
PHYSICAL REVIEW C 91, 025805 (2015)
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We study viscosity of the neutron star matter and r-mode instability in rotating neutron stars. Contributions
to the shear and bulk viscosities from various processes are calculated accounting for in-medium modifications
of the nucleon-nucleon interaction. A softening of the pion mode at densities larger than the nuclear saturation
density n0 and a possibility of the pion condensation at densities above 3n0 are included. The neutron-neutron and
proton-proton pairings are incorporated where necessary. In the shear viscosity we include the lepton contribution
calculated taking into account the Landau damping in the photon exchange, the nucleon contribution described
by the medium-modified one-pion exchange, and some other terms, such as the novel phonon contribution in the
1S0 superfluid neutron phase and the neutrino term in the neutrino opacity region. The nucleon shear viscosity
depends on the density rather moderately and proves to be much less than the lepton term. On the contrary, among
the terms contributing to the bulk viscosity, induced by the delay of the relaxation of lepton concentrations in
the star matter perturbed by the r-modes, the term from the two-nucleon medium-modified Urca reactions
possesses strongest density dependence (rising by several orders of magnitude for massive stars) because of
the pion softening. Also, contributions to the bulk viscosity arising from other reactions induced by charged
weak currents, e.g., in the Urca processes on a pion condensate and in direct Urca processes, are included. The
radiative bulk viscosity induced by charged and neutral weak currents in the region of the neutrino transparency
of the star is also calculated accounting for in-medium effects. We exploit the equation of state, which is similar
to the Akmal-Pandharipande-Ravenhall equation of state up to 4n0, but is stiffer at higher densities, producing
the maximum neutron star mass compatible with observations. The direct Urca processes do not appear up to
5n0 (corresponding to the star mass M � 1.9M�). Computed with account of in-medium effects, the frequency
boundary of the r-mode stability for the stars with the mass �1.8M� proves to be above the frequencies of all
rotating young pulsars. However, none of the conventional contributions to the viscosity are able to explain the
stability of rapid rotation of old recycled pulsars in x-ray binaries. To solve this problem we propose a novel
efficient mechanism associated with the appearance of condensates of low-lying modes of bosonic excitations
with finite momentum and/or with an enhancement of the inhomogeneous pion/kaon condensates in some parts
of the star, if the angular velocity exceeds a critical value.
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I. INTRODUCTION

The maximum spin frequency of a star, at which the
matter can be propelled away from the star surface—the Ke-
pler frequency—is equal to νK � 1.2(M/M�)1/2(10 km/R)3/2

kHz [1], where M is the neutron star mass, M� is the solar
mass, and R is the star radius (typically M� � M � 2M�
and R ∼ 10–13 km for cold neutron stars). It would be
natural to think that many neutron stars are born rotating with
frequencies close to νK and decelerate then during the further
evolution. However, the majority of pulsars of age �105 yr
have rotation frequencies below 10 Hz. The fastest observed
young pulsar, PSR J0537-6910, has the rotation frequency
ν

max,young
ex � 62 Hz [2].

The maximal rotation frequency of known pulsars,
νmax,old

ex � 716 Hz, was observed for the old binary radio pulsar
PSR J1748-2446ad; see Ref. [3] and catalog in Ref. [4]. The
old millisecond pulsars situated in the low-mass x-ray binaries
(LMXBs) are thought to be spun up or “recycled” through
accretion [5]. The majority of rapidly rotating old recycled
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pulsars have frequencies, νold
ex , in the interval between 200 and

600 Hz. Thus, the Kepler frequency, νK, occurs much higher
than rotation frequencies of young pulsars and even higher
than those for the majority of the recycled pulsars.

A possible mechanism, which may be responsible for
rapid diminishing of rotation frequency of young fast pulsars
up to experimentally measured values, is related to the r-
mode instability. The r-modes, whose restoring force is the
Coriolis force, are closely related to Rossby waves in Earth’s
atmosphere and oceans. Their instability was discovered by
Andersson, Friedman, and Morsink [6,7]; see also the review
in Ref. [8]. If the instability occurs, the star rapidly radiates its
angular momentum via gravitational waves until the rotation
frequency ν reaches the critical value νc, at which the r-modes
become stable. This rapid process is accompanied by the
neutron star reheating [9]. For frequencies ν < νc r-modes
become damped and the star cools down during ∼105 yr by
the neutrino radiation and at later times by the surface photon
radiation slowly losing its angular momentum during the time
evolution [10].

The r-modes are damped by a viscosity of warm neutron
star matter [11] or by other deceleration processes. For angular
velocities of our interest, 103Hz � � = 2π/P � 104 Hz,
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P = 1/ν being the rotation period of a pulsar, the instability
is most pronounced at temperatures 108 � T � 1010 K.

Different mechanisms, which may eliminate the r-mode
instability, have been studied; see, for example, Ref. [8]
and references therein. Most attempts were made to find
appropriate arguments for an increase of the shear and bulk
viscosities of the neutron star matter. A common opinion
has been formed that traditionally considered dissipation
mechanisms are insufficient to provide stability for a large
number of old pulsars in LMXBs. This would be at odds with
expectations, because then these pulsars would still rapidly
decrease their frequencies below the observed values [12].
The minimum value of the frequency at the r-mode stability
boundary νc(T ) is even smaller than the value ν

young
max if one uses

standard dissipation mechanisms only; e.g., see Refs. [8,13].
One distinguishes three different contributions to the bulk

viscosity of the dense and warm nucleon matter: the kinetic
term proportional to the typical nucleon collision time, the
soft-mode relaxation term, and the radiative contribution.
At the neutron star conditions the kinetic term in the bulk
viscosity is much smaller than the shear viscosity term and
some other contributions to the bulk viscosity. The processes
induced by charged weak currents in matter driven slightly
out of the β-equilibrium occur at very slow rate. As was
shown long ago by Mandelstam and Leontovich [14,15], in a
system out of equilibrium the slow processes may essentially
contribute to the bulk viscosity. We call this part of the bulk
viscosity the“soft-mode” contribution, because it is related
to the response function of the nuclear matter at very small
frequencies.

References [16–18] argued that high values of the soft-
mode bulk viscosity might be induced by the reactions p +
�− ↔ n + n and p + � ↔ n + p in the presence of hyperons
in neutron star interiors. However, the realistic equation of state
(EoS) should not allow for a large fraction of hyperons in the
star; otherwise it would be not able to describe the observable
star masses.

When the proton concentration Xp = np/n exceeds the
critical value Xp(nDU

c ) = 0.11–0.14 the efficient direct Urca
(DU) processes n → p + l + ν̄l , p + l → n + νl , l = e,μ−
become operative. For densities n < nDU

c , the DU processes
are forbidden, because it is impossible to fulfill the energy-
momentum conservation law. The appearance of the DU
processes in the neutron star interiors for n > nDU

c causes
significant increase of the soft-mode bulk viscosity that would
lead to a strong damping of the r-modes [19,20]. The value of
the critical density nDU

c essentially depends on the symmetry
energy in the EoS. Ordinary relativistic mean-field models and
the microscopic Dirac-Brueckner-Hartree-Fock calculations
produce low values of nDU

c . The work [21] observed that the
r-mode instability region shrinks for those EoS that have a
large symmetry energy slop L, because the value of the critical
density for the DU processes decreases with the increase of
L; here L = 3n0(∂Esym/∂n)n0 , the nuclear saturation density
n0 = 0.16 fm−3, and Esym stands for the symmetry energy.
We should notice that low values of nDU

c are hardly compatible
with the description of the cooling of neutron stars. According
to Refs. [22–26], the neutron star cooling data can be hardly
explained, if the one-nucleon DU reactions are allowed in

stars with masses M � 1.35M�–1.5M�. The microscopic
variational Akmal-Pandharipande-Ravenhall (APR) A18 +
δv + UIX∗ EoS [27] also has a high value of the DU threshold
density, nDU

c � 5n0. Large values of nDU
c are obtained for

some relativistic mean-field models with density-dependent
couplings describing well atomic nucleus data [28] and for
a model with σ -field dependent hadron masses and couplings
[29]; see the discussion of astrophysical constraints on the EoS
in Ref. [26].

Reference [21] attempted to set a lower limit on L, assuming
that the measured high-spin frequency of the LMXB pulsar 4U
1608-52 is safe from the r-mode instability, and announced the
constraint L > 50 MeV. However, in Fig. 6 of Ref. [21] the
data lines are set incorrectly low and thereby the announced
lower limit of L should be actually set essentially higher.
Moreover, simplifying consideration Ref. [21] ignored the
nucleon superfluidity, which should be developed in old
cold pulsars. The superfluidity effects induce a significant
suppression of the DU bulk viscosity [20] and cannot be
ignored in a realistic analysis.

Within the “minimal cooling” scenario [30] in the absence
of the DU reactions, the most efficient cooling processes in
nonsuperfluid matter are modified Urca (MU) processes, N +
n → N + p + l + ν̄l , N + p + l → N + n + νl , for N = n
(neutron branch) and N = p (proton branch) with l = e,μ−.
The soft-mode bulk viscosity related to the MU processes
was studied in [31,32]. Reference [31] used the free one-pion
exchange (FOPE) model of Ref. [33] for the description of
the nucleon-nucleon (NN ) interaction. The efficiency of the
so-calculated MU processes (∼106 times less than that for the
DU processes) is insufficient to stabilize r-modes not only in
the recycled old rapidly rotating pulsars but also in the most
rapidly rotating young pulsar. Therefore, in this scenario the
problem of the r-mode instability becomes even more severe
for the stars with M < MDU

c . In presence of the nucleon pairing
the pair-breaking-formation (PBF) neutrino processes incor-
porated in the minimal cooling scenario may counterbalance
the reduction of the MU emissivity and substantially enhance
the neutron star cooling [34,35]. However, the processes on
the neutral currents do not contribute to the soft-mode bulk
viscosity term.

In presence of the nucleon superfluidity there exist low-
lying Goldstone modes. These modes only weakly interact
with neutrons and with each other. The soft-mode bulk
viscosity of Goldstone modes in superfluid matter owing to
phonon-phonon interactions has been analyzed in Ref. [36].
For very low values of the 3P2 neutron gap, which we exploit
in the given work following evaluation of Ref. [37] and for
the temperatures of our interest, the phonon contribution to
the bulk viscosity in the core can be safely dropped. The
phonon-phonon interaction might give a contribution to the
bulk viscosity in the region of the 1S0 neutron pairing, but
the results are strongly model dependent. Therefore, we ignore
this contribution to the soft-mode bulk viscosity.

However, the neutrino emissivity of the two-nucleon
processes might be essentially enhanced with the density
increase because of a modification of the one-pion exchange in
nucleon medium. This so-called pion-softening effect was first
incorporated in Refs. [35,38,39] (also see [40,41]) and allowed
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to fit well neutron star cooling data. The “nuclear medium
cooling” scenario based on this effect was developed in
Refs. [22,24,25,34,39–42]. The NN interaction was described
within the Landau-Migdal Fermi liquid approach including the
long-range p-wave pion-nucleon attraction and the short-range
NN repulsion evaluated with the help of the Landau-Migdal
parameters. Being evaluated with relevant values of the
Landau-Migdal parameters, the short-range part of the NN
interaction amplitude corrected by the loops decreases with a
density increase, whereas the more long-range dressed pion
exchange term becomes strongly enhanced. As a consequence
of the softening of the pion mode at growing density, for
n > nπ

c � n0 there may appear charged and neutral pion
condensates [40,43].

With increase of the squared matrix element of the NN
interaction, the nucleon shear viscosity should diminish,
whereas the bulk viscosity should increase. The possibility
of the pion mode softening, leading to an increase of the
NN interaction amplitude with the growth of the nucleon
density, which is found important for the analysis of the
neutron star cooling, has not been yet incorporated in the
analyses of the viscosity. In this work we reanalyze the stability
of r-modes in pulsars within the scenario, where the one-
nucleon reactions (DU) are suppressed in the majority of
neutron stars (with masses M < 1.9M�), but the two-nucleon
reactions on charged current, called medium modified Urca
(MMU) reactions, are enhanced by the pion-mode softening.
Additionally, we include contributions to the bulk viscosity
induced by the reactions of the negatively charged pion
condensate—pion Urca (PU) reaction, n+,π−

cond → n+ l + ν̄l ,
l = e,μ−—provided the pion condensate exists for n > nπ

c .
We consider two possibilities—pion condensate occurs for
n > nπ

c = 3n0 and it does not occur—but there is a softening
of the pion mode, which degree we vary.

As we have mentioned, the energy of the r-mode can be dis-
sipated not only via the nonequilibrium (soft mode) effects but
also via a neutrino radiation. The latter mechanism constitutes
another source of the bulk viscosity, the so-called radiative
viscosity. It was studied only recently in Refs. [44,45]. Only the
DU and MU reactions were incorporated. In-medium effects in
these reactions may enhance the resulting radiative contribu-
tion to the bulk viscosity. Moreover, the processes with neutral
currents, e.g., the medium nn and np bremsstrahlung (MBn
and MBp) reactions, n + n → n + n + ν + ν̄ and n + p →
n + p + ν + ν̄ and the PBF reactions, n → npair + ν + ν̄,
p → ppair + ν + ν̄, occurring in the matter with the nucleon
pairing, may also contribute to the radiative bulk viscosity. We
analyze the mentioned effects in this paper.

The shear viscosity contains two important contributions:
one from the lepton scattering and another one from the
nucleon scattering. For the nonsuperfluid matter, the nucleon
term was first computed in Refs. [46,47] and then recalculated
in Ref. [48] using vacuum NN cross sections and including
Pauli blocking effects. The electron term was first evaluated
by Flowers and Itoh in Refs. [46,47] and then was recalculated
in Ref. [48], taking into account the Landau damping of the
intermediate photon and the proton pairing. The importance of
the screening effects in the calculation of the shear viscosity at
low temperatures was first emphasized in Ref. [49]. Note that

these loop-screening effects in the photon exchange (dressing
of the photon) are similar to the effects we incorporate in
the pion exchange in the NN interaction (dressing of the
pion). The lepton shear viscosity computed following Ref. [48]
proves to be an order of magnitude smaller than that computed
in Refs. [46,47]. Note that the Flowers-Itoh result has been
exploited in many papers studying the r-mode stability. These
studies should be now redone with new values of the shear
viscosities calculated with inclusion of the polarization effects.
In the presence of the proton superfluidity the lepton term
increases [48], which also should be taken into account.

Although the screening effects reduce the value of the
lepton shear viscosity, it still remains larger than the nucleon
shear viscosity term, provided the later term is computed
with the vacuum NN cross sections; cf. Ref. [48]. Below we
show that this conclusion does not change after we take into
account the pion-softening effect in the NN contribution to
the shear viscosity. Thus, the lepton shear viscosity proves to
be the dominant damping mechanism for low temperatures
T < 109 K, at which the bulk viscosity term is strongly
suppressed.

The Goldstone mode contribution to the shear viscosity
in superfluid neutron star matter induced by phonon-phonon
interactions was studied in Ref. [50]. Even in the ballistic
regime, when the phonons move freely within the whole su-
perfluid region, being captured only at its borders, the phonon
contribution to the shear viscosity proves to be small for
T � 109 K. For higher temperatures (but still in the superfluid
phase) this effect should be included. Phonons in a nucleon
superfluid may interact with neutrons. Below we calculate the
corresponding novel contribution to the shear viscosity.

Moreover, for T > Topac the neutrinos are trapped and
contribute to the shear viscosity. This effect was not included
so far. Evaluation of the opacity temperature with the MU
processes [33] gives Topac � 22 × 109 K. For the MMU
processes the quantity Topac decreases [39,40] owing to the
pion softening, being strongly density dependent. Below we
evaluate the neutrino shear viscosity taking into account the
medium effects.

Many alternative mechanisms to get rid of the r-mode
instability were explored in the literature. It was shown in
Ref. [51] that the magnetic field of a particular configuration
and strength may preclude the r-mode instability. The mixture
of r-modes with other more stable resonance superfluid inertial
modes in the star has been suggested in Refs. [52,53] as a
reason for the stability of old recycled pulsars in x-ray binaries.
The authors argue that the mixture can only occur at some
fixed “resonance” stellar temperatures. The fast-spinning stars
would cluster, therefore, in the vicinity of this temperature.
The spin frequencies of stars are then limited by the instability
of octupole (m = 3) r-mode rather than by quadruple (m = 2)
r-mode. A neutron star in LMXB may spend a substantial
fraction of time in the region of these stellar temperatures and
spin frequencies. The dissipation in the viscous boundary layer
between the oscillating fluid in the core and a solid crust and a
possible appearance of turbulence were argued in Ref. [54] to
provide an efficient damping of the r-modes. In Ref. [55] it was
demonstrated that the r-mode instability might be suppressed
in neutron stars colder than ∼1.5 × 108 K, if the crust were
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perfectly rigid. Eigenmodes of the crust-core boundary layer
with a possible pasta phase were studied in Ref. [56]. The
main uncertainty in the description of the crust-core transition
arises from uncertainties in the parameter L mainly owing
to its dependence of the shear modulus. Using the estimated
core temperatures of several LMXB pulsars and the EoS that
describes the crust-core transition, and assuming that the main
dissipation mechanism of the r-modes in old recycled pulsars
is attributable to the electron-electron scattering at the crust-
core boundary, the authors of Ref. [56] concluded that these
neutron stars can be stabilized against r-mode oscillations,
only if L < 65 MeV. However, we should note that stability
of r-modes at the crust-core boundary does not yet guarantee
stability of the star as the whole. A similar constraint on L
(L < 70 MeV) was extracted in Ref. [57] from the study of
the experimental relation for the difference of the gravitational
and baryon masses of the pulsar J0737-3039B. This conclusion
was reached within a specific scenario of the formation of
this pulsar. To explain the data on LMXB rapid pulsars,
Ref. [58] suggested a tiny r-mode scenario, requiring very
low r-mode amplitudes asat � 10−8–10−7 hardly affecting the
spin evolution. The currently proposed mechanisms for the
r-mode saturation [59] saturate r-modes at asat � 10−6 at
most. We note, however, that such a strong suppression of
the r-modes was questioned in Ref. [53]. Within the model
[60] the data on the young pulsar PSR J0537-6910 might
be explained with a standard cooling, for asat being slightly
below 10−1. Within their scenario the spin-down evolution
is generically slower than the thermal evolution, so that a
star eventually reaches a steady state where heating equals
cooling. Reference [61] included a possibility of a differential
rotation of the star. In their analysis the saturation is reached
within 100 s, for asat ∼ 0.1–10, in dependence on the value
of the parameter K characterizing an initial amount of the
differential rotation, and the thermal evolution is slower than
the spin-down evolution. These approaches do not include
thermal conductivity, nucleon superfluidity, or some other
effects. For instance, the heat transport essentially delays the
neutrino cooling. References [24,25] demonstrate that effects
of nonzero thermal conductivity are important even for the
duration of 330 yr; their inclusion helps to explain rapid
cooling of the pulsar in Cassiopea A. Thus, these interesting
investigations still cannot be considered as unequivocal and
further analysis is required.

