total nuclear
energies for increasing α20 for a few nuclei for which the
experimental data on the fission barriers exist in the literature.
Figure 7 shows the neck radii relative to the radius of the
equivalent spherical nucleus, as a function of the nuclear
elongation obtained by using the same calculations as the ones
used to obtain Fig. 1. In this case, Rneck = x at z = 0.

Curves obtained without taking into account the
deformation-dependent congruence energy coincide with the
ones with the deformation-dependent congruence-energy in-
cluded and therefore in the figure we place only one set of
them. Let us emphasize here that the process of the creation of
the nuclear neck on the way to fission (referred to as “necking”)
depends very little on the mass number, A, and even less on the
nucleon excess |N − Z|, as results in Figs. 7 and 8 indicate.

The neck radii of the corresponding selected nuclei,
illustrated in the figures, decrease almost linearly with the
quadruple deformation, the negative slope depending only
slightly on the mass of the nucleus at least in the cases
examined. To verify that these results, do not depend very much
on the isospin we have included in the comparison with the
nuclei with relatively large differences in the nucleon excess,
N − Z.

As can be seen from Fig. 7, in the light nuclei such as 64,94Se,
the neck radius approaches Rscission for the elongation of α20 ≈
2.5 at the most, probably markedly earlier. For heavy nuclei,
represented by radium isotopes, the neck radius approaches the
discussed limit at higher quadrupole deformation of α20 ≈ 3
or slightly earlier.

In the selenium case, the isospin dependence is practically
nonexistent; as seen from Fig. 7, one cannot distinguish among
the positions of the illustrated curves for the span in the neutron
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FIG. 8. (Color online) Illustration similar to the one in Fig. 7, but
with the neck radius expressed in fm. At the level of the neck size
of the order of 1.5 fm, there is hardly any space left for any single
nucleon to move orthogonally with respect to the elongation axis.

number of �N = 30. Let us notice that the results concerning
the neck description, but obtained using the Myers-Świa̧tecki
prescription, are indistinguishable from the ones presented
within the scale of the plot.

V. DEFORMATION DEPENDENCE
OF THE FISSION BARRIERS

We use the experimental fission barrier heights to compare
with the model results of the optimized, here LSD-C, approach
for 70,76Se [59], 90,98Mo [61], and 173Lu [62]. Our results are
compared with those of Ref. [58], showing an alternative
parametrization of the deformation-dependent congruence-
energy term.6

Let us begin by illustrating the obtained parametric depen-
dence of the LSD-C realization of the model in terms of the
parameter aneck, the latter controlling the way (smoother vs
more abrupt) the congruence-energy contribution lowers the
barrier when elongation increases. The corresponding results
are given in Fig. 9, where the fission barriers at L = 0 (no
rotation) are shown. These results were obtained at each
given elongation α20 by minimizing the nuclear energy over
10 deformation parameters7 αλ0, with λ ∈ [3,12]. In what
follows we compare the results obtained for three values of
the “neck-parameter,” aneck = 0.5, 1.0, and 1.5.

Adopted parametrization of the congruence-energy con-
tribution lowers the nuclear fission barriers in a way that is
rather independent of the neutron excess down to the scission
point. The improvement brought by the congruence term is
δE ≈ −10 MeV for the light nuclei studied. Let us notice that

6Let us remark in passing that the experimental macroscopic barriers
for the lightest nuclei cited here are deduced from the corresponding
excitation functions and are dependent on the level density parameter
used in this type of analysis. Uncertainties in the level density
parameters may influence deduced fission barrier heights by a few
MeV.

7Although the odd-λ multipoles have been formally allowed in
the minimization, the final results depend only on the even-λ
deformations.
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FIG. 9. (Color online) LSD-C model energies as functions of α20,
minimized over {αλ0} for λ ∈ [3,12] for the aneck values indicated,
compared with the energies from of Myers and Świa̧tecki [58]
and labeled (Cong. MS). Experimental values, squares, from the
references given in Table VI are placed at either the scission
elongations defined by the condition Rneck = 0.3 × R0 (all but one),
or the saddle-point deformation in the case of 173Lu; cf. the text for
more details).

our results with aneck = 0.5 are the closest to the experiment,
with the typical discrepancy of the order of 1 MeV, the model
overestimating the experimental values for all the nuclei except
for 173Lu. In the latter case the LSD-C result underestimates
the experimental value, but is close to it.

The LSD-C energy curves extend formally to the very high
elongation values in terms of α20. However, the scission point
defined conventionally by the condition that Rneck ≈ 0.3 R0,
quite often sets in for markedly smaller α20 values; cf.
discussion in Sec. IV D. The corresponding effect is illustrated
in Fig. 9, in which the experimental values of the fission
barriers (solid squares) are placed, by convention, at the
scission-point elongation. We consider the nuclei at this stage
of their shape evolution as effectively composed already of two
fragments.

At this stage, a realistic description of the processes taking
place in the neighborhood of the scission configuration may
sensitively depend on the orbitals available at the Fermi level(s)
(of the mother and daughter nuclei) and one may expect
that the fully quantum description is needed. Under these
circumstances a nuclear quantum many-body theory, e.g., self-
consistent Hartree-Fock or self-consistent relativistic mean
field approach is expected to generate the relevant microscopic
ingredients such as the single-particle wave-functions. The
latter are needed to describe the possible cluster formation
or other mechanisms in the neck zone, which in turn would
strongly depend on the nucleus.

We do not believe that our macroscopic-model energy
formula has the necessary ingredients to provide a correct
description of the total nuclear energy under the discussed
circumstances. Therefore, the illustration in Fig. 9 represents
most of the curves (all but the one for 173Lu) in such a
way that they terminate, by definition, at the conventionally
defined scission points. Interestingly, the results of Ref. [58]
overestimate (underestimate) the experiment in the same
nuclei in which the LSD-C overestimates (underestimates) the
data. In absolute terms, the LSD-C provides an improvement
by at least a factor of 2 (4 on average), as compared to the
above-cited reference.

