
PHYSICAL REVIEW C 91, 034001 (2015)

Proton-3H scattering calculation: Elastic and charge-exchange reactions up to 30 MeV
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Proton-3H elastic scattering and charge-exchange reaction 3H(p,n)3He in the energy regime above the four-
nucleon breakup threshold are described in the momentum-space transition operator framework. Fully converged
results are obtained by using realistic two-nucleon potentials and a two-proton Coulomb force as dynamic
input. Differential cross section, proton analyzing power, outgoing neutron polarization, and proton-to-neutron
polarization transfer coefficients are calculated between 6 and 30 MeV proton beam energy. Good agreement with
the experimental data is found for the differential cross section both in elastic and charge-exchange reactions; the
latter shows a complicated energy and angular dependence. The most sizable discrepancies between predictions
and data are found for the proton analyzing power and outgoing neutron polarization in the charge-exchange
reaction, while the respective proton-to-neutron polarization transfer coefficients are well described by the
calculations.
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I. INTRODUCTION

The theoretical understanding of the structure of nuclei
along the valley of stability, as well as away from it up to
the neutron or proton drip lines, has advanced fast in the
last 15 years through state-of-the-art microscopic Green’s
function Monte Carlo (GFMC) [1,2] and no-core shell model
(NCSM) [3] calculations based on realistic nucleon-nucleon
(NN ) and three-nucleon (3N ) force models. In contrast, the
corresponding advances in the study of nuclear reactions have
been meager and mostly limited to the three- and four-nucleon
(4N ) systems. As discussed in a recent review article [4], this
may change in the near future as one implements algorithms
capable of applying bound-state techniques to the solution
of the multiparticle-scattering problem. Until this becomes
a reliable pathway, one follows the traditional approach
by solving coordinate- or momentum-space equations with
appropriate boundary conditions that are equivalent to solving
the corresponding n-particle Schrödinger equation.

Although rigorous n-particle scattering equations were
derived almost 50 years ago by Faddeev and Yakubovsky
(FY) [5,6] and by Alt, Grassberger, and Sandhas (AGS) [7,8],
exact numerical solutions of the 3N and 4N scattering
problems only became possible with the advent of fast and
larger computers, together with powerful numerical techniques
such as spline interpolation, Padé summation, and many
others. Neutron-deuteron (n-d) scattering calculations with
realistic NN force models reached state-of-the-art status in
the early 1990s due to the effort of a number of independent
groups [9–13]. Owing to the difficulties in treating the
long-range Coulomb force, fully converged proton-deuteron
(p-d) scattering calculations came later [14–17]. Due to its
higher dimensionality and multichannel complexity, the 4N
scattering problem took twenty years longer to reach the same
status as the 3N system except for the calculation of breakup
reactions. There have been also attempts to calculate scattering
processes involving five and more nucleons but using different

methods than in the 3N and 4N systems; namely, GFMC [18]
and the NCSM resonating group [19].

Although the 4N system has a long history that started
out in the early 1970s [20], most of the recent developments
are mainly due to the works of the Pisa [21–24], Grenoble–
Strasbourg [25–28], and Lisbon [29–32] groups. Because the
first two groups use the coordinate-space representation, they
were able to include not only realistic NN interactions but
also 3N forces. Nevertheless, they have had a major difficulty
in calculating multichannel reactions and going beyond the
breakup threshold, particularly when the Coulomb interaction
between protons is included. The Lisbon group uses the
momentum-space AGS equations for transition operators [8]
that were solved for multichannel reactions both below [33]
and above [34] the breakup threshold and with the Coulomb
force included. The only stumbling block has been the
inclusion of irreducible 3N forces. For this reason we are not
yet able to perform calculations with NN and 3N potentials
derived from the chiral effective field theory; only the NN part
has been included in our calculations [29,33]. An alternative is
a nuclear force model with explicit excitation of a nucleon to
a � isobar. This coupling generates both effective 3N and 4N

forces that have been successfully included in 4N calculations
by the Lisbon–Hannover collaboration [35].