Another aspect of the problem is that in the rotating neutron
star there may appear an inhomogeneous condensate of
bosonic excitations occupying a state with a finite momentum
k �= 0. It may occur if there are low-lying soundlike or
rotonlike branches in the spectrum of excitations with boson
quantum numbers, and the star rotation velocity exceeds
the Landau critical value vc,L given by the minimum of
ε(k)/k, where ε(k) is the energy of the excitations [62]. A
possibility of the condensation of rotons in the 4He-filled
capillaries was first suggested by Pitaevskii in Ref. [63]. The
general consideration applicable for different nonrelativistic
and relativistic systems including neutron stars was performed
in Ref. [62]. A possibility of the condensation of zero-sound-
like modes in Fermi liquids was considered in Ref. [64]. This
reference also pointed out to an extra neutrino radiation owing

to condensation of sounds and a possibility of reheating of
rapidly rotating neutron stars, provided damped modes are
excited. Moreover, the idea of Ref. [63] was recently applied
to cold atoms [65].

In this paper we demonstrate that for sufficiently high
angular velocities, � > �c,L, the condensates of bosonic
excitations carrying a nonzero momentum can appear in some
regions of the neutron star provided that the momentum is
sufficiently large but the corresponding excitation energy is
rather low. Then a part of the angular momentum of the star
can be transferred to the condensate. As a result, a part of the
star rotates slower, whereas the remaining angular momentum
is contained in the internal motion of the condensate. A
similar effect may occur, if in the interior regions there
exist nonhomogeneous pion and kaon condensates. Then a
momentum might be transferred to these condensates. Below
we discuss whether an account for these possibilities might
help explain high rotation frequencies of old recycled pulsars.

Our work is organized as follows. In Sec. II we formulate
the model, describe the EoS and the NN interaction with
the in-medium modified one-pion exchange contribution,
and compute the neutron star configurations. Characteristic
relaxation time scales and the condition of the r-mode stability
are considered in Sec. III. In Sec. IV we focus on the calculation
of the shear viscosity. First, we use the results of Ref. [48]
to calculate the lepton term with and without the proton
pairing. This calculation incorporates polarization effects in
the lepton-lepton interaction. We provide a simple numerical
parametrization for a full lengthy analytical expression. Then
we focus on the nucleon term. Here we consider the NN
interaction taking into account nuclear polarization effects
including the pion softening. Our result is compared with result
of Ref. [48] based on the use of the free cross sections. Then
we calculate the phonon-neutron interaction contribution to
the shear viscosity in the 1S0 neutron pairing phase. Finally, in
the star regions, where neutrinos are trapped, for sufficiently
high temperatures, we evaluate the neutrino contribution to
the shear viscosity. In Sec. V we focus on the soft-mode
bulk viscosity. First, within our model we recalculate the
DU and MU contributions to the soft-mode bulk viscosity
in the absence and in the presence of the pairing and then
incorporate the in-medium effects. It is demonstrated that the
MMU and the PU processes strongly increase the resulting
soft-mode bulk viscosity. Then we focus on the analysis of
the radiative bulk viscosity. The DU and MU radiative bulk
viscosity terms and then the MMU, PU MBn, MBp, and the
PBF ones are calculated. The critical spin frequency with all
processes included is computed in Sec. VI. Limits on the star
rotation frequencies owing to inhomogeneous condensates of
the bosonic excitations are studied in Sec. VII. An effect on
the critical spin frequency is demonstrated. A mechanism of an
acceleration of the rotation of old pulsars in LMXB because of
the formation of inhomogeneous pion and/or kaon condensates
in the course of the accretion is discussed. Our conclusions are
formulated in Sec. VIII. Some calculation details are deferred
to the Appendix.

Throughout the paper we use the system of units in which
the Planck constant, �, and the speed of light, c, are equal to
unity.
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II. EQUATION OF STATE, NEUTRON STAR
CONFIGURATIONS, AND N N INTERACTION

A. Equation of state

As the nuclear matter EoS for nucleon densities n > 0.6 n0

we use the phenomenological HDD EoS proposed in Ref. [25].
We include contributions from neutrons, protons, electrons and
muons. Our EoS is based on the Heiselberg-Hjorth-Jensen
(HHJ) parametrization [66] (with the parameter δ = 0.2) that
fits the microscopic APR A18 + δv + UIX∗ EoS [27] for
symmetric nuclear matter at baryon densities up to 4n0. This
yields an acceptable (although not perfect) fit of the APR EoS
and at the same time it makes it possible to avoid problems with
causality at high densities. As a result, at high densities the HHJ
EoS is softer than the APR EoS and does not support a neutron
star with a mass 2M�. To cure this drawback, it was suggested
in Ref. [25] to use a rescaled baryon density in the HHJ EoS as
an effective account for a missing repulsion at short distances,
E(HDD)(n,Xp) = E(HHJ)(n�(n/n0),Xp), where the scaling
function is chosen as �(u) = 1/{1 − α u exp[−(β/u)σ ]} with
the parameters α = 0.02, β = 6, and σ = 4, and Xp = np/n is
the proton concentration. This rescaling makes the EoS stiffer
for densities larger than 5n0. The dependence of the effective
nucleon mass on the nucleon density we parametrize as m∗

N =
m∗

n = m∗
p = (1 − 0.15

√
n/n0) mN , where mN = 938 MeV is

the nucleon mass in vacuum, as suggested in Ref. [67].
For the density n � 0.6 n0 we match the HDD EoS with the

Friedman-Pandharipande-Skyrme (FPS) EoS from Ref. [68],
which we use for lower densities. With our parameter choice,
the HDD EoS produces a maximum mass Mmax � 2.05M�,
being in agreement with observations [69,70]. The causality
condition is also satisfied.

B. Neutron star configurations

The masses and radii of neutron stars resulting from the
solution of the Tolman-Oppenheimer-Volkoff equation are
shown in Fig. 1(a) as functions of the central nucleon den-
sity. For 1.1M� < M < Mmax � 2.05M� the radius changes
within the interval 10 km < R < 13 km. Figure 1(b) shows
concentrations of protons and electrons as functions of nucleon
density for the HDD EoS. The thresholds for the DU processes
with participation of electrons and muons are indicated by
circles and the thresholds for the MU processes (proton
branch) by squares. As for the APR EoS, the one-nucleon
DU processes with electrons, n → p + e + ν̄, start to con-
tribute only for densities n > 5n0, i.e., for stars with masses
M > MDU

c � 1.9M�.
In Fig. 2 we show the profiles of the normalized nucleon

number density, n(r)/ncen, and the normalized proton con-
centration, Xp(r)/Xp,cen [panel (a)], and the normalized mass
density, ρ(r)/ρcen [panel (b)], for neutron stars of different
masses calculated with the HDD + FPS EoS. Here ncen and
ρcen are the central number and mass densities and np,cen is
the central proton number density, Xp,cen = np,cen/ncen. We
see that the profiles of the number and mass densities depend
weakly on the neutron star mass and with appropriate accuracy
can be parametrized by the universal function

f (x) = 1 − x2, x = r/R. (1)

FIG. 1. (Color online) (a) Dependence of the neutron star mass
and radius on the central nucleon density for the HDD EoS [25] with
the FPS crust EoS [68]. (b) Concentrations of protons and electrons
as functions of nucleon density for the HDD EoS. Circles and squares
indicate thresholds for the e- and μ-DU processes and for the MU
processes (proton branch), respectively.

Such a mass distribution in the star corresponds to one
of the analytical solutions found by Tolman [71]; see also
discussion in Ref. [72]. The profile of the proton fraction can
be parametrized by the function χ (x) � (1 − x2)3/5 , and the
profile of the proton number density is then given by

np(x)/np,cen = f (x)χ (x) = (1 − x2)8/5. (2)

The density profile (1) sets the relation between the central
density of the star and its average density,

ρcen = 5

2
ρ̄, ρ̄ = 3M

4πR3
. (3)

Note that in the literature are often-used profiles taken ad hoc
without reference to a specific EoS. Our simple analytical fit is
helpful for calculations with the HDD EoS. Below we exploit
the above parametrizations.

As in all previous papers discussing r-mode instability, we
use a simplifying assumption of a homogeneous distribution
of the temperature in the star core. More general consideration
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FIG. 2. (Color online) Profiles of the nucleon density and proton
concentration (a) and the mass density (b) for neutron stars of different
masses, calculated with the HDD + FPS EoS in comparison with the
simple parametrizations given by Eqs. (1) and (2).

would require a simultaneous solution of the heat transport
problem (calculation of the heat conductivity) and an analysis
of the r-mode instability (calculation of the viscosity). This
is a much more ambitious problem lying beyond the scope of
our research in this work.

C. N N interaction

A key role in the development of the Fermi-liquid theory
for atomic nuclei belongs to Migdal [73]. Originally, nucleon
particle-hole excitations were taken into account explicitly,
whereas other processes were hidden in a phenomenological
parametrization. The pion mode is soft (mπ 
 mN , where
mπ and mN are the pion and nucleon masses) and, therefore,
should be considered explicitly on equal footing with the
nucleon particle-hole terms. With an increase of the density
the pion mode becomes softer owing to the momentum-
dependent pion-nucleon attraction. The Fermi-liquid approach
with explicit incorporation of the in-medium pion exchange
was constructed by Migdal for zero temperature; see Ref. [43].
Then, the approach was generalized for equilibrium systems
at finite temperature and for nonequilibrium systems; see
Refs. [40,74–76]. For excitation energies of our interest

(a) = + +

(b) = + (c) = +

FIG. 3. Diagrams describing the NN interaction in nuclear
medium (a), the particle-hole-irreducible NN -hole interaction (b),
and the particle-hole-irreducible coupling between nucleon-nucleon-
hole and �-nucleon-hole (c).

(ε∗ 
 εF,N ) nucleons are only slightly excited above their
Fermi surfaces and all processes occur in a narrow vicinity
of the nucleon Fermi energy εF,N . Within this approach all
the most important long-range processes are treated explicitly.
At low excitation energies the NN interaction amplitude
is presented by diagrams (a)–(c) in Fig. 3 defined either
on the Schwinger-Keldysh contour (or in matrix notation)
in nonequilibrium or as retarded quantities in equilibrium.
Below we deal only with equilibrium (retarded) quantities.
The solid line stands for a nucleon; the double line stands
for a � isobar. Although the mass difference between the
� and N , m� − mN � 2.1mπ > εF,N (n), the �-nucleon-hole
term is numerically rather large, because the πN� coupling
constant is twice as large as the πNN one, and the �
spin-isospin degeneracy factor is 4 times larger than for
nucleons. The double-dashed line corresponds to the exchange
of the free pion with inclusion of the contributions of the
residual s-wave πNN interaction and ππ scattering, i.e., the
residual irreducible interaction to the nucleon particle-hole and
�-nucleon-hole insertions. The block in Fig. 3(b), depicted by
the empty square, is irreducible with respect to particle-hole,
�-nucleon-hole, and pion states and is, by construction,
essentially more local than the contributions given by explicitly
presented graphs. One reduces it to the set of functions
dependent on the direction of the momenta of incoming and
outgoing nucleon and hole at the Fermi surface,

�ω
�nαβ,�n′γ δ = F�n,�n′δαβδγ δ + G�n,�n′ �σαβ �σγ δ, (4)

where �σ is the Pauli matrix. One introduces also dimension-
less amplitudes f�n,�n′ = C−1

0 F�n,�n′ and g�n,�n′ = C−1
0 G�n,�n′ , where

C−1
0 = m∗

N (n0)pF,N (n0)/π2 is the density of states at the Fermi
surface for n = n0 and pF,N is the nucleon Fermi momentum.
Dimensionless amplitudes f �p, �p′ and g �p, �p′ are expanded in
the Legendre polynomials with the coefficients known as
Landau-Migdal parameters. It is sufficient to deal only with
zero and first harmonics. These harmonics can be extracted
from comparison with the data or can be computed within
some models.

The irreducible part of the interaction involving � isobars
is given by diagram (c) in Fig. 3. The main part of the N�
interaction is attributable to the pion exchange. Therefore, and
also for simplicity one may neglect the first graph on diagram
(c) of Fig. 3 readjusting, where necessary, other parameters.

Resummation of diagrams shown in Fig. 3 yields the
following Dyson equation for the retarded full pion Green’s
function, diagram (a) in Fig. 4. Here �R

res is the residual
retarded pion self-energy that includes the contribution of
all diagrams, which are not presented explicitly in Fig. 4(a):
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(a) = + + + ΣR
res

(b) = +

FIG. 4. (a) Diagram representation of the Dyson equation for the
pion propagator in nuclear medium. (b) Diagram equation for the
πNN vertex.

For instance, the s-wave πN scattering and the ππ scattering
[shown by double-dashed line in diagram (c) in Fig. 3]. Mainly,
�R

res is determined by the Weinberg-Tomazawa term. The full
vertex �(n,ω,k), as shown by diagram (b) in Fig. 4, takes into
account the NN correlations.

The key effect that we incorporate is the softening of the
pion mode with increasing density [40,43]. Only with the
inclusion of this softening effect may the phase transition
to a pion condensation state in dense nucleon matter appear.
The approach, being often used in the literature, that exploits
the FOPE model for description of the NN interaction
and simultaneously incorporates processes occurring in the
presence of a pion condensate, violates unitarity. Indeed, when
calculating the MU emissivity perturbatively one may use both
the Born NN interaction amplitude given by the FOPE and
the optical theorem, considering the imaginary part of the pion
self-energy [34,39,41]. In the latter case, at low densities one
may expand the exact pion Green’s function,

DR
π (ω,k) = [

ω2 − m2
π − k2 − �R(ω,k,n)

]−1
, (5)

up to second order; i.e., one may use for the pion self-
energy function �R(ω,k,n) the perturbative one-loop diagram,
�R

0 (ω,k,n). For k = k0, which is the pion momentum at the
minimum of the effective pion gap ω̃ defined as

ω̃ 2 = −DR,−1
π (ω = 0,k = k0), (6)

the self-energy function �R
0 (ω; k = k0 � pF,N ; n) yields a

strong p-wave attraction already for n 
 n0. The attraction
proves to be so strong that ω̃ 2 becomes negative already at
n ∼ 0.3 n0 for isospin-symmetric matter, which would trigger
the pion condensation, in disagreement with experimental data
indicating that there is no pion condensation in atomic nuclei.
Note that the perturbative calculation (with �R

0 instead of full
�R) contains no free parameters. The paradox is resolved by
observing that one needs to include a short-range repulsion
arising from the dressed πNN vertices. Then ω̃ 2 becomes
larger and the critical point of the pion condensation is moved
to n > n0.

A consistent description of the NN interaction in matter
should, thus, use a medium-modified one-pion exchange
(MOPE), characterized by the fully dressed pion Green’s func-
tion (depending on � rather than on �0) and dressed vertices
�(n) and a residual residual NN interaction. Nevertheless,
exploiting this approach, we should mention that the NN in-
teraction at high densities contains many quantities, which are
poorly known. Therefore, quantitatively, the value of the vertex
�(n) and the value of the pion gap ω̃(n) may vary from model to
model and such a variation may significantly affect the result-

(a) ≈

(b) ≈

FIG. 5. Effective NN interaction in the particle-hole (a) and
particle-particle (b) channels at densities n > n0 dominated by
MOPE. The wavy lines and hatched vertices are determined as
in Fig. 4.

ing values of the NN interaction amplitude. Here we continue
to realize the program started in Refs. [40,43] and continued
in many subsequent works: (i) Include the important medium
effects mentioned above; (ii) fit parameters to satisfy available
experimental data for n � n0, (iii) using ω̃(n) and �(n) as
phenomenological quantities make predictions for higher n.

Microscopic calculations of the residual interaction are
very cumbersome. However, according to evaluations in
Refs. [39,40,43], the main contribution for n > n0 is given
by MOPE, whereas the relative contribution of the residual
interaction diminishes with increasing density owing to po-
larization effects. Thus, one can evaluate the NN interaction
for n > n0 with the help of the MOPE; see diagram (a) in
Fig. 5. Here the bold wavy line relates to the in-medium pion.
In the soft-pion approximation the same MOPE determines
also interaction in the particle-particle channel, diagram (b) in
Fig. 5. Namely, this quantity determines the NN interaction
entering neutrino emissivities of the MMU and MBn and MBp
processes.

From Fig. 4(b), using the explicit expression for the NN
hole loop for ω 
 kvF,N , one may evaluate

�(n,ω 
 k0vF,N ) � [1 + C(n/n0)1/3]−1. (7)

Here vF,N = pF,N/m∗
N is the nucleon Fermi velocity. Factor

C depends on values of the Fermi-liquid spin-spin Landau-
Migdal parameters gnn, gnp. As in Refs. [22–25] we use
C � 1.6.

The pion-softening effect starts for n > n(1)
c (taken here to

be 0.8n0) because for n < n(1)
c the value −D−1(ω = 0,k) has

no minimum at k �= 0. The density dependence of the effective
pion gap ω̃, which we use for n > n(1)

c , is demonstrated in Fig. 6
adapted from Fig. 1 in Ref. [22] (also see Ref. [40]). Curve 1a
in Fig. 6 shows behavior of the pion gap for n(1)

c < n < nπ
c ,

where nπ
c , taken to be 3n0, is the critical density for the pion

condensation. For simplicity we do not distinguish between
different possibilities of π0, π± condensations; see Ref. [40]
for a more general description. Curve 1b demonstrates the
possibility of a saturation of the pion softening in the absence
of the pion condensation for n > nπ

c (this possibility could
be realized, e.g., if the Landau-Migdal parameters increase
with the density). Curve 1c corresponding to another choice
of parameters demonstrates continuing softening of the pion
mode in the absence of the pion condensation. Thus, both
choices 1a + 1b and 1a + 1c determine behavior of the
Green’s function for the pion excitations in the absence of the
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FIG. 6. (Color online) Square of the effective pion gap ω̃ with
account for pion condensation at n > nπ

c = 3 n0 (branches 1a + 2
and 3) and without (1a + 1b) or (1a + 1c).

condensation. Curves 2 and 3 demonstrate the possibility of
the pion condensation for n > nπ

c . The continuation of branch
1a for n > nπ

c along branch 2, shows the reconstruction of
the pion dispersion relation in the presence of the condensate
state. Then, for n > nπ

c the values of ω̃ from curve 2 determine
the values of the MMU emissivity. The jump from branch
1a to branch 3 at n = nπ

c is attributable to the first-order
phase transition to the π condensation; see Ref. [40]. The
|ω̃| value on branch 3 (for the effective pion-pion coupling
λ ∼ 1) determines the amplitude of the pion condensate field.
Simplifying as in Ref. [41], we take

|aπ | = fπ sin θπ �
√

2 fπ |ω̃|/mπ, (8)

where θπ is the chiral angle and fπ = 92 MeV is the pion
decay constant.

We stress that dressing of the pion mode, which we exploit,
is similar to the ordinary dressing of the photon mode in
plasma. Computing similar diagrams results in the dielectric
constant ε(ω,q) in plasma, which may essentially deviate from
unity. Moreover, only including dressed vertices one is able to
describe zero-sound modes in Fermi liquids.