VI. BASIS CUTOFF, NUCLEAR POTENTIAL ENERGIES,
AND ENERGY MINIMA

We illustrate the reaction of the LSD-C energy formula
induced by adding more and more terms in the spherical-
harmonic basis. Let us observe in passing, that in certain
applications, enlarging the basis may be considered of a
strong disadvantage and/or even a prohibitive step as in the
description of the motion in terms of, e.g., Langevin equations.
Indeed, in this case the increasing number of differential
equations which need to be solved could represent a prohibitive
aspect of such methods. Although in such situations alternative
parametrizations of nuclear shapes may be preferable, yet in
any case, testing those alternative parametrizations must pass
by the basis cutoff ultimate verification to guarantee that such
an alternative is indeed acceptable.

Because the evolution of the nuclear shapes with spin is one
of the main interests here, we included the angular momentum
dependence in the tests.
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FIG. 10. (Color online) Dependence of the nuclear energy cal-
culated using the LSD-C expression with aneck = 0.5 at the large
elongation regime and at spin L = 0 �, as a function of the basis
cutoff. The energies have been minimized over deformations αλ0

for λ � λmax indicated. To increase the legibility of the present
illustration, a linear reference has been subtracted as indicated in
the description of the vertical axis. By convention, the curves stop at
the deformation at which Rneck < 0.3 × R0 for all but the 173Lu case,
in which the saddle-point deformation comes first.

 0

 20

 40

 60

 80

 E
m

in
(d

ef
) 

[M
eV

]

70Se

(a)

λmax=8
 10

 0

 20

 40

 60

 80

 E
m

in
(d

ef
) 

[M
eV

]

76Se

(b)

λmax=8
 10

 0

 20

 40

 60

 80

 E
m

in
(d

ef
) 

[M
eV

]

90Mo

(c)

λmax=8
 10

 0

 20

 40

 60

 80

 E
m

in
(d

ef
) 

[M
eV

]

98Mo

(d)

λmax=8
 10
 12

 0

 10

 20

 30

 40

 0  10  20  30  40  50  60  70  80  90

 E
m

in
(d

ef
) 

[M
eV

]

Spin [/h]

173Lu

(e)

λmax=8

FIG. 11. (Color online) Dependence of the nuclear minimum
energy on the basis cutoff parameter λmax as indicated as a function
of increasing spin. Minimization performed over αλ0 for λ � λmax.
The macroscopic energies include the shape-dependent congruence
energy with aneck = 0.5. Curves end if the scission condition is met for
spins lower than the spins at which the barrier vanishes, otherwise at
the spins of the vanishing barriers. Notice that the stability is obtained
already at λmax = 8.
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Figure 10, in which the static (L = 0�) nuclear energies
are plotted for various cutoff parameters λmax, illustrates the
impact of the basis cutoff on the total nuclear energy along the
path to fission. As can be seen from the figure the strongest
impact is expected at the largest elongation, with α20 ≈ 2.5:
There, increasing λmax from 12 to 14 may lower the energy
by not more than about 100 keV. It should be emphasized
at this point that for better legibility of the figure, the total
energies are plotted after having subtracted a smooth linear
reference curve, as indicated and consequently the maxima in
those curves do not represent the positions of the saddle points
(fission barrier heights).

Results of the analogous tests are shown in Fig. 11 for
the absolute minima of the potential energies. There the main
effect of the basis cutoff manifests itself in lowering the critical
(scission or saddle) spin values with increasing λmax (recall
that the saddle-point elongation α20 is in all but the 173Lu
case larger than the elongation corresponding to the scission
condition introduced and discussed above). The stability of the
final results for the numerical values of the energy minima is
achieved already at λmax = 8 for all the cases studied.

VII. NUCLEAR YRAST ENERGIES AT INCREASING SPIN

Within classical nuclear models the nuclear rotation is
usually accounted for by adding to the spin-independent
macroscopic energy the classical rigid-body rotational-energy
term, in the form of Eq. (8), with the rigid-body moment
of inertia, J (N,Z; α), calculated using the uniform nuclear
density distribution corresponding to nucleons contained
within the surface given by Eq. (14). To calculate the lowest
rotational energy, one uses the rotation axis associated with
the largest moment of inertia, thus providing the lowest energy
contribution.

Some authors calculate the moments of inertia using the
diffused-surface assumption (cf., e.g., Ref. [31]), which is
more physical. However, the relatively small differences that
result can be at least partially accounted for by possibly
readjusting the nuclear radius constant r0. To illustrate the
order of magnitude of variations/uncertainties possibly caused
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FIG. 12. (Color online) Illustration of the typical behavior of the
classical moment of inertia at the deformations corresponding to the
minimum of the potential energy for increasing spin, at three typical
values of the nuclear radius parameters r0; for details, see the text and
Fig. 11. Results for other nuclei have very similar form.
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FIG. 13. (Color online) Illustration of the typical impact of the
uncertainties in the classical nuclear moments of inertia on the total
energy minimization result—here in terms of the total energies at
the nuclear energy minima for the three radius-parameter values
indicated—plotted relative to a parabolic reference to increase the
legibility of the figure.

by the freedom in choosing the radius parameter when
reproducing the values of the classical moment of inertia
(and to convince ourselves about the possible sizes of these
uncertainties) we compare in Fig. 12 the results obtained for
three characteristic values of the r0 parameter. The results show
that only at the deformations very close to the fission/scission
can some “slightly visible impact” of the radius uncertainty be
expected.

Because the moment of inertia has a direct impact on the
total energy description, and thus the description of the shape
transitions, we illustrate in Fig. 13 the results analogous to the
ones in Fig. 11. In this article we are using the radius parameter
value r0 = 1.21 fm. The variation of r0 within ±0.03 fm, which
can be considered already very large in the context, leads to
about ±2 MeV absolute shifts in terms of the total minimum
energies at the highest spins. However, the latter dependence
influences the total energy surfaces in a very smooth, regular,
and easily foreseeable manner, its impact being mainly to lower
or increase the slope of the yrast lines.