In the past two years we produced a realm of results
for cross-section and polarization observables for the elastic
scattering of a neutron (n) on a 3H target [31] and a proton
(p) on a 3He target [32] above the breakup threshold. These
processes are dominated by the total isospin T = 1 states.
More recently we presented results for the mixed isospin (T =
0 and 1) processes initiated by the n + 3He collisions [36] that
are coupled multichannel reactions leading to all energetically
allowed final states n + 3He, p + 3H, d + d, d + n + p, and
n + n + p + p.

In the present work we study in detail the p + 3H scattering
above the breakup threshold. We concentrate on elastic and
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charge-exchange reactions for which there is abundant exper-
imental data, but also some inconsistencies between different
data sets, that might be sorted out through accurate theoretical
predictions. These calculations are especially important given
that novel experiments are hardly possible due to the lack
of 3H targets or proper facilities that still operate at these
energies. Furthermore, new 4N scattering calculations are
also worth pursuing because they lead the way to the solution
of complicated multiparticle scattering problems, not just in
nuclear physics but also in cold-atom physics [37] and in
the study of complex nuclear reactions that exhibit four-body
degrees of freedom such as the scattering of a two-neutron
halo nucleus on a proton target.

In Sec. II we shortly recall the theoretical formalism and
in Sec. III we present the numerical results. The summary is
given in Sec. IV.

II. 4N SCATTERING EQUATIONS

We employ the isospin formalism for the description
of the 4N scattering. Since p + 3H is the mirror of the
n + 3He system, we take over the calculational technique
from Ref. [36] where 4N reactions initiated by the n + 3He
collisions were described. Thus, we use the momentum-space
partial-wave framework to solve the integral AGS equations [8]
for symmetrized four-particle transition operators

U11 = − (G0tG0)−1 P34 − P34U1G0tG0U11

+U2G0tG0U21, (1a)

U21 = (G0tG0)−1 (1 − P34) + (1 − P34) U1G0tG0U11. (1b)

Here, G0 = (E + iε − H0)−1 is the free resolvent with the
complex energy E + iε and the free Hamiltonian H0, t is
the NN transition matrix, Pab is the permutation operator
of particles a and b, and Uα are the transition operators for
the 3 + 1 (α = 1) and 2 + 2 (α = 2) subsystems. The on-shell
matrix elements of the operatorsUβα taken at ε → +0 yield the
transition amplitudes for two-cluster reactions. In the isospin
formalism the NN transition matrix has contributions from
nn, np, and pp pairs with the respective weights given in
Ref. [36]; for the pp pair the screened Coulomb interaction
is included and the resulting physical amplitudes for 4N
reactions are obtained by using the method of screening
and renormalization [16,33,38,39]. Further explanations and
technical details can be found in Refs. [34,36].

To avoid the very complicated singularity structure of the
kernel, we solve Eqs. (1) numerically at several complex ener-
gies E + iεj with finite values of εj > 0 and then extrapolate
the obtained on-shell matrix elements of the transition opera-
torsUβα to the ε → +0 limit which corresponds to the physical
scattering process; more details are given in Ref. [31] using n +
3H elastic scattering as an example. In Fig. 1 we demonstrate
that the employed method is accurate and reliable also for
inelastic reactions. As an example we consider the charge-
exchange reaction 3H(p,n)3He at 24 MeV proton energy. The
transition amplitudes were calculated at six values of εj > 0
ranging from 2 to 4 MeV, and then extrapolated to the ε → +0
limit using four different sets. In all four cases the resulting
differential cross section and proton analyzing power turn out
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FIG. 1. (Color online) Differential cross section and proton ana-
lyzing power for 3H(p,n)3He reaction at 24 MeV proton energy as
functions of the c.m. scattering angle. Results obtained using different
sets of ε values ranging from εmin to εmax with the step of 0.4 MeV are
compared; they are indistinguishable. The dotted curves refer to the
ε = 2.0 MeV calculations without extrapolation that have no physical
meaning but show the importance of the extrapolation.

to be indistinguishable in the plot, whereas the predictions at
finite ε = 2 MeV without extrapolation deviate significantly.