In the case when the NN interaction amplitude is mainly
controlled by the soft pion exchange, the MU matrix element
should be replaced with the MMU one. For n � n0 the main

contributions to the MMU matrix element follow from the
diagrams presented in Fig. 7. Evaluations [39,41] have shown
that the dominating contribution to MMU rate comes from
the first two diagrams in Fig. 7, whereas the third diagram,
which naturally generalizes the corresponding MU (FOPE)
contribution, gives only a small correction for n � n0. The
strongest density dependence comes from the first diagram in
Fig. 7. Note that this term and the second term are absent, if
one approximates the NN interaction by a two-body potential.

Estimated for n � n0 > n(1)
c with the help of the first

diagram in Fig. 7, the ratio of the MMU to MU neutrino
production rates and the emissivities is equal to

FMMU(n) = 3

(
n

n0

)10/3 [�(n)/�(n0)]6

(ω̃/mπ )8
. (9)

Note that in this estimation we use the vacuum weak coupling
vertices, because for q0 � q in neutrino vertices the NN
correlation corrections are rather suppressed; see Refs. [40,41]
for details, but we correct the strong interaction vertices.

Analogously, the neutrino emissivity in the bremsstrahlung
reactions n + n → n + n + ν + ν̄, being calculated with the
MOPE instead of FOPE interaction, is enhanced by the factor;
see Ref. [24],

FMB(n) = 3

(
n

n0

)4/3 [�(n)/�(n0)]6

(ω̃/mπ )3
. (10)

In this case only diagram similar to diagram (c) in Fig. 7 con-
tributes to the reaction rate. For n > n0, FMB(n) < FMMU(n).
Contribution of the n + p → n + p + ν + ν̄ reaction is still
smaller.

The enhancement factors for the MMU and MB reactions
given by Eqs. (9) and (10) as functions of the density for
various types of the density dependence of the pion gap ω̃
are demonstrated in Fig. 8 for the typical temperature T9 =
T/109 K = 1. With values �(n) and ω̃ that we use, which allow
to fit measured surface temperatures of pulsars [22,24,25], we
get FMMU ≈ 3 for n = n0 and FMMU ≈ 5 × 103 for n = 3n0.
We see that FMMU � FMB for n � n0. We plot also the ratios
of the PU and DU emissivities to the emissivity of the MU
process, which can be estimated as

FDU = εDU

εMU
� 5 × 106 ,

FPU = εPU

εMU
� 7 × 105 |aπ |2

m2
π

�2(n)

�2(n0)

(
nn

ne

) 1
3

, (11)

(a)

π0

π+

n

n

n

p

ν̄

l

, (b)

π0

π+

n−1

n

n

n

p

ν̄

l

, (c)

n

π0

l

p

n

n

n

ν̄

FIG. 7. Set of diagrams determining the MMU reactions.
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FIG. 8. (Color online) Enhancement factors for MMU and MB
reactions given by Eqs. (9) and (10), respectively, and those for PU
and DU, cf. Eq. (11), for T = 109 K as functions of the density for
various types of the density dependence of the pion gap ω̃ with (w.
π cond.) and without (w.o. π cond.) pion condensation for n > nπ

c ,
labeled as in Fig. 6.

where nn is the neutron density and ne is the electron
density. Note that in spite of a strong enhancement of the
MMU emissivity with a density increase compared to the
MU emissivity, the ratio FMMU is less than both ratios FPU

and FDU. FMMU(3n0)/FPU(n > 3n0) ∼ 0.05, and only for the
strongest softening among the choices we consider (following
curve 1c of Fig. 6), the enhancement factor FMMU tends to
that for the PU reactions at the maximal available density
(ncen � 7.5n0). In other cases (for curves 1b and 2 in Fig. 6),
we have FMMU 
 FPU.

The following remarks are in order. First, we note that the
ratio of the NN cross sections calculated with the MOPE
and FOPE interactions proves to be σ [MOPE]/σ [FOPE] ∼
�4(n)p4

F,N/ω̃4(n), being ∼0.3–0.5 for isospin-symmetric mat-
ter at the density n = n0 and for values of ω̃ and � used above.
The subsequent increase of the cross section with an increasing
density is attributable to the win of the pion-mode softening
(i.e., a decrease of ω̃) induced by πNN and πN�(1236)
p-wave attractions over the suppression of vertices by repul-
sive NN correlations [40,41]. Thus, the known suppression
[77,78] of the in-medium NN cross section at n � n0

compared to that computed with the pure FOPE interaction
does not conflict with the strong enhancement of the MMU
emissivity at the increasing density; cf. Eq. (9) and Fig. 8.
The estimated strong density dependence of the in-medium
neutrino processes motivated authors of Ref. [39] to suggest
that difference in surface temperatures of neutron stars is
explained by different masses of the objects. (At that time
only upper limits on surface temperatures were known).

Now let us discuss the influence of the pion-mode softening
on the EoS. Although the long-range part of the NN interaction
might suffer a strong modification, the EoS can remain rather
insensitive to this. A similar situation often occurs in various

problems in condensed-matter physics. For example, in the
case of a second-order phase transition, only the second
derivative of a Ginzburg-Landau free energy undergoes a jump,
whereas the free energy and its first derivative are continuous
in the critical point. Thereby, the EoS proves to be insensitive
to the soft modes, whereas the particle scattering might be
strongly enhanced in the presence of the soft mode. In the
theory of finite Fermi systems by Migdal [73] the scalar
interaction f0 is responsible for the stiffness of the EoS rather
than the long-range pion term. In the so-called self-consistent
version of the theory of finite Fermi systems [79] the EoS
is constructed with the help of the density-dependent f0

parameter. In the relativistic mean-field models for the EoS
all quantum effects are usually ignored, including effects of
the pion mode.

The in-medium pion propagator is strongly enhanced only
in the narrow range of exchanged frequencies and momenta.
Therefore, if this propagator is a part of some complicated
diagram with many internal lines, the pion enhancement is
averaged out. Such diagrams are assumed to be hidden in the
Landau-Migdal parameters. So, in Ref. [41] it is shown that the
number of virtual pions in nuclear matter at small temperatures
is not singular even for ω̃ → 0 and rather insensitive to the pion
softening. The soft pion contribution to the energy per nucleon
EMOPE (the leading Fock contribution) counted from the FOPE
term, EFOPE, can be estimated following Ref. [80] as

δEMOPE = EMOPE − EFOPE

∼ −(3/8)nf 2
πNNm2

π

× [
�2(n)/ω̃2(n) − 1

/(
m2

π + p2
F,N

)]
, (12)

where fπNN � 1/mπ is the πNN coupling constant. Thus, for
n ∼ n0 and for isospin-symmetric matter we have |δEMOPE| ∼
MeV. For n ∼ 3n0 we evaluate δEMOPE ∼ −10 MeV, which is
much less in comparison with both the kinetic energy and the
potential energy terms at this density. For n > 3n0, the value
|δEMOPE| decreases with an increase of the density provided
there appears pion condensate (see curve 2 in Fig. 6) or remains
of the same order as for n ∼ 3n0 if the pion softening is
saturated; see curves 1b and 1c.

For n > nπ
c there appears an additional contribution of

the pion condensation to the EoS. The value of the energy
density depends substantially on the poorly known values of
the density-dependent Landau-Migdal parameters. Thereby it
is difficult to judge if the effect is strong or weak. Some works
speculated about possibility of the strong first-order phase
transition, at which the neutron star may come to the dense pion
condensate state; others assumed a tiny energy release, being
sufficient only to explain strong star quakes in Vela pulsar; see
Refs. [40,43] and references therein. Within microscopic APR
A18 + δv + UIX∗ EoS, Ref. [27] estimated the effect of the
pion condensation on EoS as tiny. With the effective pion gap
that we exploit (see curve 3 in Fig. 6) and for a typical value
for the effective pion-pion coupling � ∼ 1 the energy gain per
nucleon can be evaluated as δEπ

cond � −ω̃4/(2�n) ∼ −3 MeV
for n � 7n0.

With these arguments, in the present work we exploit a
phenomenological EoS described in Sec. II A, which ignores
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effects of the pion softening and the pion condensation on the
EoS.

D. Nucleon pairing

A possibility of the nucleon pairing in neutron stars was
suggested by Migdal in Ref. [81]. In spite of many calculations
performed so far, the values of nucleon gaps in dense neutron
star matter remain poorly known. This is the consequence
of the exponential dependence of the gaps on the potential
of the in-medium NN interaction. The latter potential is not
known sufficiently well. There are many calculations of the
1S0 neutron (nn) and proton (pp) gaps and there are some
evaluations of 3P2 neutron gaps; for references, see, e.g.,
Refs. [82–88]. Here, to be specific for the description of a
superfluid phase in a neutron star, we use parametrizations of
critical temperatures, Tc, from Ref. [89]: models 1ns and 1p for
the neutron and proton 1S0 pairing, respectively. These singlet
pairing parametrizations have been exploited in Refs. [22–25]
as one of two choices used there for fitting the neutron star
cooling data within the nuclear medium cooling scenario
developed in these works. In our numerical simulations below
we exploit the above-mentioned set of gaps (named set I in
Refs. [22,23]). As follows from the analysis of Ref. [23], the
cooling proved to be not very sensitive to the value and density
dependence of the 1S0 neutron gap mainly because the neutron
pairing is restricted to the region of rather low densities, but it
is sensitive to the values and density dependence of the proton
gap. Below, when necessary, we demonstrate sensitivity of our
results to the choice of gaps.

For the temperature dependence of the pairing gap �(T )
for the 1S0 pairing we use the parametrization from Ref. [90],

�(T )/T = √
1 − τ

(
1.456 − 0.157√

τ
+ 1.764

τ

)
, (13)

with τ = T/Tc.
The value of Tc for the 3P2 neutron pairing calculated

according to the model 1nt of Ref. [89] (with the vacuum NN
interaction) is rather small, ∼0.25 × 109 K. However, Ref. [37]
argued that the critical temperature for the triplet neutron
pairing can be still strongly suppressed down to values ∼108 K
as an effect of the medium-induced spin-orbit interaction. This
choice has been exploited in the nuclear medium cooling
scenario of [22–25] for the description of the neutron star
cooling. Because we focus here mainly on the description of
the temperature interval 108 � T � 1010 K and to avoid extra
uncertainties, we ignore the 3P2 nn pairing.

Using the functions f (x) and χ (x) from Eqs. (1) and (2) for
the number density profile and the proton concentration profile,
we calculate profiles of Tc(r/R) for different star masses and
show them in Fig. 9. The proton 1S0 paring reaches deep inside
the star core. Owing to this circumstance, within our model
with strongly suppressed 3P2 nn pairing gaps the emissivities
of the processes on charged weak currents are exponentially
suppressed in a broader region of r than emissivities of the
processes on neutral currents.

Note that the angular velocities of the known most rapidly
rotating old pulsars and even the angular velocity of the
most rapidly rotating young pulsar PSR J0537-6910 exceed

FIG. 9. (Color online) Profiles of critical temperatures, Tc, for
1S0 proton and neutron pairings in neutron stars with various masses
indicated by labels in the solar mass units. The density dependence
of Tc is taken according to models 1 ns and 1 p of Ref. [89].

the values of the critical Landau angular velocities �c,L ∼
�NN/(pF,NR). Indeed, for the 1S0 nn and pp pairings a rough
estimate produces �c,L ∼ 102 Hz. For the 3P2 neutron pairing
with the gap � ∼ 108 K we get �c,L ∼ Hz. This, however, does
not mean a complete destruction of the superfluidity, because
for angular velocities in a broad interval �c1 
 �c,L 
 �c2

there exists a mixed state consisting of the vortices of the
normal matter surrounded by a superfluid. In the presence
of vortices superfluid and normal components may corotate.
Rough estimates yield [91] �c1 ∼ (πmNR2)−1 ln(R�) ∼
10−15 Hz, whereas �c2 ∼ �2/mN and for the 1S0 pairing
�c2(1S0) ∼ 1018 Hz, and for 3P2 neutron pairing with the gap
� ∼ 108 K, �c2(3P2) ∼ 1014 Hz.

III. TIME RELAXATION SCALES
AND r-MODE INSTABILITY

The r-modes of rotating stars are associated with solutions
of the perturbed fluid equations in the presence of (Eulerian)
velocity perturbations in the form

δv = a R�

(
r

R

)l

�r × �∇Ylle
iωt−t/τ + O(�3), (14)

where R and � are the radius and angular velocity of the
unperturbed star, a is a dimensionless amplitude of the mode,
a 
 1, Yll is the ll- spherical harmonic, and ω = −�(l −
1)(l + 2)/(l + 1) + O(�3) is the circular frequency of the r-
mode in the inertial frame; see Ref. [8].

In the linear approximation the r-mode amplitude a, for
a � 1, follows equation da/dt = −a/τ ; see Ref. [13]. The
characteristic time scale of the evolution of the mode amplitude
is given by

τ−1 = −τ−1
G + τ−1

η + τ−1
ζ . (15)

Here τG is the typical time of the gravitational radiation, τη

is the relaxation time owing to the shear viscosity, and τζ is
the relaxation time owing to the bulk viscosity. The r-modes
become stable if τ−1 > 0.
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The time scale of the r-mode growth owing to the emission
of gravitational waves is given by [11]

1

τG

= 32π (l − 1)2l(l + 2)2l + 2

[(2l + 1)!!]2(l + 1)2l+2
G�2l+2R2l+3〈ρ〉2l+2, (16)

〈· · · 〉n = 1

Rn+1

∫ R

0
(· · · ) rndr,w (17)

where G = 6.674 × 10−8 cm3 g−1 s−2 is the gravitation con-
stant.

The time scale of the r-mode damping owing to the shear
viscosity is as [11]

τ−1
η = (l − 1)(2l + 1) R−2〈η〉2l/〈ρ〉2l+2, (18)

and the time scale of the r-mode damping owing to the bulk
viscosity is

τ−1
ζ = 4π

690

(
�2

πGρ̄

)2 〈ζ [1 + 0.86(r/R)2]〉8

R2〈ρ〉2l+2
, (19)

where ρ̄ is given by Eq. (3); see Refs. [18,21].
The integral over the mass density profile with the function

(1) can be easily calculated using the approximated profile (1),

〈ρ〉n � ρcen〈f (r/R)〉n = 2 ρcen

(n + 1) (n + 3)
. (20)

In the general case the profile integral can be expressed
through the Euler’s beta function 〈f m(r/R)〉n = 1

2B(1 + m,
(1 + n)/2).

According to Ref. [11] the r-modes with l = m = 2 are
dominant ones. Then the gravitational time can be estimated
as

τ−1
G = 6.43 × 10−2

s
R7

6 �6
4

ρcen

ρ0
, (21)

where R6 = R/(106 cm), �4 = �/(104 Hz), and ρ0 = 2.63 ×
1014 g/cm3 stands for the mass density of the nuclear matter
at saturation. The central density of the star depends on the
neutron star mass; cf. Fig. 1(a).

The damping times of the r-modes (18) and (19) can be
rewritten as

τ−1
η = 5.98 × 10−5

s

〈η20〉4

R2
6 ρcen/ρ0

, (22)

τ−1
ζ = 2.20 × 10−7

s
R4

6 �4
4
〈ζ20 [1 + 0.86(r/R)2]〉8

(M/M�)2(ρcen/ρ0)
; (23)

here we used that M� = 1.99 × 1033 g is the solar mass,
and η20, ζ20 stand for the viscosities measured in units of
1020 g cm−1 s−1. Finally, to evaluate τ we need to compute
shear and bulk viscosities and average them appropriately over
the neutron star density profile.

IV. SHEAR VISCOSITY

The shear viscosity, η = ηe/μ + ηn/p, is determined by the
term ηe/μ = ηe + ημ, where ηe incorporates the ee, ep, and eμ
scatterings and ημ includes the μμ, μe, and μp scatterings,
and by the nucleon term, ηn/p = ηn + ηp. Consider these
contributions separately.

A. Lepton shear viscosity

Leptons in neutron star matter are not superfluid. Electrons
can be considered as massless because the electron Fermi
momentum is much larger than the electron mass, pF,e � me.
The concentration of electrons is higher than that of muons.
Thereby the lepton shear viscosity is dominated by the electron
term. The lepton shear viscosity has been derived long ago by
Flowers and Itoh [46]. Reference [47] proposed a convenient
fit to their result,

η
(FI)
e/μ,20 ≈ η

(FI)
e,20 = 4.2 × 10−3

[
g

cm s

](
ρ

ρ0

)2

T −2
9 , (24)

T9 = T/109 K. Equation (24) was extensively exploited in
the literature in various numerical simulations. The integrated
viscosity entering Eq. (22) evaluated with usage of the proton
density profile (2) and the Flowers-Itoh result (24), is then
given by 〈

η
(FI)
e/μ,20

〉
4 = 1.1 × 10−4

(
ρcen

ρ0

)2

T −2
9 . (25)

The temperature dependence of this expression is the standard
low-temperature result for the normal Fermi liquid with a
short-range interaction. However, in reality, the charged lepton
interaction is determined by the screened vector interaction
mediated by exchange of longitudinal and transverse plas-
mons; compare with Fig. 3(a). By taking these effects into
account, Ref. [48] derived new expressions for the electron
and muon shear viscosities. These expressions can be written
as

ηl = 1

5
nlpF,l τl = 1.70 × 1034

[
g

cm s

](
nl

n0

)4/3
τl

s
, (26)

where the collision time τl can be expressed through the
collision rate νl = τ−1

l determined by the lepton-lepton (ll)
and lepton-proton (lp) collisions; pF,l is the lepton Fermi
momentum, l = e,μ. The contributions of ll, and lp collisions
are dominant at small T , provided protons are not paired. The
collision frequencies are equal to

νe = A

(
n0

np

) 2
9
(

np

ne

) 2
3

T
5
3

9 (1 + r)
2
3 ,

νμ = νe

(
ne

nμ

)1/3

, (27)

where A = 9.36 × 1014 Hz and r = (p2
F,e + p2

F,μ)/p2
F,p, and

pF,p is the proton Fermi momentum. Full expressions for the
lepton collision frequencies are presented in the Appendix.

Substituting Eq. (27) in Eq. (26), we estimate the leading
contribution to the lepton shear viscosity as

η̃e = 1.82 × 1019

[
g

cm s

](
np

n0

) 14
9
(

ne

np

)2
T

− 5
3

9

(1 + r)
2
3

, (28)

η̃μ =
(

nμ

ne

) 5
3

η̃e. (29)

Note that expression (28) has been used in the literature
as an approximate expression for the lepton term, e.g., in
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FIG. 10. (Color online) Ratios of the full result for the lepton
shear viscosity ηe/μ given by Eqs. (26) and (A1) and the viscosity
η̃e/μ = η̃e + η̃μ calculated with Eqs. (28) and (29) as a function of
density for various temperatures (solid lines). Calculations performed
with the help of the interpolating formula (30) are shown by dashed
lines.

Refs. [9,21]; under the simplifying assumption that there
are no muons in the medium, this means that one puts
ne = np and r = 1 in Eq. (28). For our EoS (which is
close to the APR EoS for n � 4n0) the muon fraction is not
negligible.

The ratios of the full result for ηe/μ given by Eq. (26)
with the collision times from Eq. (A1) to the leading term
η̃e/μ = η̃e + η̃μ determined by Eqs. (28) and (29) are plotted
in Fig. 10 (solid lines) as a function of the density for various
temperatures. We see that for all temperatures and densities of
our interest the term η̃e/μ significantly overestimates the full
result ηe/μ.