Figure 14 presents the dependence on spin of the scission-
point energies or the saddle-point energies, calculated with
(dashed lines) and without (solid lines) congruence-energy
contribution. Because the congruence-energy contribution is
negative and its value decreases (increases in absolute terms)
when the nuclear deformation approaches scission, the barrier
heights calculated with the congruence-energy contribution
are systematically lower.

VIII. LARGE-AMPLITUDE EFFECTS IN NUCLEAR
SHAPE TRANSITIONS

In this section we present the problem of the nuclear large-
amplitude motion for spins in the vicinity of the transition
critical spins. We begin with the Jacobi-type transitions and
present the Poincaré shape transitions next. As it turns out, all
other shape transitions can be treated in a similar manner.

As already mentioned, our goal is, among others, to
investigate the competition between the nuclear Jacobi- and
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FIG. 14. (Color online) Fission barrier heights obtained with
(dashed line) and without (solid line) congruence-energy contribu-
tions by using, in the former case, aneck = 0.5. The barrier heights
are defined either as the nuclear energy at the scission point—if the
saddle point corresponds to the stronger elongation (compared to the
scission point)—or else to the saddle-point energy.

Poincaré-type shape transitions with increasing spin at high
temperature. The experimental signals of the Jacobi shape
transitions are relatively indirect, but can be detected, for
instance, by investigating the shape of the GDR as a function of
the nuclear spin [11–15,17–19]. Poincaré shape transitions, in
turn, consist of shape transformations that break the left-right
symmetry, thus leading to the asymmetric fission-fragment
mass distributions. The experimental tests in question may
require very distinct instrumental conditions to address each
of the discussed mechanisms separately. Their combination,
while performing independent measurements, may be neces-
sary for testing the theoretical model predictions and obtaining
more precise information and a more complete understanding
of the underlying nuclear properties.

The critical spins of the nuclear shape transitions of
interest are defined as follows. In the framework of the static
description, the Jacobi critical-spin value, Lcrit.

J , is given by the
first spin at which the absolute energy minimum corresponds to
a nonaxial deformation. Similarly, within the static description
of the Poincaré shape transitions, the Poincaré critical-spin
value, Lcrit.

P , is defined as the first spin at which the absolute
energy minimum corresponds to a left-right asymmetric shape.

Calculations show that the congruence-energy term, in ad-
dition to systematically lowering calculated nuclear energies,
also lowers the critical spins for both the Jacobi and the
Poincaré transition.

A. The case of the Jacobi transitions

When approaching the critical-spin value for a given type
of the shape transition, the corresponding energy landscape
flattens, often forming characteristic “valleys” in subspaces
of two or more dimensions in the multidimensional defor-
mation space. Typical results of the LSD-C calculations for
the Jacobi shape transitions with the energy minimized in
multidimensional deformation spaces are illustrated using
2D projections in Figs. 15 and 16. The main purpose of
comparing these two figures is to provide a translation from the
often applied {β,γ } representation of Bohr and an alternative,
{α20,α22} representation, in which the two quadrupole shape
coordinates appear at the same footing. In the case of the Bohr
parameterization with (β,γ ) parameters, the first of the two
has the geometrical interpretation of the radial distance from
the origin of the reference frame, whereas the other one has
that of the polar angle. In the case of the considered alternative,
{α20,α22} are the expansion coefficients in front of the
corresponding spherical harmonics. This latter representation
will be of advantage when solving the Schrödinger equation
for the collective motion, the main subject of this section.

Referring to the results in Figs. 15 and 16, let us observe
a gradual displacement of the absolute minimum along the
oblate-shape axis (γ = 60◦ vertical axis according to the
convention of Fig. 15 and the positive-inclined axis according
to the convention of Fig. 16) at L = 50–60 �, followed
by the transition towards increasing α20 with the triaxiality
increasing at first (in other words, angle γ decreasing from
60◦ towards γ ≈ 0◦ with the triaxiality reaching its maximum
at γ = 30◦) when spin increases. Observe that, according to the
calculations, at spins L = 80–84�, the nucleus arrives at the
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FIG. 15. (Color online) Total energy surfaces for increasing spin
in 120Cd, using a “traditional” shape-coordinate representation with
the quadrupole deformation parameters (β,γ ) of Bohr. The vertical,
upsloping straight lines correspond to γ = 60◦ (representing oblate
shapes, with the spin of “noncollective” origin aligned with the
symmetry axis), whereas the “path to fission” (γ = 0◦ axis) has
30◦ inclination with respect to the Ox axis. Downsloping straight
lines correspond to γ = −60◦ deformation and represent oblate
shape configurations in which the nucleus is rotating collectively
about an axis perpendicular to the symmetry axis. Finally, the
vertical, downsloping axes correspond to prolate axially symmetric
configurations with spins aligned with the symmetry axis. (The
minimization over axial-deformation coordinates αλ0 with λ � 12;
the insets contain the actual spin and the energy minimum in MeV
using the normalization to zero at I = 0�.)

axial quadrupole deformation, α20 ≈ 1.0, with the triaxiality
α22 ≈ 0, i.e., a strongly elongated, almost axially symmetric
shape with γ ≈ 0◦, marking a gradual termination of the Jacobi
transition in this nucleus.