III. RESULTS

We consider p + 3H scattering at proton energies Ep

ranging from 6 to 30 MeV; the regime below 6 MeV was
studied by us in Ref. [33]. Most results are obtained by
using the realistic inside-nonlocal outside-Yukawa (INOY04)
potential by Doleschall [26,44]. It predicts the 3He (3H)
binding energy to be 7.73 MeV (8.49 MeV) and thereby nearly
reproduces the experimental value of 7.72 MeV (8.48 MeV)
without an additional 3N force. To investigate the dependence
of our results on the interaction model, at several energies we
also show the predictions obtained with other high-precision
NN potentials; namely, the charge-dependent Bonn potential
(CD Bonn) [45] and its extension CD Bonn + � [46] explicitly
including an excitation of a nucleon to a � isobar. This
mechanism generates effective 3N and 4N forces that are
mutually consistent but quantitatively still insufficient to
reproduce 3N and 4N binding energies, although they reduce
the discrepancy [35]. For 3He and 3H binding energies the
CD Bonn + � potential yields 7.53 and 8.28 MeV, while the
predictions of CD Bonn are 7.26 and 8.00 MeV, respectively.
In addition to INOY04, results for CD Bonn + � are presented
at Ep = 6.0, 6.35, 13.6, and 30.0 MeV while for CD Bonn at
Ep = 6.0, 6.35, 7.0, 9.0, 13.0, 13.6, 21.0, and 30.0 MeV.

In Fig. 2 we show the differential cross section dσ/d� for
elastic p + 3H scattering as a function of the center-of-mass
(c.m.) scattering angle �c.m.. This observable decreases with
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FIG. 2. (Color online) Differential cross section of elastic p + 3H scattering at proton energy between 6.35 and 30 MeV. Results obtained
with potentials INOY04 (solid curves), CD Bonn (dotted curves), and CD Bonn + � (dashed-dotted curves) are compared with data from
Refs. [40–43].

increasing energy while its minimum moves slowly to higher
angles; the INOY04 calculations describe the energy and
angular dependence of the experimental data [40,42,43,47]
fairly well except at backward angles at 30 MeV. However, one
may question the reliability of those data [43] that exhibit quite
an abrupt decrease from Ep = 19.5 MeV to Ep = 30 MeV
while other data and theoretical predictions vary smoothly
with energy. Unfortunately, we found no data between Ep =
20 and 30 MeV that would help sort out this possible
discrepancy. The sensitivity to the force model manifests
itself in the minimum where predictions obtained with CD
Bonn and CD Bonn + � are below those of INOY04 by about
15%.

It is interesting to compare the present p + 3H results with
those for n + 3H [31], p + 3He [32], and n + 3He [36] elastic
scattering. Since the energy and force model dependence
for p + 3H and n + 3He calculations are the same as can
be expected from the isospin symmetry, one would expect
similar discrepancies between data and theory assuming that
the data can be equally trusted. However, the agreement with
the experimental data is different in these two cases. We note
that for p + 3H there is no discrepancy at the minimum of
the differential cross section as the proton energy increases
towards 30 MeV, while in n + 3He and p + 3He elastic
scattering the minimum is underpredicted by the theoretical
calculations as the energy of the incoming beam rises above
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FIG. 3. (Color online) Proton analyzing power of elastic p + 3H scattering at proton energy between 6.35 and 30 MeV. Curves are as in
Fig. 2. Data are from Refs. [40,42,43,47].
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25 MeV. In contrast, the n + 3H data, only available at 22 MeV,
are overpredicted [31].

In Fig. 3 we show the proton analyzing power Ay for
the elastic p + 3H scattering at proton energies ranging
from 6.35 to 30 MeV. The qualitative reproduction of the
experimental data by our calculations is reasonable. The
existing discrepancies around the minimum and the maximum
decrease as the energy increases, reaching a good agreement
at Ep = 30 MeV. The sensitivity to the nuclear force model
is quite weak. In all these respects the behavior of the Ay

in the elastic p + 3H scattering is qualitatively the same as
observed for the neutron analyzing power in the n + 3He
elastic scattering [36].