The full result (shown by solid lines in Fig. 10) can be
approximated by the following expression:

ηe/μ

η̃e/μ

≈ fn(u) fT (u,T ) , u = n/n0,

fn(u) = 1 − 0.997

(u3 + 1.9 u + 1)3/2
,

fT (u,T ) = α(u)

1 + β(u) T
1/3

9

, (30)

α(u) = 0.9760 + 0.4925

(u + 0.5)2.266
+ 1.055 × 10−5u3.714,

β(u) = 0.396 + 0.707

(u + 0.5)2.258
+ 2.161 × 10−5u3.549.

Deviation of interpolating formula (30) (see dashed lines
in Fig. 10) from the full result (solid lines) ranges
within 5% for densities 0.5 � n/n0 � 7.5 and temperatures
10−2 � T9 � 10.

The integrated viscosity entering Eq. (22) evaluated with
the proton density profile (2) can be parametrized by a very

FIG. 11. (Color online) Lepton contributions to the shear viscos-
ity integrated over the stellar density profile 〈ηe/μ〉4 as a function of
the neutron star mass for T = 109 K and 108 K in the absence of the
proton pairing (dashed lines). Solid lines demonstrate calculations
performed with Eqs. (26) and (A1) and the dashed lines demonstrate
calculations performed with the Flowers-Itoh parametrization (25).

simple formula,

〈ηe/μ,20〉4 = 8.40 × 10−4

(
np,cen

n0

)1.63

T −1.737
9 , (31)

where np,cen is the central proton density. This relation
deviates from the full result only within 2% for star masses
1 � M/M� � 2 and temperatures 10−2 � T9 � 10.

The dependence of the integrated lepton shear viscosity on
the neutron star mass is shown in Fig. 11 for the full result
[see Eqs. (26) and (A1) (solid lines)] and for the Flowers-Itoh
result [Eq. (25) (dashed lines)] for T = 109 K and 108 K.
We see that the proper account for the modification of the
electromagnetic interaction in the medium (Landau damping)
leads to the reduction of the lepton shear viscosity by an order
of magnitude. Thereby, numerous demonstrations of the r-
mode instability performed in the literature with the Flowers-
Itoh expression should be reconsidered.

A modification of the lepton shear viscosity in the presence
of the singlet proton pairing can be taken into account by
division of the final expression by the overall R factor,

ηe/μ → η
(s)
e/μ = ηe/μ/Re/μ(�(T )/T ,r), (32)

where function Re/μ is given by Eqs. (80) in Ref. [48]. The
superscript “(s)” indicates quantities computed in presence of
the pairing.

The pairing effect is illustrated in Fig. 12, where the
temperature-scaled shear viscosity η

(s)
e/μ T

5/3
9 fT (n,T ) is de-

picted as a function of the nucleon density for various
temperatures. Function fT is given by Eq. (30). We see a strong
enhancement of the lepton shear viscosity in the presence of the
proton superfluidity, growing with the temperature decrease.

To demonstrate the integrated effect of the superfluidity on
the electron shear viscosity, in Fig. 13 we show the ratio

Sη,e/μ = 〈
η

(s)
e/μ,20

〉
4

/〈ηe/μ,20〉4 (33)
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FIG. 12. (Color online) Lepton contribution to the shear viscos-
ity in the presence of the singlet proton pairing (32) scaled by the
factor T

5/3
9 fT (n,T ) as a function of the nucleon density for various

temperatures. The pairing critical temperature is the same as in Fig. 9.
The solid line shows the scaled viscosity in the absence of pairing.

as a function of the temperature for various neutron star
masses. The resulting enhancement factor for T < Tc depends
weakly on the star mass in the range M� � M � 1.5M� and
decreases sharply with an increase of M above 1.6M�. The
reason for this is that the region, where protons are paired,
shrinks with increase of the star mass (for M � 1.5M�), as
seen in Fig. 9.

B. Nucleon shear viscosity

We turn now to evaluation of the nucleon contribution to the
shear viscosity, first for a nonsuperfluid matter. The main term
comes from the neutrons, because the neutron density is much
higher than the proton one. As for the lepton shear viscosity,

FIG. 13. (Color online) Integrated enhancement factor (33) for
the lepton shear viscosity in the presence of the proton pairing as a
function of temperature for various neutron star masses. The density
dependence of the critical temperature of the proton pairing is the
same as in Fig. 9.

for the shear viscosity of purely neutron matter one routinely
uses the results derived by Flowers and Itoh in Ref. [46] and
fitted by the analytical expression in Ref. [47]

η(FI)
n = 1.1 × 1017

[
g

cm s

]
(ρ/ρ0)

9
4 T −2

9 . (34)

A more general result was obtained in Ref. [48],

ηn = nnp
2
F,n

5 m∗
n

τn, (35)

where pF,n is the neutron Fermi momentum, and the relaxation
time τn is given by

τn = 3m2
N

16m∗ 3
n T 2Snn

, (36)

with the effective neutron-neutron scattering cross section

Snn = m2
N

16π2

∫ 1

0
dx ′

∫ √
1−x

′ 2

0
dx

12 x2 x
′ 2Qnn(q,q ′)√

1 − x2 − x
′ 2

. (37)

Qnn = 1
4

∑
spin |Mnn|2 is the squared matrix element of the nn

scattering averaged over spins of initial and final neutrons,
depending on the momenta q = 2pF,n x and q ′ = 2pF,n x ′. To
evaluate Qnn Refs. [48,92] exploited the vacuum cross sections
and then evaluated in-medium corrections owing to the Pauli
blocking and the nucleon effective mass. The correction by the
Pauli blocking proved to be rather small.

Combining Eqs. (35) and (36) we obtain

ηn ≈ 2.05 × 1015

[
g

cm s

](
n

n0

) 5
3
(

mN

m∗
n

)4
T −2

9[
Snnm2

π

] . (38)

For the conversion from the convenient mπ units (mπ =
139 MeV) one can use the relation m3

π c3/�
2 = 3.686 ×

1011 g/(cm s).
We continue comparison of the results for our MOPE

parametrization of the NN interaction and those for the FOPE
parametrization. Within the FOPE model the matrix element
Qnn in Eq. (37) is given by

QFOPE
nn (q,q ′) = f 4

πNN

{
q4
[
D(0)

π (0,q)
]2 + q ′4[D(0)

π (0,q ′)
]2

+ q2q ′2 D(0)
π (0,q)D(0)

π (0,q ′)
}
, (39)

where fπNN � 1/mπ is the pion-nucleon coupling and
D(0)

π (ω,q) = 1/(ω2 − q2 − m2
π ) is the vacuum pion propa-

gator; the transferred frequency is put to zero in Eq. (39)
because ω ∼ μe is much less than typical values q ∼ pF,n.
Then, neglecting m2

π in the denominator, which would yield
correction ∝ m2

π/p2
F,n, we get

SFOPE
nn � 3 m2

nf
4
πNN

40π
� 1.1

m2
π

. (40)

As we have discussed, Refs. [22,24,25,34,39–42] success-
fully exploited the in-medium modified NN interaction for
densities n � n0, which includes the attractive NN interaction
induced by the MOPE and the repulsive loop-corrected short-
range interaction. For n > n(1)

c (n(1)
c < n0) the dominant part
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is given by the MOPE interaction QMOPE
nn , which can be

obtained from Eq. (39) after the replacements in the vertex
fπNN → fπNN �, with the vertex suppression factor �, and
in the propagator D(0)

π (0,q) → Dπ (0,q), with the in-medium
pion propagator given by the interpolating formula

D−1
π (0,q) � −ω̃2 − γ 2 (q − k0)2, γ ∼ 1, (41)

valid for |q − k0| 
 k0 and for densities up to the critical
density of the pion condensation nπ

c (chosen in the above
works and here to be ∼3n0). As in the model [48,92],
we suppress for simplicity the energy dependence of the
NN interaction amplitude. This dependence was taken into
account in Ref. [93] for evaluation of the nucleon relaxation
time in the isospin-symmetric nuclear matter. The effective
gap ω̃2, which we continue to use, is shown in Fig. 6.
The quantity q = k0 � pF,n is the transferred momentum
corresponding to the minimum of the inverse pion propagator.
The vertex suppression owing to the repulsive short-range NN
correlations depends on the Landau-Migdal parameter gnn. As
an interpolation formula, for � we use approximated Eq. (7)
with C = 1.6.

With the MOPE interaction QMOPE
nn in Eq. (37) we obtain

SMOPE
nn = K SFOPE

nn ≡ K0

[
1 + 2

3

ω̃

γ pF,n

]
SFOPE

nn ,

K0 = 30π�4p3
F,n

128γ ω̃3
� 10.0

n

n0

�4m3
π

γ ω̃3
. (42)

For n = n0, taking ω̃2 � 0.98m2
π , and estimating γ � 1, we

find K � 0.3. Such a degree of suppression of the MOPE
NN interaction amplitude compared to FOPE one for n ∼ n0

is established by analysis of experiments with atomic nuclei
[40,43,74] and by microscopic calculations [77,78]. With
increase of the density the NN interaction amplitude is
suppressed by the vertex corrections induced by the repulsive
short-range interaction and simultaneously enhanced by the
decrease of the pion gap ω̃. With the growing density the
pion softening becomes dominant and the factor K increases,
reaching 1 at n � 2.6n0. In the range of densities 2.6n0 �
n � 3n0, K rises rapidly with growth of the density to the
value K � 2 for n � 3n0 [for ω̃2(3n0) � 0.3m2

π ] and remains
roughly constant at higher densities provided ω̃2 follows curve
1b in Fig. 6. If ω̃2 follows curve 1c, the factor K will
increase further. If at n → nπ

c = 3n0 a pion condensation
occurs, then for n > nπ

c in the presence of the condensation,
ω̃2 follows curve 2 and the factor K decreases with the density
increase.

Figure 14 shows the neutron share viscosity averaged over
the neutron star density profile. The dash-dot-dotted line is
calculated with the Flowers-Itoh parametrization (34). The
dashed line depicts the result of Eq. (38) obtained with
S(FOPE)

nn given by Eq. (40). The averaged viscosity calculated
according to Eq. (38) with S(MOPE)

nn from Eq. (42) and the pion
gap ω̃2 taken along curve 1a + 1b in Fig. 6 in the absence
of the pion condensation is shown by the solid line. The
calculations done for ω̃2 taken along curve 1a + 2 in the
presence of a pion condensate are shown by the dash-dotted
line. We see that the Flowers-Itoh result overestimates the

FIG. 14. (Color online) Neutron contribution to the shear viscos-
ity integrated over the stellar density profile as a function of the
neutron star mass at temperature T = 109 K in the absence of pairing.
The MOPE calculation performed with Eq. (42) for the pion gap
ω̃ following curve 1a + 1b, cf. Fig. 6, is shown by the solid line,
that following curve 1a + 1c by the dashed line, and for ω̃ following
curve 1a + 2 by the dash-dotted line. The short-dashed line shows the
calculation with Eq. (38) and the FOPE interaction given by Eq. (40).
The dash-dot-dotted line shows the calculation with the Flowers-Itoh
parametrization (34).

result given by Eq. (38) with S(FOPE)
nn from Eq. (40) by more

than an order of magnitude. Compared to the FOPE result,
the in-medium effects increase the averaged nucleon shear
viscosity for stars with the mass �1.95M� and decrease it for
heavier stars, provided there is no pion condensate in the star
core. The resulting medium modified neutron shear viscosity,
〈ηn,20〉4 ∼ (2 × 1015/T 2

9 ) g cm−1 s−1, is almost independent
of the star mass, provided there is pion softening but there is
no pion condensation. Also, we note that at all temperatures
and densities of our interest the MOPE neutron shear viscosity
in the absence of the nucleon superfluidity proves to be
substantially smaller than the electron one, compare quantities
in Figs. 11 and 14.

The nucleon shear viscosity in the presence of the neutron
superfluidity could be considered, in principle, in full analogy
with calculations of the neutron thermal conductivity in a
superfluid system performed in Ref. [92]. Rough estimates
show that in the presence of superfluidity the nucleon shear
viscosity remains much smaller than the electron contribution.
Therefore, further in this paper we neglect the nucleon contri-
bution to the shear viscosity in our numerical simulations.

C. Phonon shear viscosity in neutron superfluid

A shear viscosity in a nuclear superfluid matter induced
by phonon-phonon interactions was discussed in Ref. [50].
Authors argued that these interactions may give a contribution
to the resulting shear viscosity for Tcn > T � 109 K, i.e.,
in the presence of the nn pairing. The phonon-electron
term can be neglected. However, we note that at such low
temperatures the bulk viscosity term proves to be the dominant
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one. Therefore, owing to uncertainties in estimations of the
phonon-phonon interaction we further disregard the phonon-
phonon contribution to the shear viscosity in our numerical
calculations.

We note that in the neutral superfluid there exist the
Anderson-Bogoliubov modes, which interact with neutral
particles, like superfluid neutrons. Because the number of
excited neutrons is suppressed in the superfluid matter at T 

Tc, the typical phonon-neutron collision time might be very
large and the corresponding contribution to the shear viscosity
might be sizable. Below we evaluate this contribution.

To find the spectrum of the phonon excitations we use
expressions for the anomalous vertices found in Ref. [94]
as solutions of the Larkin-Migdal equations [95]. These
equations generalize the equation for the coupling of external
perturbation to the nucleon particle-hole [see diagram (b)
in Fig. 4] for systems with the pairing correlations. The
Anderson-Bogoliubov modes exist as a response to the
perturbation given by the temporal component of the vector
current; see also Ref. [96]. From Eqs. (52) of the second
reference in Ref. [94] for the anomalous scalar vertex and
Eqs. (57) and (58) there, for the vector vertex in the limit
ω,vF,nq 
 2�nn we get

τ̃V ,0 = −2 �ω

ω2 − 1
3v2

F,nq
2 − iω γph(ω,vF,nq)

τω
V,0,

�q �̃τV,1 = −2 � 1
3v2

F,nq
2

ω2 − 1
3v2

F,nq
2 − iω γph(ω,vF,nq)

τω
V,0, (43)

where τω
V,0 = 1/a is the bare perturbation vertex with a � 1

standing for the residue of the in-medium nucleon Green’s
function; vF,n = pF,n/m∗

n is the neutron Fermi velocity. From
these relations the phonon propagator can be defined as

Dph(ω,k) = 2 ω

ω2 − s2 v2
F,nq

2 − iω γph(ω,vF,nq)
, (44)

with s = 1√
3

and the imaginary part

γph(q) = π

6

�

T
vF,nq

∫ ∞
√

3
2

dy

(y2 − 1)2

1

(e
�
T

y + 1)(1 + e− �
T

y)

≈ 2π

3
vF,nqe−

√
3
2

�
T . (45)

The lifetime of the phonon owing to the interaction with
superfluid neutrons is

τph = 1/γph ≈ 3

2π vF,nq
e
√

3
2

�
T . (46)

The phonon viscosity term [97] appearing in our case
because of the interaction of superfluid neutrons with phonons
is given by

ηph =
∫

d3q

(2π )3

τph

15T

(svF,n)2 q2

(esvF,nq/T − 1)(1 − e−svF,nq/T )

= 9
√

3ζ (3)

10π3

T 3

v3
F,n

e
√

3
2

�
T .

The last expression can be rewritten through the averaged
lifetime (46)

τ̄ph ≈ 3 s

2π T
e+

√
3
2

�
T

∫∞
0 dx x3/(ex − 1)(1 − e−x)∫∞
0 dx x4/(ex − 1)(1 − e−x)

= 45
√

3ζ (3)

4π5

e
√

3
2

�
T

T
(47)

as follows:

ηph = 2π2

25

T 4

v3
F,n

τ̄ph. (48)

The averaged lifetime,

τ̄ph � 5.9 × 10−22 e
√

3
2

�
T

T9
s, (49)

cannot, however, exceed the ballistic time,

τbal ∼ 1 km

s vF
� 1.6 × 10−5 s

(
n0

n

) 1
3 m∗

n

mN

, (50)

determined by the size of the region of the 1S0 neutron pairing
(put here about 1 km; cf. Fig. 9), because phonons cannot cross
the border of the superfluid region. Taking into account this
constraint we, finally, evaluate

ηph � 2.1 × 1023

[
g

cm s

](
n0

n

)(
m∗

n

mN

)3

× T 4
9

min{τ̄ph,τbal}
s

. (51)

The integrated phonon viscosity is shown in Fig. 15 for three
values of masses of the neutron stars and for two choices for
the nn 1S0 pairing gaps. The left slope of the curve corresponds

FIG. 15. (Color online) The integrated shear viscosity, induced
by the phonon interaction with superfluid neutrons for the nn

singlet pairing as a function of the temperature for several neutron
star masses in comparison with the lepton shear viscosity (proton
pairing is incorporated where necessary). The curves for the phonon
contribution labeled by 1 demonstrate calculations with the neutron
pairing gaps shown in Fig. 9. Curves labeled by 2 show calculations
with the neutron pairing gaps taken from Fig. 1 of Ref. [98].

025805-15



E. E. KOLOMEITSEV AND D. N. VOSKRESENSKY PHYSICAL REVIEW C 91, 025805 (2015)

to the ballistic regime (for the assumed 1-km size of the region
with 1S0 nn pairing). The steep right slope corresponds to the
collision regime. For comparison, the integrated lepton term
is also shown (superfluid neutron viscosity term is small and
is dropped as well as the phonon-phonon interaction one).
With the critical temperatures from Fig. 9 the effect of the
phonon-superfluid neutron interaction can be safely neglected
(see lower curves in Fig. 15). If in-medium modifications of
the gaps are suppressed, with the gaps taken from Fig. 1 of
Ref. [98], the phonon-superfluid neutron term might become
dominant in a narrow temperature region near 109 K. This is
demonstrated by the set of upper curves in Fig. 15.

D. Neutrino shear viscosity

With the temperature increase the neutrino mean free path
decreases and for sufficiently high temperatures neutrinos
become trapped inside the neutron star interior. Under such
conditions, neutrinos still having a rather long mean free path
may substantially contribute to the shear viscosity. The shear
viscosity of the trapped neutrinos can be calculated as

ην = 2
∫

2d3q

(2π )3

τν

15T

v2
ν q2

(evνq/T + 1)(1 + e−vνq/T )

= 7 π2

225 v3
ν

T 4τ̄ν ≈ 3.54 × 1021

[
g

cm s

]
T 4

9
τ̄ν

s
. (52)

Here in contrast to the phonon shear viscosity we have to
take into account that neutrinos are fermions with the spin 1

2
and their speed is vν ≈ 1. Extra factor 2 takes into account
antineutrinos. Neutrino collision times τν are different for the
electron, muon, and tau neutrinos: Electron-neutrinos have the
shortest collision time, whereas tau neutrino have the longest.
This difference reflects the difference in concentrations of the
corresponding leptons in the neutron star matter. For simplicity
we consider only the electron neutrino contribution to the share
viscosity.

In the absence of the DU reactions the neutrino collision
time is mainly determined by the inverse MU (or MMU) pro-
cesses and by the inverse PU reaction, if the pion condensate
is formed for n > nπ

c . Thus, in our scenario we have

1/τν(q) = 1
/
τ (MMU)
ν (q) + θ

(
n − nπ

c

)/
τ (PU)
ν (q), (53)

where θ (x) is the step function, θ (x) = 1 for x � 0 and 0 for
x < 0.