Despite the fact that the model used here to calculate the
nuclear macroscopic energy is classical, the physical system
is not, and therefore the motion of the latter in the deformation
space should be described using the nuclear collective model,
Sec. III A, whose Schrödinger equation can be written in the
usual form,

[T̂ + V̂ (α)]N (α) = EN N (α). (22)
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FIG. 16. (Color online) Illustration equivalent to the one in
Fig. 15 but using an alternative set of coordinates, α20 and α22 rather
than β and γ , the former better suited for the formulation of the
equations of motion of the collective model (discussed here and
in the next section). [These coordinates make it possible to write
the kinetic energy operator in the Hamiltonian of Eq. (11) in a
convenient uniform fashion.] Surfaces of the potential energy, for
spins around the critical-spin value for the Jacobi shape transition
in 120Cd, minimized over the axial-deformation parameters αλ0 with
λ � 12. Compared to Fig. 15, horizontal lines correspond to γ = 0◦

(axial) deformation, the straight lines with the positive inclination
correspond to the γ = 60◦ axis, whereas the line with the negative
inclination corresponds to the γ = −60◦ axis. Prolongation of each
of the axes on the opposite side of the center corresponds to changing
the geometry: oblate → prolate and vice versa.

Above, the kinetic energy term, T̂ , depends on the iner-
tia (mass) tensor; cf. Eq. (11). The latter, at low nuclear
temperatures, is, in general, a complicated object depending
nontrivially on the deformation coordinates through the single
(quasi)-particle energies and wave functions, thus reflecting
the quantum shell effects.

The potential, V̂ (α), with the single symbol α standing
for all the deformation coordinates used, represents the same
nuclear energy whose 2D projections are illustrated in the
figures throughout this article. Let us recall that determining
V̂ (α) with the help of a macroscopic model alone, as in the case
of the present article, can only be a realistic approximation at
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TABLE VII. The irrotational flow mass parameter
Birr. as an estimation believed to be better than just the
order-of-magnitude estimate. We use Eq. (23), and
R0 = r0A

1/3 with r0 = 1.2 fm.

Nucleus Birr

46Ti 2.54
88Mo 8.06
120Cd 13.5
128Ba 15.0
142Ba 17.9
147Eu 18.9

relatively high nuclear temperatures, sufficiently high that the
quantum shell effects can be considered already washed out.

For the same reasons, as is well known, the shell effects on
the inertia tensor can be considered negligible at sufficiently
high temperatures;8 cf., e.g., Fig. 5 in Ref. [63] and references
therein. This justifies, as an approximation, setting the corre-
sponding inertia components constant in the present context,
which simplifies considerably the numerical effort without
having an important impact on the main goal of this article: to
illustrate the influence of the flatness of the potential valleys
and the large-amplitude motion in the case of the critical shape
transitions, as compared to the purely static description.

It has been verified through the calculations (cf. the
reference cited above for an illustration) that the so-called
irrotational flow expression of the mass-tensor quadrupole
component corresponding to the nuclear elongation,

Bα20,α20 ≈ Birr. ≈ 2

15
MAR2

0, (23)

provides results that are close to the microscopic ones at
temperatures in excess of 1 MeV, which corresponds to
the range of interest in this article. Table VII provides the
corresponding estimates for a few nuclei in the mass range
discussed in this article. To our knowledge, not much is known
about the mass-tensor components other than Bα20,α20 , the
latter calculated using various approximations essentially in
the context of the 1D estimates of the fission lifetimes, and
even less is known about that at high temperatures. Under
these circumstances, to obtain the first approximation of the
behavior of the collective wave functions around the total
energy minima, the latter evolving as the functions of spin,
we have set, as an approximation, Bα22,α22 = Bα20,α20 , and
neglected the mixed term, Bα22,α20 = Bα20,α22 . In our opinion,
such an approximation provides a good overall orientation
as far as the evolution of the spreading of the nuclear wave
functions in function of spin is concerned, especially as the
first (nonstatic) calculations of this kind for the nuclear shape
transitions of the Jacobi type.

8The nuclear temperatures at which the quantum shell effects are
“washed out” depend to an extent on the nuclear mass range and the
possible closeness of the actual Fermi level to the main, spherical
magic gaps in a given nucleus. However, approximately, for T �
1.5 MeV or so, they can be considered negligible.

With these approximations we have performed the
collective-model calculations of the low-lying solutions of the
2D Schrödinger equation with the potential energies calculated
using the LSD-C variant of the model. The mass parameter
estimate as in Table VII can only be treated as an indication,
though much better than just an order-of-magnitude estimate;
cf. Ref. [63]. With the potential energies calculated here, it
gives the lowest-lying energy eigenvalues for spins close to the
critical spins of the order of 1 MeV within a few-hundred-keV
margin.

We therefore performed the calculations for three char-
acteristic values of the mass tensor, adjusting the values
of Bα22,α22 = Bα20,α20 in such a way that the lowest-energy
collective solution for spins close to the transition critical
spins corresponds to one of the following three arbitrary
choices taken as an estimate of the physically “reasonable”
typical values: Ecoll. ≈ 0.5, 1, or 1.5 MeV. With this choice,
we cover the possible physical ranges of variations of the
wave functions and of the implied quantities such as the
most probable deformations and the associated deformation
uncertainty intervals which characterize the large-amplitude
fluctuations around the equilibrium values.

Using the so-obtained collective wave functions, we are
able to calculate the most probable (“dynamic”) quadrupole
deformations, (ᾱ20,ᾱ22)dyn., as compared to the static ones,
(α20,α22)stat., the latter corresponding, by definition, to the
minimum on the potential-energy surface. We may select as a
measure of the most probable value of a given shape coordi-
nate, say, αλμ, the associated r.m.s. values, ᾱλμ, defined by

〈
α2

λμ

〉 =
∫

dα∗
n (α)α2

λμn(α) → ᾱλμ =
√〈

α2
λμ

〉
. (24)

In the case of the flat valleys with a nearly constant potential
along the bottom and very slowly varying implied collective
wave function, the static approximation which consists of
attributing the physical sense to the single-point (potential
minimum) deformations becomes clearly inappropriate, given
the fact that the potential energy changes only a little, whereas
the nuclear deformation usually varies considerably. Using the
r.m.s. deviations can be considered as the first step towards the
estimate of the role of the fluctuations.