Next we consider rearrangement reactions initiated by
p + 3H collisions. In Fig. 4 we show the differential cross
section dσ/d� for the charge exchange reaction 3H(p,n)3He
at Ep ranging from 6 to 30 MeV. The data [48–51] exhibit
a strong energy dependency that is well reproduced by
the theoretical calculations; in particular the shape of the
observable that starts out backward peaked at 6 MeV with
a single shallow minimum around 90◦, and ends up forward

peaked at 30 MeV with two minima around 60◦ and 140◦.
The appearance of a local maximum and two local minima in
both theory and data takes place at Ep = 9 MeV. Predictions
of the three force models employed follow the same trend but
in particular regimes may differ by almost 20%, as happens
at Ep = 13.6 MeV and �c.m. = 0◦. At lower energies the
sensitivity to the NN potential shows up at forward and
backward angles while above 20 MeV it extends to the whole
angular regime, being around 10%. The effect seems to be
more complicated than just a simple scaling with 3N binding
energy since the predictions of CD Bonn and CD Bonn + �
stay quite close together but deviate more from INOY04. While
at lower energies the INOY04 potential is favored by the data,
above 20 MeV the best description is provided by the CD Bonn
potential whereas INOY04 overpredicts the data. In addition,
there are also some inconsistencies between different data sets,
e.g., the first few points from Ref. [51] seem to be wrong when
compared to other measurements [48–50].

Unlike the differential cross section, the proton analyzing
power Ay and the outgoing neutron polarization Py for the
charge-exchange reaction 3H(p,n)3He displayed in Fig. 5
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FIG. 4. (Color online) Differential cross section of 3H(p,n)3He reaction. Curves are as in Fig. 2. Data are from Refs. [48–51].
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FIG. 5. (Color online) Proton analyzing power Ay and outgoing neutron polarization Py in the 3H(p,n)3He reaction at 6.0, 9.9, and
13.6 MeV proton energy. Curves are as in Fig. 2. The data are from Ref. [52] for Ay and from Refs. [53] (�) and [54] (•) for Py .

show a large quantitative disagreement between theoretical
results and experimental data, especially at the lowest energy
considered of Ep = 6 MeV. Here the predicted shape of
these observables is roughly correct but the absolute value
is too small by a factor of two. The disagreement decreases
with increasing energy but for Ay still remains about 25% at
Ep = 13.6 MeV, the highest energy where data are available.
Thus, nucleon vector polarization observables Ay and Py

in the charge-exchange reaction 3H(p,n)3He exhibit one of
the largest discrepancies seen so far in the 4N system. The
sensitivity to the force model is significant only at the lowest
energy where, in contrary to what can be expected from
scaling with 3N binding energy, the discrepancy is largest
for INOY04 and smallest for CD Bonn. This sensitivity as
well as the very strong energy dependence of Ay observed
in Ref. [33] might be due to the interplay of P -wave 4N
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FIG. 6. (Color online) Proton-to-neutron polarization transfer coefficients of 3H(p,n)3He reaction at 6.0, 9.9, and 13.6 MeV proton energy.
Curves are as in Fig. 2. The data are from Refs. [53] (�) and [54] (•).
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resonant states existing at low energies. Away from this
resonant regime the observables become less sensitive, and
at Ep = 13.6 MeV the predictions of INOY04 are slightly
closer to the data than those of other potentials. The Ay

and Py discrepancies observed in the 3H(p,n)3He reaction
may be one more manifestation of the famous Ay puzzle
seen in the elastic nucleon-deuteron and nucleon-trinucleon
scattering [12,14,21,24,30,32]. However, there is also an
important difference: the correlation between the discrepancy
and the predicted 3N binding energy in the charge-exchange
reaction below 10 MeV gets reversed as compared to all
elastic processes. For example, the INOY04 potential shows
the smallest discrepancy in the elastic scattering but the largest
one in the 3H(p,n)3He reaction.