Using the result for MU mean free path from Ref. [33] [see
Eq. (95) there] and incorporating the in-medium modification
factor (9) for the MMU processes (cf. [40]), we get

τ (MMU)
ν (q) = (2.7 × 104s)

(
n0

ne

)1/3
m4

N

m∗ 3
n m∗

p

× T −4
9 F−1

MMU(n)

[(q/T )2 + π2] [(q/T )2 + 9π2]
. (54)

The PU collision time can be estimated as

τ (PU)
ν (q) = (2.9 × 10−5 s) T −2

9

(q/T )2 + π2

FDU

FPU

(
n0

ne

) 1
3 m2

N

m∗
n m∗

p

. (55)

The averaging over the neutrino momentum in Eq. (52)
corresponds to the effective substitution q → q̄ν � 4.4T in the
MMU and PU collision times [33,39]. With this replacement
in Eq. (53), using Eq. (11) we evaluate the averaged neutrino
collision time,

τ̄ν = 8.7s

T 4
9 FMMU(n)

m4
N

m∗ 3
n m∗

p

(n0/ne)
1
3

1 + χPU(n,T )
,

χPU(n,T ) = 1.4 × 106θ (n − nπ
c )

T 2
9 FMMU(n)

m2
N

m∗2
n

|aπ |2
m2

π

�2(n)

�2(n0)

(
nn

ne

) 1
3

.

(56)

Substituting Eq. (56) in Eq. (52) we finally obtain

ην = 3.08 × 1022

1 + χPU(n,T )

[
g

cm s

](
n0

np

) 1
3 m4

N

m∗ 3
n m∗

p

F−1
MMU(n). (57)

Note that the partial MMU contribution to the neutrino shear
viscosity does not explicitly depend on the temperature but
only on the local density. The temperature dependence enters
ην through the PU contribution (χPU ∝ 1/T 2).

The temperature determines, though implicitly, the size of
the region of the star, where neutrinos are trapped. Indeed,
neutrinos can be trapped in a denser interior, whereas the outer
region is already transparent for them. Thus, integrating the
neutrino viscosity over the density profile we have to restrict
the integration to the volume, where neutrinos are trapped,

η(opac)
ν (r,T ) = ην(n(r)) θ (ropac − r). (58)

The radius of the region of the neutrino opacity, ropac, is
determined by the relation

vν τ̄ν(n(ropac),T ) = R − ropac. (59)

Using Eq. (56) and putting m∗
n � m∗

p = m∗
N we can rewrite

this equation in the form

ropac

R
= 1 − [1 + χPU(n(ropac),T )]

m4
N

m∗ 4
N (n(ropac))

× 2.6 · 105 T −4
9

R6 FMMU(n(ropac))

[
n0

ne(ropac)

] 1
3

. (60)

The opacity radius, ropac, as given by Eq. (60), is depicted in
Fig. 16 as a function of the temperature for different values
of the neutron star masses. For the MU processes (curves
labeled MU) the opacity radius stays zero independently of
the neutron star mass up to the temperature T9 � 30 and then
it rises steeply to the star radius R at higher temperatures.
The dependence of the opacity radius ropac on the neutron star
mass is very weak. The pattern changes drastically for the
MMU reactions (curves labeled MMU). These MMU curves
in Fig. 16 are calculated for the pion gap changing with the
nucleon density along curve 1a + 1b in Fig. 6, i.e., in absence
of the pion condensation. The threshold temperature, at which
ropac starts growing, is much smaller, being sensitive to the
value of the neutron star mass. For the heaviest neutron star
(2.05M�) the opacity region appears already for T9 > 4. We
also plot ropac for the heaviest star computed with the choice
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FIG. 16. (Color online) The neutrino-opacity radius as a function
of temperature for different neutron star masses calculated according
to Eq. (60). The neutrino collision time is determined by the inverse
MU processes (curves labeled as MU), by inverse MMU processes
(curves labeled as MMU) [the latter processes are encoded in Eq. (54)
by the factor FMMU(n)], and by the inverse PU processes in the
presence of the MMU reactions (curves labeled as MMU + PU).
The density dependence of the pion gap in the MMU enhancement
factor (9) is taken along curve 1a + 1b in Fig. 6 and along curve
1a + 2 in presence of pion condensate computed following curve 3.
The curve labeled 1c is calculated with the pion gap taken along curve
1a + 1c. Hatched areas show regions of the star where protons are
paired, in dependence on the temperature. The regions are shown for
stars with masses 1.5M�, 1.8M�, and 2.05M�.

for the pion gap along curve 1a + 1c; see the curve labeled
by 1c, again in absence of the pion condensation but with a
stronger pion softening. In this case the opacity region appears
at still smaller temperature, T9 > 2.

Note that usually (see Refs. [33,39–41,99]) the opacity
temperature is determined as the temperature at which the
neutrino mean free path at some averaged density, n̄, becomes
equal to the neutron star radius, vν τ̄ν(n̄,Topac) = R. With the
help of the opacity radius introduced above, we can define
the opacity temperature more carefully as the temperature at
which ropac = 0. The latter quantity is significantly smaller
than the opacity temperature introduced in previous works
because the neutrino mean free path strongly depends on the
density in the MMU processes.

In Eqs. (56) and (60) we do not include the nucleon pairing.
It is permissible because the region of neutrino trapping,
calculated without account for the pairing, practically, proves
not to overlap with the pairing region in the star. Indeed, the
neutron paring occurs at small densities only in outer parts
of the star for r � 0.85R, which is larger than ropac for the
temperatures when the pairing exists. Proton pairing, although
it reaches deeper inside the star, does not interfere with the
neutrino trapping. It is seen in Fig. 16, where we show proton
pairing regions (hatched areas) as functions of the temperature
for neutron stars with masses 1.5M�, 1.8M�, and 2.05M�.
As we see, ropac calculated with the MMU processes lies
always outside the pairing region for the corresponding star
mass. The opacity radius calculated with inclusion of inverse

FIG. 17. (Color online) The neutrino shear viscosity (58) aver-
aged over the neutron star profile for three values of the neutron star
mass in comparison with the lepton shear viscosity (32) calculated
with account for the proton pairing. Curves labeled as MMU are
calculated for the case where neutrinos are trapped by the inverse
MMU processes only [the MMU enhancement factor (9) is taken
along curve 1a + 1b in Fig. 6]. Calculations of the curves labeled
as MMU + PU are performed following curve 1a + 2 for MMU and
curve 3 for PU.

PU processes (lines labeled MMU + PU) is only minimally
influenced by the proton pairing.

The neutrino viscosity calculated with the help of Eqs. (57)
and (58) and averaged over the star density profile is shown
in Fig. 17. Curves labeled as MMU are calculated under the
assumptions that neutrinos are trapped by the inverse MMU
processes only, whereas for the curves labeled as MMU + PU,
the neutrino scattering on the pion condensate is included.
We see that the neutrino contribution to the shear viscosity
exceeds the lepton shear viscosity at T9 � 4 for middle-heavy
and heavy neutron stars. For the heaviest neutron star the
neutrino shear viscosity starts to dominate over the lepton
contribution at T9 � 3, if the PU processes are taken into
account. For the light neutron stars with masses M ∼ M� the
neutrino shear viscosity term dominates over the lepton term
only for T9 > 10.

V. BULK VISCOSITY

We consider three sources of the bulk viscosity: the
contribution owing to the NN collisions, ζcol, the soft-mode
contribution, ζs.m., and the radiative viscosity term, ζrad. The
total viscosity is the direct superposition of these contribu-
tions ζ = ζcol + ζs.m. + ζrad. In subsequent three sections we
consider the bulk viscosity in the normal matter. Pairing effects
will be evaluated in Sec. V D.

A. Collisional term

The contribution to the bulk viscosity induced by NN
collisions, calculated at low temperatures in the framework
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= +

FIG. 18. Diagrammatic equation for the particle-hole interaction.

of the Fermi-liquid theory [100,101], is equal to

ζcol = π2np2
F,N

18m∗
N

τN

(
T

EF

)4

×
[

p2
F,N

2m∗
N

∂2

∂E2
p

(
p2

3m∗
N

+ n

∫
d� �p
4π

T �p, �p′

)]2

p=p′=pF,N

,

(61)

where Ep = p2/2m∗
N , EF = p2

F,N/2m∗
N , and τN is the nu-

cleon relaxation time, which can be estimated as [78] τN ∼
0.1m2

πm2
N/(m∗ 3

N T 2); cf. Eqs. (36), (40), and (42). The quantity
T �p, �p′ is the symmetric part of the dimensionless quasiparticle
interaction amplitude determined by the symbolic equation
shown in Fig. 18 with the empty block parametrized as in
Eq. (4).

Retaining only zeroth harmonic of the scalar interaction,
we have

T �p, �p′ = C0 f0

1 + C0 f0L(ω,�q,n)
, (62)

where L is the loop function and f0 is the zeroth harmonic
of the dimensionless scalar Landau-Migdal parameter. For nn
collisions the relevant parameter is estimated as |f nn

0 | � 1;
e.g., see Ref. [102]. Then Eq. (61) can be rewritten as

ζcol = 2

81π2

m∗5
N

m2
Nn0

τN

(
n0

n

)1/3

T 4f 2
0 . (63)

The nn collision contribution to the viscosity proves to be
numerically small at the neutron star temperatures,

ζcol ∼ 104

[
g

cm s

]
T 2

9

(
n0

n

)1/3 (
m∗

N

mN

)2

f 2
0 , (64)

and can be neglected.
In the star regions where neutrinos are trapped [r <

ropac(T )], neutrino collisions can contribute to the bulk
viscosity, but we expect this contribution to be smaller than
the neutrino shear viscosity term calculated in Sec. IV D.

B. Soft-mode contribution

The soft-mode contribution to the bulk viscosity, ζs.m., arises
in the case where the pressure of the system depends on a
parameter, which time of the relaxation to the equilibrium
value is substantially longer than the period of the density
variation [14,15]. In our case the soft-mode contribution to the
bulk viscosity arises, because r-modes induce a variation in the
pressure and density that drives the star matter away from the β
equilibrium [32]. Slow weak interactions try to reestablish the
equilibrium, i.e., to restore the equilibrium value of electron
and muon concentrations Xe = ne/n and Xμ = nμ/n, via

charged-current processes, which contribute additively, ζs.m. =
ζs.m.,e + ζs.m.,μ. Here we consider the neutron star at least
several seconds after its formation, when the the neutrino
chemical potential μν has already vanished and, therefore,
there is no soft-mode contribution to the bulk viscosity from
neutrinos.

Following Refs. [20,31], we define the bulk viscosity
averaged over the perturbation period as

ζs.m.,l = n
〈P (n + δn(t),Xl + δXl(t)) δṅ(t) 〉P

〈(δṅ(t))2〉P . (65)

Here P is the pressure, 〈· · · 〉P stands for the averaging over
the period of a perturbation, and l = e,μ, as above.

The chemical relaxation rate takes a time of the order
or longer than 1/ω ∼ 10−4–10−3 s, whereas the thermal
relaxation time is much shorter. Therefore, the neutron star
can be considered in the thermal quasiequilibrium, but not in
the chemical one. In the state out of chemical equilibrium
we have to take into account dependence of the reaction
rates of MU, MMU and DU processes on the difference of
chemical potentials, δμl = μn − μp − μl , where μn and μp

are chemical potentials of the nucleons. The bremsstrahlung
reactions obviously do not contribute to ζs.m., because they do
not change the number of electrons and muons and cannot
restore the chemical equilibrium. According to Refs. [19,20]
the dependence of the reaction rate on the nucleon density and
δμl can be written in a separable form,

�
(r)
l (T ,n,δμl) = �

(r)
0,l(T ,n)I (r)

2 (δμl/T ),

I (r)
m (ξ ) =

∫ ∞

0
dxxmJ (r)(x − ξ ). (66)

Here J (r) represents the phase space of the reaction with m(r)

incoming and outgoing fermions excluding neutrinos involved
in the process

J (r)(ξ ) =
∫ +∞

−∞

⎡⎣m(r)∏
i=1

dxi

exi + 1

⎤⎦ δ

⎛⎝m(r)∑
i=1

xi − ξ

⎞⎠ . (67)

Analytical expression for this integral can be found in
Ref. [100], part 1, Appendix A. The DU processes involve
m(r) = 3 fermions, whereas the MU processes involve m(r) = 5
fermions. Then we have, for example,

I
(DU)
1 (0) = 17π4

240
, I

(MU)
1 (0) = 367π6

6048
. (68)

If the rate �(r)(T ,n,δμl) corresponds to a reaction in which
neutrons are converted to protons, the rate for the inverse
reaction (protons to neutrons) is given by �(r)(T ,n, − δμl).
Then the equation determining the evolution of the slow
parameter Xl can be written in the linear approximation as

n δẊl(t) =
∑

r

[
�

(r)
l (T ,n + δn(t),δμl(t))

− �
(r)
l (T ,n + δn(t), − δμl(t))

]
≈ −

∑
r

λ
(r)
l (T ,n) δμl(t), (69)
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where

λ
(r)
l (T ,n) ≈ −2

∂

∂δμ
�

(r)
l (T ,n,0) = − 4

T
�

(r)
0,l(T ,n) I

(r)
1 (0).

(70)

The difference of chemical potentials is expressed through the
parameters characterizing the state of the system as

δμl(t) = ∂δμl

∂n
δn(t) + ∂δμl

∂Xl

δXl, (71)

where all partial derivatives are taken at equilibrium. We
neglect mixing among different lepton species; see Ref. [20]
for complete consideration. From Eqs. (69) and (71) we find

δXl(t) = −
∑

r

λ
(r)
l (T ,n)

n2
Cl

∫ t

δn(t ′)e(t ′−t)/τX,l dt ′, (72)

1

τX,l

=
∑

r

λ
(r)
l (T ,n)

nXl

Dl, Cl = n
∂δμl

∂n
, Dl = Xl

∂δμl

∂Xl

.

(73)

Here τX,l is the relaxation time of the parameter Xl . Partial
derivatives in Eq. (73) can be expressed through the nuclear
symmetry energy, Esym, as [20]

Cl = 4(1 − 2 Xp) n
∂Esym

∂n
− p2

F,l

3μl

,

Dl = −8Xl Esym(n) − p2
F,l

/
3μl. (74)

We note that Dl < 0 and therefore τX,l is always positive,
because λ

(r)
l < 0. Coefficients Cl and Dl are shown in Fig. 19.

Knowing the evolution of the parameter Xl given by
Eq. (72), we can calculate the soft-mode bulk viscosity. Ex-
panding pressure in Eq. (65) up to linear order in perturbations,

FIG. 19. (Color online) Coefficients Cl and (−Dl) from Eq. (74)
for electrons and muons as functions of nucleon density for the
HDD EoS.

we obtain

ζs.m.,l ≈ n
∂P

∂n

〈δn(t)δṅ(t)〉P
〈(δṅ(t))2〉P + n

∂P

∂Xl

〈δXl(t)δṅ(t)〉P
〈(δṅ(t))2〉P . (75)

For a harmonic perturbation with the frequency ω, which we
exploit in this work, the first term vanishes and the second one
yields

ζs.m.,l ≈ − ∂P

∂Xl

dXl

dn

nτX,l

1 + ω2 τ 2
X,l

[1 − g(ωτX,l)], (76)

g(x) = x (1 − e−2π/x)

π (1 + x2)
, (77)

where we used the relation ∂δμl

∂n
/[ ∂δμl

∂Xl
] = − dXl

dn
, which follows

from (71) in the chemical equilibrium. Equation (76) (without
the g term in squared brackets) is the result of Ref. [17]. In the
limit τX,lω � 1 we have g(x � 1) = O(1/x2) and recover the
result of Ref. [20],

ζs.m.,l ≈ ζ s.m.,l ≡
∑

r

ζ
(r)
s.m.,l ,

ζ
(r)
s.m.,l = −λ

(r)
l (T ,n)

ω2
C2

l . (78)

In this limit the viscosity becomes a superposition of par-
tial viscosities determined by various processes. The limit,
τX,lω � 1, was usually exploited in previous works. Below we
compare the results obtained using the simplified expression
with those following from the general expression (76).

With the help of the relation ∂P
∂Xl

= −nCl , Eq. (76) is
rewritten as

ζs.m.,l ≈ −C2
l

Dl

nl τX,l

1 + ω2 τ 2
X,l

[1 − g(ωτX,l)]

≈ 2.56 × 1034

[
g

cm s

]
C2

l [1 − g(ωτX,l)]

100 MeV |Dl|
nl

n0

τX,l/s

1 + ω2 τ 2
X,l

.

(79)

Reactions bringing the matter toward the chemical equi-
librium, which we now consider, are DU, MU, and MMU
(neutron and proton branches), so r = DU, MU(n,p), and
MMU(n,p). Using the results of Refs. [20,31] we can write

�
(DU)
0,l (T ,n) = G2

w

4 π5

(
1 + 3 g2

A

)
m∗

n m∗
p μl T

5�npl, (80)

�
(MU)n
0,l (T ,n) = G2

wpF,l

π9pF,e

f 4
πNNg2

A m∗3
n m∗

p pF,p T 7, (81)

�
(MU)p
0,l (T ,n) = �

(MU)n
0,l (T ,n)

× m∗2
p

m∗2
n

(3pF,p + pF,l − pF,n)2

8pF,ppF,l

�pl. (82)

Here Gw = GF cos θC with GF � 1.436 × 10−49 erg cm3, be-
ing the Fermi weak coupling constant, and θC stands for the
Cabbibo angle, sin θC = 0.225. The quantity gA = 1.26 is the
axial-vector coupling constant, μμ = μe � pF,e. The factor
�npl in Eq. (80) is equal to 1 if pF,n < pF,p + pF,l and is 0
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otherwise. It allows the DU reaction only when the proton
concentration is higher than a critical one. The critical density,
n(DU),l

c , for the DU process with participation of the lepton
l = e, μ− for the HDD EoS is n(DU),e

c = 5.05n0 and n
(DU),μ
c =

6.07n0; cf. Fig. 1. A similar factor �pl in Eq. (82) allows
the proton branch of the MU process only for densities when
pF,n < 3pF,p + pF,l . The corresponding critical densities are
n

(MU)p,e
c = 0.22n0 and n

(MU)p,μ
c = 0.73n0; see Fig. 1.

As discussed in Sec. II C, the in-medium nucleon-nucleon
interaction may significantly differ from a naive FOPE
exchange. Within the MOPE model the MU partial viscosity
should be replaced with the MMU one. The ratio of the rates
of the MU and MMU processes is determined by the FMMU

factor given by Eq. (9):

�
(MMU)i
0,l (T ,n) = �

(MU)i
0,l FMMU(n), i = n,p. (83)

Note that, as we have mentioned, we use for simplicity the
vacuum weak coupling vertices, because for q0 � q in neutrino
vertices the NN correlation corrections are rather suppressed
(see Refs. [40,41]), but we correct the strong interaction
vertices. Therefore, the DU processes we consider without
in-medium modifications.