An example of the typical behavior of the collective
wave-function in the shape-transition range close to the critical
transition-spin is given in Fig. 17, for illustration. As can be
seen from the figure, the wave function varies relatively slowly
along a large deformation stretch ranging from α20 ≈ 0.25 to
α20 ≈ 1.25, the variation of the wave-function corresponding
to merely about the factor of two; the smaller the inertia, the
more spread is the collective wave function.

In Fig. 18, the evolution of the three lowest eigenstates
of the collective Hamiltonian is presented for a nucleus
representative of the mass range discussed in the article.
The lowering of the energy positions is characteristic of the
flattening of the surface of the potential energy accompanying
the shape transitions. In this illustration of the expected typical
behavior we have selected the mass parameters in such a way
that the lowest energy corresponds to the 1-MeV level above
the minimum of the potential at the transition spin.
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FIG. 17. (Color online) Contour-plot representation of the ab-
solute values of the wave-function solution to the 2D collective
Schrödinger equation, Eq. (22), with the constant mass-parameter
approximation as discussed in the text. (Top) The energy eigen-
value corresponds approximately to 0.5 MeV above the potential
minimum; (middle) approximately 1 MeV above the minimum;
(bottom) approximately 1.5 MeV above the minimum. The color
scale corresponds to the unit 0.02.

Let us notice that the quantum character of the collective
motion implies that each nuclear deformation should be
associated with the probability density function P (α) so that
the considered probabilities of finding the nucleus in a given
“shape interval,” [α − dα,α + dα], are given by

dP (α) = 2 |(α)|2dα, (25)

where 2 dα denotes the associated volume element in the
deformation space. It then follows that the dynamical character
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FIG. 18. (Color online) Three lowest-collective-energies solu-
tions of the Schrödinger equation (22) in terms of the variables α20

and α22, here presented as functions of spin for 120Cd. The mass
parameter is adapted in such a way that the lowest collective energy
lies 0.5 MeV above the potential minimum at the critical spin. The
symbols n = 1, 2, and 3 enumerate the energies of the first three
collective solutions, E1, E2, and E3, of Eq. (22).

of the description of the nuclear motion in the shape space can
be represented in a compact way, in terms of the expected
values of the deformation involved and also by the spreading
of the probability distribution described with the help of the
dispersion coefficients

σ20 ≡
√〈

α2
20

〉 − 〈α20〉2 and σ22 ≡
√〈

α2
22

〉 − 〈α22〉2. (26)

In this fashion one may represent in a compact way the
probability distributions associated with the varying flatness
of the energy landscapes in terms of four (spin-dependent)
quantities: ᾱ20 and σ20 as well as ᾱ22 and σ22, cf. Eqs. (24) and
(26).

The calculated positions of the quadrupole-axial static
deformations and the associated dynamical quantities (circles
and squares, respectively) are given in Fig. 19 for the 120Cd
nucleus. The differences between the corresponding positions
illustrate the impact of the shape-fluctuation effects (dynamical
as opposed to static). The figure illustrates at the same time
the spreading of the associated probability distribution (“shape
uncertainty”) with the help of the vertical bars, showing the
one-standard-deviation intervals.

The analogous illustration for the triaxial quadrupole
deformation and the related motion is presented in Fig. 20
constructed according to the same pattern. Let us observe
a much larger spreading in terms of the α20 fluctuations
expressed in terms of the ᾱ20 deformation together with the
associated dispersion, σ20, systematically bigger than σ22;
cf. Fig. 20 and compare with Fig. 19 (observe the scale
difference on the vertical axes in the two figures). This result
underlies the fact that in the case of the Jacobi shape transitions
the flattening of the energy landscape in the “direction of
elongation” plays a leading role, although the effect of
fluctuations in terms of the triaxiality is quite important as well.

Let us also notice that whereas the dispersion σ22, which is a
measure of the “uncertainty” in terms the triaxiality parameter
α22, reaches its maximum close to the critical spin and then
decreases, the dispersion σ20 increases nearly monotonically
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FIG. 19. (Color online) Static values of the axial-symmetry
quadrupole deformation α20, circles, taken at the minimum of the
total energy landscape and the dynamical most probable quadrupole
deformation,

√
〈α2

20〉, squares. The vertical bars give the ±σ deviation
intervals around the positions of the centers. The actual values of
σ are defined as in Eq. (26). In the present case of the Gaussian-
form probability distributions, the deformations contained within the
intervals shown represent, approximately, the 68% probability level.
The results, from the top to the bottom, correspond to the three choices
of the mass parameter as in Fig. 17.

before the nucleus arrives at the scission. The effect of
triaxiality fluctuations may have significant consequences for
the future nuclear structure calculations, which will need to
take explicitly into account the mechanism of the strong,
so-called K mixing in both the rotational-band description
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FIG. 20. (Color online) Illustration similar to the one in Fig. 19
but for the nonaxial quadrupole deformation parameter α22. Again
the ±σ intervals define the portion of the deformation axis in which
the system is to be found with the probability of approximately 68%.
(When comparing with the preceding figure, notice the differences in
the vertical scale units.)

in the continuum excitation regime as well as the calculations
of the corresponding electromagnetic transition probabilities.

It is instructive to follow the probabilistic consequences of
these results. For this purpose, let us combine the traditional
elements of the discussion involving a static interpretation and
the dynamic (quantum) description followed here. According
to the former approach, it is believed that the nucleus fissions
from the scission (no return) configuration often referred to
as the scission point. What is seldom mentioned, however,
is the fact that one can talk about a scission point, strictly
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speaking, only in terms of the 1D description of the fission
process. In the multidimensional spaces we deal with the
full hypersurface of the scission configurations.9 It then
follows that the exact scission configuration from which the
separation of the two fragments originates is the matter of
probability with which any of the scission configurations has
been reached. Under certain circumstances one may hope that
the lowest-energy scission configuration is privileged, as, e.g.,
at high temperatures where the mass tensor can be considered
constant. Generally, however, the mass tensor, depending
strongly on the shell effects, may strongly deviate the fission
path from the lowest potential-energy scission point(s).