Although “two wrongs do not necessarily make one
right,” the proton-to-neutron polarization (spin) transfer co-
efficients Kx ′

x , Kx ′
z , and K

y
y for the charge-exchange reaction

3H(p,n)3He at Ep = 6.0, 9.9, and 13.6 MeV presented in
Fig. 6 are well reproduced by the theoretical calculations.
The spin transfer coefficients show rather complicated angular
and energy dependence which is nonmonotonic as can be
seen most clearly in Kx ′

x and K
y
y at small angles. The

sensitivity of these observables to the choice of the NN
force model is moderate over the whole energy and angular
regime considered. It is not unusual in few-nucleon physics
that double-polarization observables such as spin correlation
or spin transfer coefficients are in better agreement with the
experimental data than analyzing powers; p + 3He elastic
scattering [30,32] is a further example. Unfortunately, double-
polarization data are missing in n + 3He and p + 3H elastic
scattering.

Regarding the transfer reaction 3H(p,d)2H, first results
for the differential cross section at Ep = 13.6 MeV were
presented in Ref. [34]; quite a good agreement between pre-
dictions and data was found with only slight underestimation
around �c.m. = 90◦. Since the experimental studies of nucleon
transfer processes in the 4N system have been dominated by
the time reversed reaction 2H(d,p)3H and its mirror partner
2H(d,n)3He, their theoretical analysis will be presented in the
forthcoming work on d + d scattering [55].

IV. SUMMARY

In this work we studied p + 3H elastic scattering and
the charge-exchange reaction 3H(p,n)3He up to 30 MeV

beam energy. We solved, in a numerically converged way,
the momentum-space Alt, Grassberger, and Sandhas equa-
tions for transition operators. The employed complex-energy
method with special integration weights proved to be highly
reliable also for inelastic reactions such as 3H(p,n)3He.
The calculations include the Coulomb interaction between
protons together with realistic NN force models, i.e., INOY04,
CD Bonn, and CD Bonn + �. An explicit excitation of a
nucleon to a � isobar included in the latter model yields
mutually consistent effective 3N and 4N forces. Moderate
sensitivity to the employed interaction model is found in
several observables in particular energy regimes, most of them
referring to the 3H(p,n)3He reaction. Like the previous work
on n + 3H, p + 3He, and n + 3He scattering [31,32,34,36],
this is a state-of-the-art calculation that shows the virtues
and limitations of realistic NN force models in describing
the world data up to 30 MeV beam energy for elastic and
charge-exchange reactions initiated by p + 3H collisions. We
find that elastic and charge-exchange differential cross sections
are well described by the calculations in the considered energy
regime between 6 and 30 MeV. The absence of a discrepancy in
the minimum of the elastic differential cross section at 30 MeV
is quite surprising given that such discrepancies show up in
p + 3He and n + 3He elastic scattering. In the 3H(p,n)3He
case the predicted differential cross section varies very rapidly
with energy, developing new local minima and maxima in
the angular distribution that are seen also in the experimental
data. The elastic proton analyzing power Ay is fairly well
described by the calculations, showing the usual discrepancies
in the minima and maxima already observed in other elastic
4N collisions driven by proton or neutron beams. The largest
discrepancies between data and calculations are observed
in the proton analyzing power Ay and outgoing neutron
polarization Py in the charge-exchange reaction 3H(p,n)3He.
In contrast, proton-to-neutron polarization transfer coefficients
in the charge-exchange reaction are successfully described by
theory in spite of their complex structure and variation with
beam energy. This and previous achievements show that, after
many years of hard work, numerically converged solutions of
the 4N scattering problem with realistic NN force models are
not only possible but also that such endeavor has reached a
level of sophistication and reliability only comparable to 3N
scattering studies. Nevertheless, much remains to be done,
such as calculating breakup observables or including irre-
ducible 3N forces in momentum-space calculations. Progress
in this direction is forthcoming.
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