In sufficiently dense matter there might appear pion
condensates. We focus on effect of the π− condensation. With
the parametrization of ω̃ used above it appears for densities
n > nπ

c = 3n0. The rate of the PU processes, n + π−
cond →

n + l + ν̄l , is determined by

�
(PU)
0,l = G2

4π5

(
1 + 3 g2

A

)
f 2

πNN m∗
p m∗

n�
2 k0 |aπ |2 T 5, (84)

We use that the momentum of the inhomogeneous pion
condensate is k0 � pF,n and estimate the condensate amplitude
as |aπ |2 � |ω̃2|/m2

π , with ω̃ given by curve 3 in Fig. 6.

The relaxation time τX,l entering Eq. (79) is expressed
through the partial relaxation times as

1

τX,l

=
∑

r

1

τ
(r)
X,l

, (85)

τ
(DU)
X,l = 30.7 s

m2
N

m∗
nm

∗
p

(
n3

l

ne n2
0

) 1
3

T −4
9

100 MeV

|Dl| �−1
npl, (86)

τ
(MU)n
X,l = 1.84 × 107 s

m4
N

m∗ 3
n m∗

p

(
n2

l ne

npn2
0

) 1
3

T −6
9

100 MeV

|Dl| .

(87)

Similarly, the relaxation time for the MMU reactions is

τ
(MMU)n
X,l = τ

(MU)n
X,l

/
FMMU(n), (88)

and for the PU processes on the π− condensate we have

τ
(PU)
X,l � 6.76

m2
π

|aπ |2
�2(n0)

�2(n)

(
ne

nn

) 1
3

τ
(DU)
X,l θ−1(n − nπ

c ). (89)

Obviously, in this expression the �npl function in τ
(DU)
X,l should

be dropped. The electron relaxation time τX,e, entering the
denominator of Eq. (76) and the g function, is shown in
Fig. 20 as a function of the temperature for various values
of nucleon densities. The relaxation time determined by the
MU reaction, Fig. 20(a), shows very weak dependence on the
density for n < n(DU),e

c and drops substantially once the DU
reactions kick in. With account for in-medium modifications
of the NN interaction and the pion condensation the lepton
relaxation time gradually decreases with the density increase,
as seen from panels (b) and (c) in Fig. 20. In panel (b), in the
absence of the PU process, it smoothly approaches the DU
relaxation time at n(DU),e

c . The main term here for n < n(DU),e
c

is determined by the MMU reactions. In panel (c), in the
MMU + PU + DU case, the situation is more complicated
because in this case for n > 3n0 the PU process becomes
efficient, whereas the MMU rate (calculated with ω̃ given by
curves 1a + 2 in Fig. 6) is less than that in panel (b) (calculated

FIG. 20. (Color online) The relaxation time τX,e of the electron concentration as a function of temperature for various nucleon densities
(shown by line labels). In panel (a) only the MU and DU (above n(DU),e

c ) processes are taken into account. In panel (b) only the MMU and DU
(above n(DU),e

c ) processes are included; see Eq. (83). The pion gap in the MMU enhancement factor (9) is taken along curve 1a + 1b in Fig. 6.
In panel (c) the PU process (above nπ

c ) is additionally incorporated following curve 3 in Fig. 6. The pion gap in the MMU enhancement factor
is taken along curve 1a + 2. The horizontal dashed lines show the inverse angular velocities of the fastest old-binary pulsar PSR J1748-2446ad
(ν = 716 Hz) and the young one PSR J0537-6910 (ν = 62 Hz).
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with ω̃ given by curves 1a + 1b). The dependence on the
nucleon density and temperature of the muon relaxation time
is similar to that for the electron one. Thus, in all cases for
ω ∼ 103–104 Hz of our interest and for T < 1010 K one can
exploit the limit τX,lω � 1 and use Eq. (78).

The main contribution to the bulk viscosity in the npeμ
matter comes from the DU neutrino processes, provided n >
n(DU),l

c . In the limit τX,lω � 1 it reads, cf. Refs. [19,20],

ζ
(DU)
s.m.,l = 17π4 C2

l

60 T ω2
�

(DU)
0,l (T ,n) � 8.35 × 1024

[
g

cm s

]

× m∗
nm

∗
p

m2
N

(
ne

n0

) 1
3 T 4

9

ω2
4

(
Cl

100 MeV

)2

�npl, (90)

where ω4 = ω/104s.
In absence of the DU processes (i.e., for n < n(DU),e

c ) the
main contribution to the bulk viscosity of nonsuperfluid matter
comes from the MU (or MMU) reactions. For the n + n →
n + n + l + ν̄ process, employing FOPE matrix element in the
limit τX,lω � 1 one gets [31]

ζ
(MU)n
s.m.,l = 367π6 C2

l

1512 T ω2
�

(MU)n
0 (T ,n) � 1.39 × 1019

[
g

cm s

]

×m∗ 3
n m∗

p

m4
N

(
nl np

ne n0

) 1
3
(

Cl

100 MeV

)2
T 6

9

ω2
4

(91)

for the neutron branch and

ζ
(MU)p
s.m.,l = ζ

(MU)n
s.m.,l

(
m∗

p

m∗
n

)2 (3pF,p + pF,l − pF,n)2

8pF,ppF,l

�pl (92)

for the proton branch. Thus, typically ζ (MU)/ζ (DU) ∼ 10−6 in
the region, where DU processes are allowed. The bulk viscosity
owing to the MMU processes is given by

ζ
(MMU)i
s.m.,l � ζ

(MU)i
s.m.,l FMMU(n), i = n,p. (93)

The contribution of the PU processes to the viscosity for
n > nπ

c is

ζ
(PU)
s.m.,l � 0.15

|aπ |2
m2

π

�2(n)

�2(n0)

(
nn

ne

) 1
3

ζ
(DU)
s.m.,l , (94)

where we have used that I (PU)
m = I (DU)

m . With the help of Eq. (8)
the condensate amplitude can be expressed through the pion
gap taken along curve 3 in Fig. 6. Similar rates are expected for
the kaon condensate Urca (KU) processes, for n > nK

c , where
nK

c is estimated as ∼3n0–5n0; see Ref. [103].
Partial contributions to the profile averaged bulk viscosity

〈ζ (r)
s.m.,l〉 are presented in Fig. 21 for DU [Eq. (90)], MU

[Eq. (91)], MMU [Eq. (93)], and PU [Eq. (94)] processes
as functions of the neutron star mass for T9 = 1. We see
that for M� � M < 1.6M� the main contribution to 〈ζs.m.,l〉
comes from the MMU processes. Three MMU lines (labeled
1b, 1c, and 2) correspond to different choices of the density
dependence of the pion gap for n > 3n0 as shown in Fig. 6. For
M > 1.6M� the main contribution to 〈ζs.m.,l〉 comes from the
PU process, 〈ζ (DU)

s.m.,l〉 < 〈ζ (PU)
s.m.,l〉 even for the heaviest neutron

star. For T9 = 1 the ω dependence of 〈ζs.m.,l〉 is unimportant
in the interval 103 � ω < 104 Hz of our interest. Calculations

FIG. 21. (Color online) Partial contributions to the profile av-
eraged bulk viscosity 〈∑l ζ

(r)
s.m.,l(1 + 0.86r2/R2)〉8 from DU, MU,

MMU, and PU processes as functions of the neutron star mass. Three
MMU lines (labeled 1b, 1c, and 2) correspond to different choices
of the density dependence of the pion gap for n > 3n0, as shown in
Fig. 6; the PU process is calculated using curve 3 in Fig. 6, T9 = 1,
ω = 4

3 × 104 Hz.

presented in Fig. 21 are performed for ω4 = 4/3 (recall ω =
4�/3). Each partial contribution to the bulk viscosity depends
on the frequency as ω−2. With an increase of the temperature
the 〈ζ (MU/MMU)

s.m.,l 〉 increases ∝ T 6, whereas 〈ζ (PU/DU)
s.m.,l 〉 increases

∝ T 4.
The ratio of the total bulk viscosity averaged over the

star density profile, 〈ζs.m.(1 + 0.86(r/R)2)〉8, with the lepton
contributions given by Eq. (79) to the same average of the
bulk viscosity calculated according to Eq. (78) in the limit
ωτX,l � 1 is demonstrated in Fig. 22. It begins to deviate from
unity with decrease of the frequency and/or with increase of
the temperature. The deviation from unity is more pronounced
for the heavier neutron stars. Most of the observed rapidly
rotating young pulsars have rotation frequencies � ∼ 102 Hz.
At such a frequency (ω = 4

3�) for the heaviest neutron star
the deviation of the ratio from unity starts for T9 � 7. Thus,
in this case the bulk viscosity should be calculated following
Eq. (79) rather than using Eq. (78).

C. Radiative contribution

The soft-mode contribution to the bulk viscosity is de-
termined by dissipation of internal energy of an elementary
volume, as a result of work done against an external pressure.
The latter work is spent when the variation of the pressure in
the volume is lagged behind the variation of the density. This
occurs when the pressure depends on parameters with long re-
laxation times. In our case these are the lepton concentrations,
which are balanced by slowly processing weak interactions.

Another source of the energy dissipation induced by a den-
sity perturbation is an increase of the direct neutrino emission
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FIG. 22. (Color online) Ratio of the total profile averaged bulk viscosity, 〈ζs.m.[1 + 0.86(r/R)2]〉8, with the lepton contributions given by
Eq. (79), to the same value calculated according to Eq. (78), i.e., in the limit ωτX,l � 1, for the three values of neutron star masses. Notations
of processes are the same, as in Fig. 20.

with respect to emission without the perturbation. The corre-
sponding contribution to the bulk viscosity, called a radiative
viscosity, was considered in Ref. [44] for the first time,

ζrad = −n2 〈εν(n + δn(t),δμ(t)) − εν(n,0)〉P
〈(δṅ(t))2〉P , (95)

where εν is the total neutrino emissivity, which is a sum
of contributions of the DU, MU/MMU, and PU reactions,
εν = ∑

r,l ε
(r)
l . Note that the radiative viscosity contributes

only in the regions transparent for neutrinos, i.e., for r > ropac.
For the system out of chemical equilibrium the neutrino

emissivity can be written as

ε
(r)
l (n,δμl) = �

(r)
0,l(T ,n) T

[
I

(r)
3 (δμl/T ) + I

(r)
3 (−δμl/T )

]
.

(96)

The integral I
(r)
3 is determined in Eq. (66).

Expanding Eq. (95) up to second order in perturbations, we
obtain ζrad = ∑

l,r ζ
(r)
rad,l , where

ζ
(r)
rad,l ≈

{
n2

2

∂2ε
(r)
l

∂n2
+ ∂2ε

(r)
l

∂δμ2
l

C2
l

2

}
〈(δn(t))2〉P
〈(δṅ(t))2〉P

+ ∂2ε
(r)
l

∂δμ2
l

n

Xl

ClDl

〈δn(t)δXl(t)〉P
〈(δṅ(t))2〉P

+ ∂2ε
(r)
l

∂δμ2
l

n2

2Xl

D2
l

〈(δXl(t))2〉P
〈(δṅ(t))2〉P . (97)

Using Eq. (72) for calculation of the averages over
the perturbation period, Eqs. (73) and (78), and that
∂2ε

(r)
l /∂(δμl)2 = −3 λ

(r)
l , we obtain from Eq. (97)

ζ
(r)
rad,l = 3

2
ζ

(r)
s.m.,l

[
1 − π (1 + x2)g2(x)

1 − g(x)

]
+ n2

2ω2

∂2ε
(r)
l

∂n2
, (98)

where x = ωτX, and g(x) is defined in Eq. (77). Taken in the
limit x � 1, the first term reproduces the result of Ref. [44].
The second term and the square bracket factor yielding the
x dependence of the first term are new, derived in this work.
The second term can contribute greatly, only provided that the
neutrino emissivity strongly depends on the nucleon density.

Guided by Eq. (98) we write

ζ
(r)
rad,l = R(r)ζ

(r)
s.m.,l . (99)

For r = MU, DU, and PU processes, the density dependence
of the neutrino emissivity is weak, except a narrow vicinity (of
the width ∼δn in the density) of the thresholds for DU and PU
processes. In the limit ωτX � 1, dropping the square bracket
factor and neglecting a small second term in Eq. (98), one gets

R(r) ≈ 3
2 , r = MU, DU, PU. (100)

The strongest density dependence is inherent in the MMU
processes, because of the scaling factor FMMU(n); see Eq. (9).
Thus, the last term in Eq. (98) must be taken into account:

∂2ε
(MMU)
l

∂n2
= ∂2�

(MMU)
0,l

∂n2
2T I

(MU)
3 (0)

= −λ
(MMU)
l

I
(MU)
3 (0)

I
(MU)
1 (0)

T 2

2

F ′′
MMU(n)

FMMU(n)
, (101)

where F ′′
MMU(n) stands for the second derivative of FMMU

with respect to the nucleon density and I
(MU)
3 (0)/I (MU)

1 (0) =
11 513 π2/7340. For ωτX � 1 we find

R(MMU) = 3

2
+ 11 513π2

29 360

T 2

C2
l

n2 F ′′
MMU(n)

FMMU(n)

≈ 3

2
+ 2.87 × 10−6 T 2

9

(
100 MeV

Cl

)2

n2 F ′′
MMU(n)

FMMU(n)
.

(102)

In the profile averaged viscosity this factor enters as averaged
over the star profile, cf. Eq. (99):

R(MMU) =
〈∑

l ζ
(MMU)
rad,l (1 + 0.86r2/R2)θ (r − ropac)

〉
8〈∑

l ζ
(MMU)
s.m.,l (1 + 0.86r2/R2)

〉
8

. (103)

Here the θ function takes into account that the radiative
viscosity contributes only, if the medium is transparent for
neutrinos, i.e., only for regions with r larger than the opacity
radius. The coefficient R(MMU) is shown in Fig. 23. We see
that for light stars (with M ∼ M�) the factor R(MMU) � 3/2
for T9 < 10, and for heavy stars R(MMU) � 3/2 for T9 < 4.
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FIG. 23. (Color online) Factor R(MMU), the ratio of the averaged
radiative bulk viscosity of the MMU processes given by Eq. (98) to
the averaged soft-mode viscosity term (93), both calculated in the
limit ωτX,l � 1, as a function of temperature for various neutron star
masses.

Thus, for temperatures T9 < 4 for all masses the second term in
Eq. (102) proves to be small. With increase of the temperature
the second term in Eq. (102) starts to contribute but this growth
is cut by the θ function, leading to a strong suppression of
the factor R(MMU). The values R(PU) and R(DU) deviate only
little from 3/2 for temperatures T9 < 5 and are cut at higher
temperatures similarly to the factor R(MMU).

In contrast to the soft-mode contributions to the bulk
viscosity, which are linked with the reactions restoring the
lepton concentrations in the star, the radiative viscosity
arises also from processes not involving charged leptons, like
neutrino bremsstrahlung reactions n + N → n + N + ν + ν̄,
where N = n,p. With account for the medium effects the
neutrino emissivity of these medium bremsstrahlung (MB)
reactions is

ε(MB)n
ν � 41

14175

G2
w

2π
g2

Am∗4
n f 4

πNNpF,n T 8FMB(n), (104)

ε(MB)p
ν = ε(MB)n

ν

m∗2
p

m∗2
n

pF,p

pF,n

. (105)

The factor FMB(n) given by Eq. (10) takes into account the
MOPE interaction. The contribution to the radiative viscosity
from the (MB)n and (MB)p processes is given by

ζ
(MB)
rad ≈ 6.08 × 1011

[
g

cm s

]
T 8

9

ω2
4

n2 d2

dn2

×
{(

m∗
N

mN

)4
(

n
1/3
p + n

1/3
n

n
1/3
0

)
FMB(n)

}
. (106)

Estimations show that the averaged viscosity 〈ζ (MB)
rad (1 +

0.86r2/R2)〉8 is systematically much smaller than the averaged
soft-mode viscosity from the MMU reactions shown in Fig. 21.

D. Pairing effects on the bulk viscosity

In superfluid medium the neutrino production rates become
suppressed, roughly by exponential factors ξi = exp(−�i/T )
for T 
 �i (in the absence of the pairing ξi should be put to
unity, i = n,p). Thus, we may roughly estimate effect of the
pairing on values of the DU, PU, and MU/MMU and Bn/MBn,
Bp/MBp partial contributions to the bulk viscosity as

ζ
(DU/PU)(s)
s.m.,l = ζ

(DU/PU)
s.m.,l min[ξn,ξp],

ζ
(MU/MMU)i(s)
s.m.,l = ζ

(MU/MMU)i
s.m.,l ξp ξi . (107)

Suppression factors for Bn/MBn, Bp/MBp quantities should
be similar to those for the MU/MMU reactions. As above,
superscript “(s)” indicates quantities computed in the presence
of pairing. More generally, the pairing effects are usually
included in terms of the so-called R factors [104] taking into
account the Pauli blocking effects. The complete consideration
should involve the normal and anomalous Green’s functions.
It is not yet carried out for the two-nucleon processes. Simpli-
fying, we further use the exponential suppression factors.

For the radiative contribution to the bulk viscosity we
exploit a simple relation,

ζ
(r,s)
rad,l = R(r)ζ

(r,s)
s.m.,l , (108)

which follows from Eqs. (99) and (107) if one neglects density
dependence of the gaps.

The effect of the proton superconductivity on the bulk
viscosity is illustrated in Fig. 24. As we see, this effect is more

FIG. 24. (Color online) The profile averaged total bulk viscosity, 〈∑l ζ s.m.,l[1 + 0.86(r/R)2]〉8, calculated with (dashed lines) and without
(solid lines) nucleon pairing effects for several neutron star masses. The curves for stars with different masses are scaled by the factors indicated
by the curve labels. The pairing is taken into account according Eq. (107). Notations of processes are the same, as in Fig. 20.
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pronounced for the light and middle-heavy neutron stars, with
M < 1.8M�. In the heavy neutron stars, for M > 1.9M�, the
viscosity is mainly determined by the DU reactions, which
occur in the central region of a star, where the proton pairing
is absent (cf. Fig. 9).

In the presence of the pairing there appear extra efficient
processes of the one-nucleon origin, the so-called PBF
processes, suggested in Refs. [34,35,105]. In the case where
nucleons are paired in the 1S0 state the neutrino emissivity is
as follows [94]:

ε(PBF)i
ν = 8G2

w g2
A

35π5

p3
F,i

m∗
i

�7
i I

(
�i

T

)
, i = n,p,

I (z) =
∫ ∞

1

dy√
y2 − 1

y5

(1 + ez y)2
. (109)

In the limit T 
 �i the corresponding contribution to the
radiative viscosity is given by

ζ
(PBF)i
rad ≈ 4.74 × 1018

[
g

cm s

]
T

1/2
9

ω2
4

× n2 d

dn2

{
ni

n0

mN

m∗
N

(
�i

MeV

) 13
2

ξ 2
i

}
. (110)

This contribution proves to be much smaller than those for the
MMU and PU processes and, therefore, can be dropped.