According to the quantum description, we distinguish
between two “types” of the associated probability distributions
which can be related to

(a) the motion in the 1D deformation subspace along
the elongation direction, in our approach principally
associated with the α20 axis; and

(b) the motion in the orthogonal space, the complementary
subspace of the full deformation space, principally
determined by the so-called zero-point oscillations.

Suppose that the solution of the Schrödinger equation for
the lowest energy is to the leading order proportional to a
Gaussian.10 Let the quadrupole deformation corresponding to
the potential minimum be αmin.

20 . Then the probability of finding
the nucleus at the scission point, αscis.

20 —within 1D approach—
satisfies approximately

P sciss.(αmin.
20

) ∝ exp
[−(

αmin.
20 − αsciss.

20

)2/
2σ 2

20

]
. (27)

Consequently, the probability of the presence of the system at
the scission point under the condition that the energy minimum

9Intuitively, one defines the scission configuration as characterized
by the “sufficiently thin average neck radius” so that the two to-be
fragments are separated by some very limited area of the diluted
nuclear matter only. This condition can be generally satisfied at an
infinite number of nuclear shapes, wherefrom the notion of the full
hypersurface [an (n − 1)-dimensional surface in the full space of
n dimensions of all the deformation degrees of freedom taken into
consideration]. Such a surface can be defined by the condition, e.g.,
that the average neck radius, say Rneck(α) = Rlimit, the latter “limiting”
value defined by the physicist according to some plausible criteria.

10Recall that the solutions of the Schrödinger equation with the
harmonic-oscillator potential are given by

ψn(x) = 1√
2n n!

√
π

exp(−x2/2)Hn(x)

and for the lowest-energy solution with n = 0 we have H0(x) = 1, so
that

ψ2
0 (y) = 1√

π
exp(−y2/2) with y ≡ x

√
2

is exactly equal to the probability density function for the normal
(Gaussian) distribution with the expected value 0 and standard
deviation 1. (The lowest-energy solutions with a potential with a
well-defined minimum are often dominated by the ψ0 element of the
harmonic-oscillator basis.)

corresponds to αmin.
20 depends strongly on the dispersion value

σ20 as expressed by Eq. (27). However, the full probability
of being at any scission configuration will be proportional,
additionally, to the factors to an approximation also of the
Gaussian structure, depending on the dispersion parameters
such as σ22 and the similar ones associated with the other
deformation degrees of freedom describing the directions
orthogonal with respect to that of the elongation axis α20.

To conclude this part of the discussion: It becomes clear that
the description of the nuclear shape evolution phenomena—
including fission—in the presence of the critical shape changes
such as the ones accompanying the Jacobi and Poincaré shape
transitions may become more realistic and/or adequate if the
solutions of the collective Schrödinger equation are used
to calculate the observables of interest. The present section
illustrates, we believe in a realistic manner, the expected
characteristic impact of the quantum shape fluctuations as well
as the differences between the static and dynamic descriptions.

B. The case of Poincaré transitions

All that has been said so far about the Jacobi shape
transitions expressed to the leading order with the help of
two quadrupole variables, α20 and α22 simultaneously, can be
formulated as well for the Poincaré shape transitions using
α20 and α30 deformations. The latter involve the so-called
left-right asymmetry (also referred to as mass asymmetry), i.e.,
the transition from the inversion-symmetric to the inversion-
asymmetric shapes. They can be expressed, to the leading
order, by the single multipole α30, the octupole coordinate,
often also referred to as “pear-shape” deformation.

A typical illustration of the Poincaré-type shape transition
using the (α20,α30) projection is shown in Fig. 21. Observe the
characteristic evolution of the octupole susceptibility which
naturally generates the fission-fragment mass asymmetry
through the most probable octupole deformations whose
expected values increase with spin (see the following figures
in this section). This growth is accompanied by a gradual
decrease in the fission barrier height.

To calculate the most probable (r.m.s.) α30 deformations,
the 1D approximation of the potential energies in the direction
of α30 has been obtained first, through projections on the
“octupole valleys” illustrated in Fig. 22. These projections
have been used to solve the Schrödinger equation (22), and
the corresponding results represent simultaneously the lowest-
energy wave function (left scale) and the potential-energy
curve (right scale) are illustrated in Fig. 22. Observe a charac-
teristic flattening of the potential energies with increasing spin,
eventually evolving into a double-minimum landscape (here
plotted for L = 84�) symmetric with respect to transformation
α30 → −α30. Notice a rather tiny barrier between the two
minima at spin L = 84�, however, with the octupole mass
parameter chosen here for the semiquantitative illustration at
B30 = 100�

2 MeV−1, sufficient to generate the wave function
with a double hump structure.

The forms of the corresponding potential-energy curves
translate directly into the characteristic evolution of the related
collective wave-functions with increasing spreading (cf. spins
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FIG. 21. (Color online) Example of the Poincaré-type shape evo-
lution with spin using the 2D projections (α20,α30), analogous to
the one in Fig. 16 for the Jacobi-type transition. Two-dimensional
projections corresponding to these two figures were obtained using
the same full space of collective coordinates over which minimization
has been performed. Observe that, strictly speaking, the static
Poincaré transition takes place at the very highest spins only, and
this close to the fission critical spin (disappearance of the fission
barrier). However, the evolution of the dynamic effects with lowering
of the octuple valley extending to the “north” is clearly visible.

L = 60 and 78�) finishing with the double hump form at the
highest spin illustrated.

The characteristic evolution of the pear-shape deformation
is illustrated in Fig. 23 as a function of increasing spin
in terms of the static and dynamic representations of the
shape evolution. Observe that the left-right symmetry breaking
obviously takes place in the dynamical description already
at the lowest spins. This follows from the fact that at those
low spins the zero-phonon collective wave functions have
approximately the behavior of a Gaussian, so that at vanishing
static equilibrium deformation, αstat., we necessarily find

0 = α2
stat. < 〈α2〉dyn. ∼

∫
α2 exp

(
−α2

σ 2

)
dα �= 0 , (28)

which has an immediate impact on the mass asymmetry.
Information presented in Fig. 23 is usually completed with

the one showing explicitly the mass asymmetry of the fission
fragments translating the r.m.s. deformation parameter α30 into
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FIG. 22. (Color online) Example of the pear-shape octupole α30

evolution with spin. The wave functions (solid lines) correspond to
the left-hand side scale, whereas the potentials (dot-dashed lines)
correspond to the right-hand scale.

the mass asymmetry. To obtain the experiment-comparable
fission-fragment mass asymmetry one may, e.g., construct an
auxiliary surface composed of two touching ellipsoids and
minimize the volume between such an auxiliary object and the
actual nuclear surface. The ratio of the volumes of the two
ellipsoids makes it possible to obtain an approximate mass
ratio of the fission fragments (let us observe that this step
of the procedure involves a certain arbitrariness). Of course,
alternative ways of extracting the fission-fragment mass asym-
metry can be considered; for instance, by integrating directly
the volumes of the fragments starting from the point where the
nuclear neck can be introduced, the results remain close.
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FIG. 23. (Color online) Example of the pear-shape octupole α30

evolution with spin, in terms of the static and the dynamic deforma-
tions. As before, the static deformations are taken at the equilibrium
(minima), whereas the dynamic ones, defined as ᾱ30, are given by
relation analogous to the one in Eq. (23).

Combining the information from the two preceding il-
lustrations makes it possible to transform the results of the
dynamical deformation estimates directly into the observables:
the fission-fragment mass asymmetry as a function of spin. A
systematic analysis of the corresponding predictions will be
published elsewhere.

Having performed the 1D projection calculations along the
pear-shape deformation axis, we proceed to compare the so-
obtained results with the analogous ones obtained by solving
the 2D Schrödinger equation in the space of (α20 − α30)
variables. In analogy to the definition of the pair of quantities
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FIG. 24. (Color online) Squares, differences between the dynam-
ical (most likely) quadrupole deformations [in Eq. (24) denoted with
the symbol ᾱ] obtained from the solutions of the 2D Schrödinger
equation within the space of α20 and α30 variables minus the same
quantity calculated from the 2D solutions within the space of α20

and α22. Let us emphasize that in the former case, the minimization
has been performed, among others, over the α22 triaxiality parameter.
Positive values of the curve express a “stronger flatness” in the direc-
tion of α20 with α30 �= 0 compared to α22 �= 0. Solid dots, differences
between the dynamical (most likely) octupole deformations obtained
using 2D solutions of the Schrödinger equation in the space of α20

and α30 deformations and the analogous 1D projection estimates as
those in Fig. 23. Observe that the differences are relatively small
and nearly constant, suggesting that the 1D approximation offers a
good representation of the most probable octupole deformation in the
studied case.

in Eq. (26), we introduce the combined dispersion parameters,

σ20 ≡
√〈

α2
20

〉 − 〈α20〉2 and σ30 ≡
√〈

α2
30

〉 − 〈α30〉2, (29)

and calculate the resulting estimates using Eq. (24). The
potential energies in the case of the 2D solutions using α20

and α30 were obtained in such a way that at each {α20,α30},
the minimization was performed over α22, as well as the
axial-symmetry deformations αλ0 for 4 � λ � 12.

One of the purposes of this test comparison is to calculate
the difference between the predictions related to the octupole
motion as obtained using the 1D projections vs the more
adequate 2D variant of the problem. We focus on comparing
the dynamical (most likely) ᾱ20 and ᾱ30 quadrupole and
octupole deformations, respectively [cf. Eq. (24) and Fig. 24],
together with the associated dispersion values σ20 and σ30 of
Eq. (29), the latter shown in Fig. 25.

Comparison of the most likely quadrupole and octupole
deformations is given in Fig. 24, where, in particular, the
differences between the calculations with 2D variant and the
1D projection calculations for the ᾱ30 are shown. Calculations
indicate that the 2D description privileges systematically
stronger dynamical deformations. These conclusions are
strengthened by the results in Fig. 25, where the analogous
results for the dispersion parameters are shown.

It will also be instructive to compare the impact of the
uncertainties related to the octupole mass parameter B30 30 on
the overall behavior of the corresponding wave functions. The
corresponding results are presented in Fig. 26 in the form of
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FIG. 25. (Color online) Analogous to the illustration in Fig. 24,
but for the differences between the dispersion parameters (cf. the
preceding figure).

the contour plots of the ground-state wave functions plotted vs
α20 − α30 coordinates. As could be expected, the lower-energy
solution corresponding to the larger mass parameter is peaked
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FIG. 26. (Color online) Collective wave-functions solutions of
the collective Schrödinger equation [cf. Eqs. (11)–(13)]. (Top) The
mass parameter B30 30 has been chosen in such a way that the solution
of the 1D projection on the α30 axis corresponds to Evib. = 0.5 MeV.
(Bottom) Similar to the previous case, but with the B30 30 implying
Evib. = 1.5 MeV. For further details, see text.
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FIG. 27. (Color online) Illustration of the differences between
the two wave functions shown in Fig. 26. The one corresponding
to the larger value of the mass parameter B30 30 has lower energy
minus the one corresponding to the smaller value of the discussed
mass parameter. Observe that the discussed quantity is very small
and, to be able to present the difference, the corresponding difference
has been multiplied by the factor of 10.

more strongly around the potential minimum, whereas the
higher-energy solution, with smaller inertia parameters, leads
to a more spread distribution. However, the differences can be
considered small so that one should not expect significant dif-
ferences in terms of the results for, e.g., expected values of the
deformation parameters and/or associated dispersions (uncer-
tainties). Indeed, the variation range of the B30 30 mass-tensor
component which implies the vibrational energy variation
ranging from 0.5 to 1.5 MeV can be considered very large. Be-
cause the corresponding nuclear energies are expected some-
where within the mentioned broad uncertainty range, the wave
functions in Fig. 26 can be seen as a realistic representation
and/or approximation of the nuclear collective wave functions.