In Fig. 25 we collect our results for the density profile
averaged shear and bulk viscosities. The viscosities are plotted
as functions of the temperature for various star masses. The
bulk viscosity 〈ζ (1 + 0.86(r/R)2)〉8 is computed accounting
for the nucleon pairing; see Eqs. (107) and (108). The main
contributions come from the soft-mode term (MMU and
DU processes are included) and the radiative one (the latter
term being � 1.5 times higher than the former). The main

FIG. 25. (Color online) The profile averaged shear, 〈η〉4, and
bulk, 〈ζ (1 + 0.86(r/R)2)〉8, viscosities calculated accounting for the
nucleon pairing; cf. Eqs. (31)–(33), (107), and (108) as functions
of the temperature for various neutron star masses. Calculations of
the bulk viscosity are done for ω = 4

3 × 104 Hz and MMU + DU
reactions are included. The pion gap in the MMU contribution is
taken along curves 1a + 1b in Fig. 6.

contributions to the shear viscosity are, for T � 3 × 109 K,
the lepton term 〈η(s)

e/μ〉4 [see Eqs. (31) and (33)], and for higher
temperatures, the neutrino radiative term 〈ην〉4 [see Eqs. (57)
and (58)]. The bulk viscosity is a very rapidly rising function
of the temperature and neutron star mass. At temperatures
above ∼109 for all masses the bulk viscosity exceeds the
shear viscosity term. For heavy stars with masses > 1.9M�,
where the bulk viscosity is dominated by the DU reactions, it
exceeds the shear viscosity term already at T > (2–5) × 108 K.
For lower temperatures the dominant contribution to the
dissipation comes from the lepton shear viscosity.

VI. CRITICAL SPIN FREQUENCIES OF NEUTRON STARS

The critical frequency for the r-mode instability follows
from the solution of the equation

τ−1
G (νc) = τ−1

η (νc) + τ−1
ζ (νc); (111)

see Eq. (15), ν = �/2π . Using Eqs. (21) and (23) we are able
to express νc through auxiliary quantities νc,η and νc,ζ ,

ν6
c = ν6

c,η + ν2
c ν4

c,ζ , (112)

where νc,η follows from the equation

τ−1
G (νc,η) = τ−1

η (νc,η), (113)

which includes only the shear viscosity, and νc,ζ from the
equation

τ−1
G (νc,ζ ) = τ−1

ζ (νc,ζ ), (114)

including only the bulk viscosity. The full solution of Eq. (112),
νc, is always larger than max{νc,η,νc,ζ } but the difference is
small, reaching a maximum, when νc,η = νc,ζ = νcros.

c with
νc ≈ 1.15νcros.

c .
As is seen from Fig. 25, for T9 < 0.2–2, depending on the

star mass, the bulk viscosity term is smaller than the shear
term. Thus, for sufficiently low temperatures solution νc,η of
Eq. (113) approximates well the full solution of Eq. (111).
At such temperatures the main term in the shear viscosity is
the lepton term, η

(s)
e/μ, which includes Landau damping effects

following Eq. (31) and the proton superfluidity factor Sη,e/μ

from Eq. (33) in the region of the proton pairing. Using
the interpolating formula (31) we get a simple expression
convenient for estimations,

νc,η = 153 Hz

R
3/2
6

(np,cen./n0)0.272

(ρcen/ρ0)
1
3

S
1/6
η,e/μ

T 0.290
9

. (115)

Simplifying further, one may use that (np,cen/n0)0.272/

(ρcen/ρ0)
1
3 � X

1/3
p,cen.

The solution of Eq. (113) (with all contributions to the
shear viscosity that we considered in this paper) is shown
in Fig. 26 for stars with masses from 1M� to 2.05M�. The
phonon shear viscosity is included with the neutron pairing
gaps shown in Fig. 9 (see the curves labeled by 1 in Fig. 15)
and yields only a minor contribution. The nucleon term in the
shear viscosity is small and is dropped, therefore. We see that
the critical spin frequency νc,η decreases with an increase of the
temperature, varying from νc,η = 350–380 Hz at T = 107 K to
the value of the maximum observed spin frequency for young
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FIG. 26. (Color online) The critical spin frequency of the r-mode
instability, νc,η, calculated using Eq. (113), i.e., accounting for the
shear viscosity only, as a function of the temperature for two values
of neutron star masses. Calculations of the lepton term are performed
with the help of Eqs. (31) and (33), including the proton pairing
effects. The neutrino shear viscosity is taken according to Eqs. (57)
and (58). Curves labeled η(FI)

ee are computed with the electron shear
viscosity taken in the Flowers-Itoh parametrization (25).

pulsars, 62 Hz, at T = 1.5–3 × 109 K. The mass dependence
of νc,η is only moderate for temperatures T9 � 3. Note that
values of νc,η obtained by us are less than those found in
Ref. [53] by a factor varying from 1.5 at T = 107 K to 2
at T = 109 K. Simplifying consideration, Ref. [53] used the
density profile taken ad hoc, which corresponds effectively to
a substantially higher central density of the star. Moreover,
they ignored density dependence of the proton pairing gap,
which results in an increase of the lepton shear viscosity
term, because then the proton superfluidity holds up to central
densities in all stars. In our case the lepton shear viscosity drops
substantially for n > 3.5n0 owing to the switching off of the
proton superfluidity; cf. Fig. 12. We have checked that with
the assumptions used in Ref. [53] we recover their results. For
comparison in Fig. 26 we also show the results obtained with
the Flowers-Itoh parametrization of the lepton share viscosity
[see Eq. (25)] that often was exploited in the literature. The
critical spin frequency in this case can be estimated as

ν(FI)
c,η = 108 Hz

R
3/2
6 T

1/3
9

. (116)

We see from Fig. 26 that a more realistic value given
by Eq. (115) is essentially less than the value ν(FI)

c,η . At
higher temperatures, T9 > 3–10, the main contribution to the
shear viscosity is given by the neutrino shear viscosity term
determined by Eqs. (57) and (58), which results in an increase
of νc,η with an increase of the temperature.

For temperatures T � 109 K the bulk viscosity is typically
larger than the shear viscosity (cf. Fig. 25) and it is legitimate
to consider another approximation of Eq. (111), given by
Eq. (114). Using Eqs. (21) and (23), we present the solution

FIG. 27. (Color online) The critical spin frequencies for the
r-mode instability determined by the shear viscosity, νc,η from
Eq. (113), and by the bulk viscosity, νc,ζ from Eq. (117), as functions
of the temperature for various star masses and various processes
included in the calculation of the bulk viscosity term. Notations of
processes are the same, as in Fig. 20. Nucleon pairing is included, as
in Eqs. (31) and (33) for the shear viscosity, and, as in Eq. (107) for
the bulk viscosities, with the critical temperatures shown in Fig. 9.

of Eq. (114) as

νc,ζ = 68 Hz

R
3/4
6

〈ζ ∗
20[1 + 0.86r2/R2]〉1/4

8

(M/M�)
1
2 (ρc/ρ0)

1
2

. (117)

Here the bulk viscosity ζ ∗
20 is the sum of all soft-mode and

radiative contributions evaluated at the frequency ω4 = 4/3.
The dependence of νc,ζ on the temperature for various

neutron star masses is illustrated in Fig. 27. For comparison
we plot also the critical spin frequency determined by the
shear viscosity, νc,η. We see that at low temperatures (T9 <
2–6 depending on the star mass) νc,η > νc,ζ , and r-modes
are stabilized by the shear viscosity, whereas at higher
temperatures the r-modes are damped by the bulk viscosity,
νc,η < νc,ζ . For the case where only MU + DU processes are
included in calculation of the bulk viscosity (left panel in
Fig. 27) the value of νc,ζ is only weakly dependent of the star
mass, if M < 1.9M�, and it decreases slightly with the mass
growth. The dependence of the value νc,ζ on the star mass
becomes sharp, when the DU processes become operative,
i.e., at M > 1.9M�. The pattern changes if the pion-softening
effect is taken into account. For the MMU + DU processes
(middle panel in Fig. 27) the value νc,ζ increases with increase
of the star mass and the effect of the switching on of the DU
reaction is not so pronounced, as it was in MU + DU case.
Inclusion of the PU processes (right panel in Fig. 27) does
not change νc,ζ much compared to the MMU + DU case. As
everywhere above, to compute MMU + DU processes we use
curves 1a + 1b in Fig. 6 and for MMU + PU + DU ones we
exploit curves 1a + 2 for MMU and 3 for PU.

Now we solve the full equation (112) with all contributions
to the shear and bulk viscosities (cf. Fig. 27) taken into
account. The solutions of Eq. (112) are presented in Fig. 28
as functions of the temperature for neutron star masses from
M� < M < 2.05M�. Within the minimal cooling scenario
when in-medium effects are not included, νc,min exceeds
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FIG. 28. (Color online) The critical frequency of the r-mode
instability calculated using the full Eqs. (112) as a function of the
temperature for a band of neutron star masses. The critical values
νc,η and νc,ζ given by Eqs. (113) and (117) are the same, as in
Fig. 27. Notations of processes are the same, as in Fig. 20. The dashed
line shows calculation with MU + DU for M = 2.05M�. The solid
line demonstrates calculation done for the threshold mass of the DU
processes within MMU + PU + DU scenario. The dash-dotted line
shows calculation with MMU computed with curve 1a + 1c in Fig. 6
for M = 2.05M�.

ν
young
max only for the masses M > 2.03M� (when DU reaction

is already efficient), i.e., very close to the maximum mass,
2.05M�. However, if initially the star passes through the
instability region, the developed r-modes blow off some part of
the star matter. So, its final mass can hardly be very close to the
maximum mass. Alternatively, the experimental value of the
frequency of the pulsar PSR J0537-6910 could be explained
within the minimal cooling scenario, if one exploited the
EoS that allows for a lower DU threshold density. Reference
[60], involving the data on ν̇ and ν, presented arguments
that, within their analysis, curve AB in Fig. 17(a) is shifted
to the left for the relevant values of the amplitude asat (the
lower is asat the more pronounced is this shift), which could
also make it possible to explain stability of PSR J0537-6910
within the minimal cooling paradigm. Within the nuclear
medium cooling scenario, the DU processes are not needed
to explain the stability of PSR J0537-6910. We may explain
it for M > 1.804M�, if calculations of MMU processes are
done using curves 1a + 2 and 3 for PU, and for M > 1.778M�,
provided we use curves 1a + 1c to calculate MMU, without
PU. For the MMU case (for curves 1a + 1b for MMU without
PU), PSR J0537-6910 mass should be M > 1.84M�. Any
restrictions on the values of the amplitude a are not required;
see our recent note [106].

Recall that many old recycled rapidly rotating pulsars in
LMXB have much higher spin frequencies (ν ∼ 200–716
Hz). The maximum observed frequency is 716 Hz for PSR
J1748-2446ad. Estimated values of internal temperatures lie
in the range 10−2 � T9 � 0.3; see Table 1 in Ref. [53]. Some
of the data enter a region of stability ν < νc, whereas others
are far outside the stability range. Thus, one should try to
search other mechanisms leading to a substantial increase

of νc � νc,η for T � 3 × 108 K. Below we elaborate such a
possibility.

VII. BOSE CONDENSATES WITH NONZERO
MOMENTUM AND BRAKING OF THE NEUTRON

STAR ROTATION

A. Low-lying Bose excitations in neutron stars

There might exist many low-lying bosonic modes of differ-
ent natures in the neutron star crust and interior. Some of these
modes are gapped, some are gapless, as, e.g., sound modes with
the frequency ε ∝ k for k → 0. The presence of the low-lying
collective bosonic excitations is particularly important for
understanding of thermal and transport properties of accreting
neutron stars with temperatures in the range 107–109 K; see
Ref. [107]. The transition between the outer crust and the inner
crust corresponds to the density ndrip � 4 × 1011 g/cm−3, at
which neutrons start dripping out of nuclei. At densities n >
ndrip there appear to be superfluid transverse and longitudinal
lattice phonons [ε(k) = vphk]. They prove to be very strongly
mixed, and the speed of transverse lattice modes (vph = v⊥)
is greatly reduced. Soundlike shear modes in neutron star
crusts with velocities ∼10−3–10−2 (in c = 1 units) have been
proposed to play a role in the interpretation of quasiperiodic
oscillations observed in giant flares from soft gamma repeaters
[108]. The velocity of sound excitations in a two-dimensional
slab phase of the pasta (at densities n ∼ 0.5n0) is estimated
[109] to be � 0.04.

In the normal neutron Fermi liquid the velocity of the zero
scalar sound v0 = svF, where s � 1, depends on a value of
the zero harmonic of the scalar Landau parameter f0, s → 1
for f0 → 0. Similarly, for the spin sound, the value s depends
on the zeroth harmonic g0 of the spin-spin interaction. The
velocity of the first-sound mode in the neutron Fermi liquid
is determined by the values of the zeroth and first scalar
Landau parameters. Using the values of these parameters from
Ref. [102], we get v1 ∼ (0.3–1)vF depending on the density.

In the presence of an external magnetic field there exist
low-lying spin-wave excitations with frequencies ε = ωL[1 +
(1+g0)2

3g0

(kvF)2

ω2
L

], where ωL = γ0H is the Larmor frequency, H is

the magnetic field, γ0 = e/2m∗
N , and e stands for the electric

charge [110].
For the superfluid neutrons paired in the 1S0 state at

densities n � 0.7n0 besides the first sound [related to the
Anderson-Bogoliubov mode with the energy ε = v1,sk for
k → 0, and ε(k) → 2�nn for large k] there exists a second
sound mode, ε(k → 0) = v2,sk, with a still lower velocity
v2,s → v1,s/

√
3 for T → 0, where v1,s → vF/

√
3, and v2,s →

0 for T → Tc,n. There also exists a Schmid mode with
ε(k) � 2�nn; see Ref. [111].

In the 1S0 proton superfluid there exists the Carlson-
Goldman mode with the frequency ε(k) → 2�pp and the
damping rate γ → 0 for sufficiently large k. This mode
starts with the value ε(km) = 0 at a finite value of the
momentum 10

√
T �pp/vF � km � pF. Recently, it has been

argued [112] that a pseudo-Goldstone mode associated with
the superconducting protons in neutron star matter may exist
owing to the screening of the Coulomb field by the electrons.
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FIG. 29. (Color online) Examples of the dispersion law of the low-lying bosonic excitations. Panel (a) shows the spectrum ε(k) of soundlike
excitations, like assumed quasiparticle excitation (levon) spectrum in Bose gases [62,65] (cf. the zero-sound [64] and the first-sound excitation
spectra in normal Fermi liquids); panel (b) demonstrates the Anderson-Bogoliubov mode in the Fermi system with pairing [111]; panel (c)
shows the spectrum of rotonlike excitations ε̃(k) = ε(k) + qμe, as in the case of the p-wave π+, π−, or K− condensates, counted from the
value of the chemical potential μe, q = ±1.

The proton Fermi velocity is substantially lower than the
neutron one. The typical value of the slop of the branch for
k → 0 is ∼√

3vF,p.
For densities n � n0, neutrons are paired in the 3P2 state at

T < Tc,n(3P2). In this case there may exist a low-lying Bose
excitation mode with frequency ε(k = 0) = �nn(3P2)/

√
5

[113]. Estimations of the value of the pairing gap are very
uncertain. As we have mentioned, there are arguments [37] that
the value of the 3P2 pairing gap is tiny, �nn(3P2) < 10−2 MeV.
Then this spectrum branch lies very low.

Note that with participation of the bosonic excitations
may occur neutrino (resonance) reactions [39]. However, their
contribution to the total emissivity is not large compared to
MMU, PU, and DU reactions. Therefore, we do not add their
contribution to the radiative bulk viscosity.

B. Condensates of bosonic excitations with nonzero momentum

In our further consideration we assume that there exists a
low-lying bosonic quasiparticle mode of collective excitations
in some range of momenta. For instance, this can be a soundlike
mode [see Fig. 29(a)], like an assumed quasiparticle excitation
(levon) mode in Bose gases (cf. Refs. [62,65]), or a zero-sound
mode of a Fermi liquid continued to a momentum k0 ∼ pF, at
which it touches the line ε = kvF, or the first-sound mode; or
the mode behaving similar to the Anderson-Bogoliubov mode
in the Fermi system with pairing [111] or Carlson-Goldman
mode in superconductors [see Fig. 29(b)]; or a rotonlike mode
having a local minimum at k = k0, as in 4He, and in the case
of the p wave π+, π−, or K− condensates [see Fig. 29(c)].
For the charged quasiparticles in the neutron star matter the
energy is counted from the chemical potential; i.e., ε̃(k) =
ε(k) + q μe plays a role of the excitation energy, where μe is
the electron chemical potential and q = +1 and −1 for the
positively and negatively charged particles, respectively. We
consider now a possibility of appearance of a condensate of
excitations with k = k0, when the system moves with velocity
above the Landau critical value [vc,L = ε(k0)/k0 or vc,L =
ε̃(k0)/k0].

The key idea was formulated in Refs. [62,63]. When
the medium moves with a velocity v > vc,L it may become
energetically favorable to transfer a part of the momentum

from the particles of the moving medium to a condensate
of bosonic excitations with a finite momentum provided the
spectrum of excitations is such that they may possess a
rather large momentum but a small energy. Transfer of the
momentum to the condensate would diminish the velocity of
the system from the point of view of an external observer.
For a rotating system, a part of the angular momentum can be
transferred to the boson subsystem [62], whereas an external
observer will see a slowing down of the rotation. A common
rotation may be reached only after the passing of a long time
provided the damping rate is low.

For better understanding of the phenomenon, following
Ref. [62], we consider a fluid element of the medium with the
mass density ρ moving with a nonrelativistic constant velocity
�v. For the probing function of the condensate of a complex
scalar boson field, chosen in the simplest form of a running
wave,

ϕ = ϕ0e
−iεt+i�k�r , (118)

with the amplitude ϕ0, the momentum k, and the energy ε, the
Lagrange density acquires the form [43]

Lb = D−1(ε,k)|ϕ|2 − 1
2�|ϕ|4. (119)

Here D−1(ε,k) is the inverse Green’s function of the collective
excitation, � is the self-interaction coupling constant of
excitations which may, in general, depend on ε(k) and k and on
the assumed spatial structure of the field ϕ. For excitations of
a hadronic nature with assumed field structure (118), one may
expect that � = const ∼ 1. If the system is superfluid, then
it is characterized by an order parameter. In this case we can
use Eq. (119), additionally assuming that the field describing
the excitation does not interact with the order parameter of the
superfluid.

The quasiparticle energy ε(k) is determined by the disper-
sion equation

D−1(ε,k) = ε2 − m2
b − k2 − Re�R(ε,k) = 0, (120)

where mb is the boson mass, and Re�R(ε(k),k) is the real
part of the retarded self-energy, and the width Im�R(ε(k),k)
is assumed to be negligibly small.
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To specify the problem let us consider a cold system,
T = 0, and neutral excitations. The energy density of the boson
subsystem follows then as

Eb = ε∂Lb/∂ε − Lb. (121)

The momentum conservation yields

ρ�v = ρ�vfin + �kZ−1
0 |ϕ2

0 |, (122)

where

Z−1
0 (k) =

(
2ε − ∂Re�R

∂ε

)
ε(k),k

> 0. (123)

In the absence of the condensate, the energy density of
the liquid element was Ein = ρv2/2, whereas in the presence
of the condensate, which takes a part of the momentum, the
energy becomes

Efin = ρv2
f

2
+ ε(k0)Z−1

0 |ϕ0|2 + �|ϕ0|4
2

. (124)

The last two terms appear owing to the classical field of the
condensed excitations. The energy density gain is

δE = Efin − Ein = −Z−1
0 (k)[�v�k − ε(k)]|ϕ0|2 + 1

2 �̃|ϕ0|4,
�̃ = � + Z−2

0 (k)k2/ρ. (125)

Note that above equations hold also for � = 0. If the function
ε(k)/k has a minimum at k = k0, it becomes energetically
favorable to generate excitations, when the speed of the
fluid exceeds the Landau critical value v > vc,L = ε(k0)/k0

for �k0 ‖ �v; see Fig. 29. These bosonic excitations may then
develop a classical condensate field characterized by the finite
momentum k0. The condensate field amplitude is found from
the energy minimization.