Because the wave functions corresponding to the two
discussed values of the mass parameter B30 30 differ rather
little, it may be easier to present the effect by plotting the
differences between the two respective wave functions. (Recall
that the wave functions of the lowest-energy solutions have a
form resembling Gaussians and may be chosen positive so that
the sign of the difference describes directly the competition
between the two.)

The related difference of the two normalized wave functions
(cf. Fig. 27), itself a function of α20 and α30, varies between,
approximately, −0.02 and +0.04. The overall conclusion at
this point is that the uncertainties caused by the uncertainties
of the (too far an extent unknown) octupole mass parameter
at high temperatures are not very large, so that the results
presented here for illustration represent rather likely the
realistic situations.

IX. SUMMARY AND CONCLUSIONS

In this article we develop a new algorithm based on the
macroscopic LSD model. This approach makes it possible
to calculate, with an improved precision, the mechanism of
the nuclear shape transitions with varying spin in hot rotating

034301-28
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nuclei and the accompanying discussion, in our opinion, offers
a more realistic physics insight as compared to previous
discussions of the subject.

We focus on two families of the shape transitions known
already from the “historical” astrophysics works: The so-
called Jacobi and Poincaré shape transitions, Refs. [6,7],
respectively. Jacobi transitions lead from axially symmet-
ric nuclear configurations to the triaxially symmetric ones.
Poincaré transitions lead from the inversion-symmetric forms
to the ones that break the inversion symmetry. Both can be
viewed as symmetry-breaking phenomena, but unlike their
astrophysical realizations, their nuclear realizations treated by
us involve explicitly the description of the quantum critical
shape fluctuations. To our knowledge, the Poincaré shape
transitions are presented in this context for the first time.

The present article can be seen as a contribution to
increasing the performance of the macroscopic-microscopic
approaches which combine the powerful nuclear mean-field
theory with the approach based on the LDM. Indeed, by
focusing on the studies of the nuclear states at high temperature
where the quantum shell effects can be neglected we profit
from the unique opportunity of optimizing the macroscopic
LSD-C model alone, independently of the nuclear mean-
field theory aspects. The Jacobi and Poincaré nuclear shape
transitions offer valuable experimental test grounds in this
context, which are discussed in this article.

To be able to formulate the necessary and sufficient criteria
which would allow for an (if possible unambiguous) identifi-
cation of those transitions in nuclei, one must take into account
that both of them may compete when the angular momentum
increases. To this end it is important to be able to calculate,
in a realistic manner, the probabilities of signals from nuclei
which are axially symmetric, triaxial, or left-right asymmetric,
and/or which combine these feature when spin increases. Such
a competition depends on the large-amplitude fluctuations in
terms of both of these modes (Jacobi, Poincaré). We obtain
these probabilities approximately by solving numerically
the corresponding collective-model Schrödinger equations,
to construct the most probable families of shapes from the
corresponding collective wave functions.

Taking explicitly into account the presence of either
zero-point or large-amplitude motion in the direction of the
mass asymmetry coordinate (here α30 octupole deformation)
introduces the possibility of estimating the fission-fragment
mass asymmetry with the help of the quantum, collective-
model technique right from the beginning. In particular,
the r.m.s. values of the α30 deformation can be translated,
in a certain model-dependent way, into measurable mass
ratios of the fission fragments. This technique reflects in
a sensitive manner the octupole-deformation susceptibility
(e.g., increasing flatness of the nuclear energy landscape

without necessarily producing static left-right asymmetric total
energy minima) as opposed to the traditional analyses based
on the static minima in terms of octupole-type coordinates.
(Using this dynamical description also introduces a qualitative
difference with respect to estimates of the early Businaro-
Gallone approach [64].)

Transitions in question have been traditionally character-
ized by the critical spin values associated with the static total
energy minima: The last spin value at which the preceding
symmetry occurs and the first spin value at which the new
symmetry arises define the critical spin for the transitions
considered. To obtain more realistically these critical-spin
values, as well as the description of the fission barriers, we have
modified the original LSD model expression of Refs. [25,26]
by introducing a deformation-dependent congruence energy
term with certain phenomenological parameters whose values
have been optimized to the known experimental values of the
fission barriers.

This new LSD-C energy expression, with the shape-
dependent congruence energy term, lowers the previous
discrepancies for the fission barriers for the lighter nuclei
considered (70,76Se, 75Br, 90,98Mo) by about 10 MeV, whereas
it modifies only slightly the fission barriers for the heavier
nuclei for which the agreement has already been good. The
remaining discrepancies are of the order of 1 MeV for the
mass range between A ≈ 80 and A ≈ 230.

The shape-dependent congruence-energy term is expected
to imply a better description of the fission barrier heights for
increasing spin, as well as for fast-rotating nuclei with the
better prospects for the description of the fission cross sections
and the shapes of the charge and mass distribution of the fission
fragments. The implied additional binding energy lowers also
the fission critical spin by 5� − 10�.

Finally, the stability of the newly obtained LSD-C ex-
pression with respect to the basis cutoff, λmax in the nuclear
shape parametrization as well as the parametric uncertainties
involved by introducing the new parameters to the energy
expression have been studied and the results are discussed.
The results in this article have been principally limited to a
few illustrative cases only. The outcome of more systematic
calculations using these methods will be presented elsewhere.
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and N. Schunck, Nuclei with tetrahedral symmetry, Int. J. Mod.
Phys. E 16, 516 (2007).
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