The energy density gain because of the appearance of the
condensate is

δE = −Z−1
0 (k0)[v k0 − ε(k0)]ϕ2

0 θ (v − vc,L) + 1
2 �̃ϕ4

0 . (126)

The amplitude of the condensate field is found by mini-
mization of Eq. (126) with respect to ϕ0. Finally we get

ϕ2
0 = Z−1

0 (k0) [vk0 − ε(k0)]

�̃
θ (v − vc). (127)

When the condensate of excitations is formed, the resulting
velocity of the noncondensate matter becomes

vfin = vc,L + v − vc,L

1 + c4
, c4 = [

Z−1
0 (k0)

]2
k2

0

/
(�ρ). (128)

For the probed function of the condensate field different
from the running wave we get for the energy gain δE =∫

δEdV owing to appearance of the condensate

δE = −α1V
vk0 − ε(k0)

Z0(k0)
ϕ2

0θ (v − vc,L) + α2V
�̃ϕ4

0

2
, (129)

with coefficients α1,2 ∼ 1 depending on the assumed structure
of the field. For example, for the field of the form ϕ =
ϕ0 cos(k0z) one has α1 = 1/2 and α2 = 3/4.

In case of the charged excitations, their energy should
be counted from the value of the chemical potential. The
above consideration still holds if we replace ε(k) → ε̃(k)
everywhere.

C. Evaluation of the critical spin frequency

The above expressions hold also for rotating systems [62],
for which one should put �v(r) = [ ��,�r ]. Choosing the appro-
priate probing function for the condensate field [62], we may
obtain the critical angular velocity at which the condensate
appears in the star rotating as the whole, as �c,L(R)α3R = vc,L,
with α3 � 0.42 and R being the star radius. For example,
in regions of the neutron and proton superfluids, the critical
velocities vn

c,L ∼ �nn/pF,n and v
p
c,L ∼ �pp/pF,p and the cor-

responding critical angular velocities �n
c,L ∼ �nn/(pF,nR) and

�
p
c,L ∼ �pp/(pF,pR) might be very low.
Following Ref. [114] the differential rotation is an unavoid-

able feature of nonlinear r-modes. We may apply Eq. (128)
also for a sphere undergoing a differential rotation, in which
the density changes with the distance from the star center. Then
the angular velocity of the medium becomes dependent of the
distance from the star center,

�fin(r) = min

{
�,�c,L(r) + � − �c,L(r)

1 + α4 c4

}
, (130)

where the critical angular velocity follows from the equation
�c,L(r) = vc,L(n(r))/(r α3) and α4 ∼ 1.

Thus, a layer of the star, in which a branch of bosonic exci-
tations is populated by condensate with a nonzero momentum,
may rotate with the angular velocity �fin smaller than the
angular velocity � of the outer part of the star (mantle) seen
by a distant observer. For instance, for c4 � 1, one would have
�f � �c,L(r) in the interval of r , where � > �c,L(r), even if
the initial angular velocity were � � �c,L. Such a differential
rotation of the star must be taken into account in averaging
(17), entering the gravitation (16) and viscous times (18) and
(19). Recovering from Ref. [11] the dependence of these times
on the angular velocity, we present the corrected gravitation,
shear, and bulk viscosity times as

1

τ̃G,η,ζ (�)
= χG,η,ζ (�)

τG,η,ζ (�)
, (131)

where the scaling factors are given by

χG(�) =
〈
ρ
(

�fin
�

)4〉2
6〈

ρ
(

�fin
�

)2〉
6〈ρ〉6

, χη(�) =
〈
η
(

�fin
�

)2〉
4〈

ρ
(

�fin
�

)2〉
6

〈ρ〉6

〈η〉4
,

χζ (�) =
〈
ζ (1 + 0.86r2/R2)

(
�fin
�

)4〉
8

〈ζ (1 + 0.86r2/R2)〉8

〈ρ〉6〈
ρ
(

�fin
�

)2〉
6

. (132)

In expression for χζ we exploit that ζ ∝ 1/ω2 ∝ 1/�2.
Replacing τG,η,ζ in Eq. (111) with τ̃G,η,ζ , we obtain the

modified equation for the critical spin frequency,

ν6
c = ν̃6

c,η + ν2
c ν̃4

c,ζ , (133)

where, in contrast to Eq. (112), we define

ν̃c,η = νc,η

[
χη(νc,η)

χG(νc,η)

]1/6

, ν̃c,ζ = νc,ζ

[
χζ (νc,ζ )

χG(νc,ζ )

]1/4

,

(134)

with νc,η and νc,ζ as the solutions of the original Eqs. (113)
and (117).
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FIG. 30. (Color online) The critical spin frequency of the r-mode instability as a function of the temperature, calculated according to
Eq. (135) accounting for the possibility of a condensation of excitations for r < rc for various values of rc (dashed lines) and without
condensation (solid line) for M = 2.05M�, 1.7M�, and 1.5M� on three panels from left to right. Numbers near the dashed curves indicate
values of rc/R. The minimal chosen values of rc/R correspond to the boarder of the proton superfluid region, as shown in Fig. 9. The choice
MMU + PU + DU is exploited as in calculation shown in Fig. 28.

If, simplifying, we assume the weakness of the self-
interaction of bosonic excitations and put � = 0, we have
�fin(r) = �c,L(r) → 0 in the condensate regions. Thus, for
a small critical angular velocity, �c,L(r), we can roughly
approximate in the integrals in Eq. (132)

�fin(r)/� ≈ θ (rc − r). (135)

Here the critical radius rc marks the inside boundary of the
region with the condensate of excitations, and we neglected
a thin mantle layer, where the condensate is absent and the
rotation frequency coincides with the initial frequency. For
such a distribution we find

χG = 9

2
ξ 7 − 7

2
ξ 9, χη = 7

4ξ 2
− 5

4
+ 1

9 − 7ξ 2
, (136)

where we denoted ξ = rc/R, and we used that [53] in presence
of a nucleon pairing the density dependence of the shear
viscosity can be roughly presented as η ∝ ρ2. Numerical
calculations show that for rough estimations the factor χζ can
be written as χζ � a(M,T )/χG with χG taken from Eq. (136).
For rc � 0.5R and for temperatures 0.1 < T9 < 10, we get
a(M,T ) � 1. Note that for T9 
 1 the effect of the bulk
viscosity on the values of νc is minor and can be neglected.
Now, with the corrected times we are able to recalculate curve
νc(T ) and then compare it with the data on the rapidly rotating
recycled pulsars in LMXB.

Solutions of Eqs. (133) and (134) for the angular velocity
distribution (135) are shown in Fig. 30. To be specific we
associate here the condensate of excitations with a soft mode
in the proton superfluid. The minimal values of rc/R shown
in Fig. 30 correspond to the boarder of the proton superfluid
region for the corresponding star mass shown in Fig. 9, i.e.,
with these values we simulate a maximal possible effect.
Curves corresponding to larger values of rc for the star of
the given mass effectively simulate more complex effects,
which we do not discuss explicitly, e.g., finite � and �c,L �= 0.
Curves νc(T ) shift up, if one uses assumption of the differential
rotation in the stars induced by a condensation of bosonic
excitations on a certain time scale. The minimal values of νc,
reached in the interval T9 ∼ 2–3, are increased. We see that at

least a part of the data on the recycled pulsars in the LMXB can
be now accommodated. For M = 1.5M� and for the choice
rc/R < 0.45 all the data points get to the region stable with
respect to the r-mode excitation.

We should stress that we used very rough approximations
[e.g., we exploited the model ansatz (135) putting �c,L → 0]
and thus demonstrated only a possibility of an increase of
the value νc because of the condensation of excitations with
the finite momentum. A full solution of the problem needs a
detailed analysis that goes beyond the scope of this work.

Finally, note that in the rotating star with � > �c,L the
condensates of excitations may participate in the neutrino
reactions that cause additional contributions to the neutrino
emissivity and the radiative bulk viscosity; e.g., if bosonic
excitations couple with nucleons, the reactions of the PU type
are possible.

D. π+
s condensation with nonzero momentum

In the neutron star matter there appears a π+ quasiparticle
branch with a negative energy. At densities n > n+

c (n+
c � n0)

the minimum value of ε(k) for k = k0 ∼ pF,n is such that
ε̃(k0) = ε(k0) + μe becomes negative. This may induce the
reaction p → n + π+

cond in the neutron star matter [40,43],
leading to formation of the so-called π+

s condensate with a
nonzero momentum, corresponding to the minimum of ε(k).

We assume that the condensate has appeared long ago at
the stage of the hot star formation and, therefore, it most
probably exists initially in the form of disoriented domains.
When temperature decreases, in a rotating star all domains
become oriented in one direction parallel to the matter flow,
diminishing thereby the velocity of the noncondensate matter
owing to the angular momentum conservation. The resulting
system contains, thus, two (condensed and noncondensate)
fluids rotating with different angular velocities.

In the medium at rest (v = 0) the (initial) condensate energy
is given by

Econd
in (v = 0) = − ε̃2(k0)

2�

θ [−ε̃(k0)]

Z2
0(k0)

. (137)
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The final energy density Efin of the medium moving initially
with constant velocity �v is determined from Eqs. (122) and
(124), now for ε(k0) < 0. For the field of the form (118) one
finds the energy density gain [62]

δE = [
Z−1

0 (k0)
]2
{

ε̃2(k0)

2�
− [k0v − ε̃(k0)]2

2�̃

}
, (138)

counted from the value ρv2/2, �k0 ‖ �v, Z−1(ε(k0)) > 0. The
critical velocity vc is found from the condition δE < 0. In the
limit of a large � we get

vπ
c,L =

[
Z−1

0 (k0)
]2 |̃ε(k0)|k0

2�ρ
; (139)

therefore, vπ
c,L → 0 for � → ∞.

For a tiny � we find

vπ
c,L = Z−1

0 (k0)
|̃ε(k0)|√

�ρ
→ ∞, (140)

and the condensate domains remain disordered.

E. π− and K− condensations with nonzero momenta

In the neutron star matter at densities n > nπ
c (in the given

work we supposed nπ
c = 3n0) the minimal value of the π− en-

ergy, ε(k0) > 0, may decrease below the electron chemical po-
tential μe, then the reaction n → π−

cond + p produces a π− con-
densate with the momentum k0 ∼ pF,n, for Z−1(ε(k0)) > 0.

Besides the pion condensate, a K− condensate may appear
in the neutron star interiors for n > nK

c ∼ (3–5)n0. The K−
condensate arises in reaction e → K−

cond, provided the value
at the minimum on the K− branch ε(k0) > 0 decreases with
a density increase below the electron chemical potential μe.
The K− condensate may appear either with the momentum
k0 = 0 or with k0 �= 0 [103,115]. In the latter case, following
estimate [103], the typical value of the condensate momentum
is k0 ∼ mπ , where mπ is the pion mass. All the expressions
derived above for the π+

s condensate continue to hold also for
the π− and K− condensates after the replacement ε̃(k0) →
ε(k0) − μe therein.

The next possibility is a π0 condensation appearing for
densities n > n0

c at ε(k0) = 0. However, for ε = 0, Z−1
0 = 0

and this possibility is not of interest here because the motion
of the system does not affect it.

The following remark is in order. One could think that
one should put rc = 0 (see Sec. VII C) considering the stars
with the inhomogeneous condensates of charged pions/kaons
extending up to the star’s center (for M > 1.31M� in our
model). However, to find the dependence of νc(T ) in the
above consideration we exploited the case � = 0, and for
the pion/kaon inhomogeneous condensates v

π/K
c,L → ∞ for

� → 0; see Eq. (140). A realistic consideration for � �= 0
is, thus, more involved.

F. A possible mechanism for acceleration of rotation
of old accreting pulsars

One usually assumes that old pulsars are slowed down
owing to the magnetic dipole radiation losing, simultaneously,
their magnetic fields. At a longer times, however, old pulsars

in LMXB are spin up owing to the accretion of matter from
a companion star [5]. This spin up might be compensated for
by the r-mode emission. Below we propose a supplementary
mechanism of the pulsar acceleration.

Assume that after some time, when the neutron star was
substantially slowed down below �c,L (here we assume that
�c,L is so low that we can neglect the effect of the resulting
rotation), it has a mass MA and already a rather low value
of the magnetic field. Then during a long period of accretion
the pulsar central density and the total mass increase slowly.
If MA exceeds M

π/K
c in the course of the accretion, a meson

condensate with a finite momentum k0 starts forming. It could
be a p-wave charged pion condensate [40] or a p-wave K−
condensate studied in Refs. [103,115]. To be specific, we
further speak about pion condensation.

With a toroidal form of the condensate field (see Ref. [62]),
the condensate component (for r < rπ

c ) gets the finite angular
momentum

Lπ,c = π2

2

∫ rπ
c

0
Z−1

0 (k0)k0 |ϕ0|2 r3dr, (141)

where rπ
c is the radius of the sphere occupied by the

condensate. Owing to the angular momentum conservation,
the noncondensate part of the matter spins up and after
passing of some dissipation time the whole star becomes
involved in this rotation. The resulting angular velocity �(s.u.)

π

of the star (simplifying, we assume that �(s.u.)
π = const) is then

determined by the relation

�(s.u.)
π

8π

3

∫ R

0
ρ r4dr = Lπ,c. (142)

Taking for estimation Z−1
0 (k0) � 2mπ , k0 � pF, and |ϕ0|2 =

|aπ |2 � ω̃2
π given by line 3 in Fig. 6, and substituting Eq. (141)

in Eq. (142) we can express the spin-up frequency of the star
as

ν(s.u.)
π = 4.3 × 103 Hz

R6 (ncen/n0)2/3

∫ xπ
c

0 f 1/3(x)x3 ω̃2
π

m2
π
dx∫ 1

0 f (x)x4dx
, (143)

where xπ
c = rπ

c /R = √
1 − (nπ

c /ncen)2θ (ncen − nπ
c ) .

The additional spin-up frequency, which may be reached
owing to the accumulation of the pion condensation in the
course of accretion, is demonstrated in Fig. 31. Assume
that the neutron star was slowed below νc,L and its mass is
M = MA > M (π)

c . Let the mass of the pulsar at the present
time be MB . Then, owing to the proposed mechanism the
pulsar gets additional frequency �ν, as shown in Fig. 31. For
MA = 1.8M� and MB = 2.02M� we estimate the change of
the frequency as �ν = 150 Hz. The higher is the mass of the
pulsar MB reached in the course of the accretion at fixed MA,
the larger is �ν.

VIII. CONCLUSION

In this paper we studied different mechanisms of decel-
eration of rotating neutron stars and we considered stability
conditions against the excitation of r-modes. Computations
are performed using the HDD EoS from Ref. [25], which for
densities n � 4n0 coincides with the HHJ fit of the APR EoS
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FIG. 31. (Color online) Additional spin-up frequency of an ac-
creting pulsar in the LMXB, which could be reached owing to
accumulation of the pion condensation in the course of accretion.

but becomes stiffer for higher densities, yielding the maximum
neutron star mass � 2.05M�, the latter value is in agreement
with observations.

For calculations of different partial contributions to vis-
cosities and to neutrino emissivities, one often uses the
FOPE model and the free NN cross sections corrected by
the Pauli blocking effects. We exploit more complex NN
interaction based on the Migdal’s Fermi-liquid approach
accounting for in-medium pion exchange, which incorporates
an attractive pion-nucleon interaction and repulsive NN
correlations. Included together, these effects result in an
increase of the NN interaction amplitude with the density
growth for densities n � n0, where n0 is the nuclear saturation
density; cf. Refs. [40,43]. In the literature this effect is
usually called the pion-softening effect. This pion-softening
effect may result in the pion condensation for n > nπ

c > n0.
Simplifying, we do not distinguish effects of π+

s , π−, and π0

condensates studied in the literature [40,43], just assuming
that the pion condensation in the neutron star matter occurs
for n > nπ

c = 3n0 and focusing on reactions associated with
the π− condensate. Owing to the lack of knowledge about
the NN interaction for densities n � n0, we also consider
the case where there is no pion condensation and the pion
softening either continues or saturates for n � 3n0.

Nucleon superfluidity effects are incorporated, where nec-
essary. The contributions to the shear and bulk viscosities of
different processes are recalculated within our model and novel
dissipation mechanisms are suggested.

The most important contribution to the shear viscosity for
T � 109 K comes from the lepton shear viscosity. When
one incorporates the in-medium polarization effects [48],
this lepton term proves to be less, typically by an order of
magnitude, compared to the quantity estimated by Flowers
and Itoh [46]; see Fig. 11. In the proton superfluid region the
lepton term increases several times for T = 109 K (see Fig. 12),
compared to the same quantity computed for nonsuperfluid
matter. We calculated the NN shear viscosity in nonsuperfluid
matter and argued that it changes rather moderately with a
density increase. The NN term proves to be substantially less

than the lepton term in the temperature-density interval of our
interest. Thus, we argue that the NN shear viscosity term
can be dropped. Relying on these findings we argued that
calculations of the shear viscosity performed in the number
of papers, which used the Flowers-Itoh results, yield too
high critical angular velocities for the r-mode stability at low
temperatures T � 109 K and must be reconsidered.

A novel term to the shear viscosity related to the interaction
of phonons with paired nucleons was calculated. It proves
to be not as important as the lepton shear viscosity for the
values of the pairing gaps, which we exploit. A suppression
of the gaps by in-medium effects is included in our analysis,
which causes their model dependence. If these suppression
effects were minor, the phonon-paired neutron term would
contribute to the resulting shear viscosity in the temperature
range, T ∼ (5–8) × 108 K; see Fig. 15.

Also, we introduced a novel neutrino shear viscosity term
contributing in a part of the neutron star interior, where neu-
trinos are trapped at sufficiently high temperatures. This term
increases, if we exploit the medium-modified pion exchange
instead of the FOPE. Although the neutrino term is larger
than other contributions to the shear viscosity for temperatures
�(3–5) × 109 K (see Fig. 17), it proves to be much smaller
than the bulk viscosity computed for the same temperatures.
The neutron star cooling calculations demonstrate that tem-
peratures ∼(3–5) × 109 K are reached for t � 10−3 yr. This
opens an opportunity to observe, in the future, the neutrino
radiation from newly born neutron stars during a longer time
than that follows from the conservative estimation, ∼10 s.

The bulk viscosity is presented, as the sum of three
contributions: the collisional term, the soft-mode term, and
the radiation term. The collisional bulk viscosity is found to be
small and can be safely neglected. The soft-mode bulk viscosity
term is related to the weak interaction reactions occurring
in the nonequilibrium system on charged currents. With our
HDD EoS, the one-nucleon DU reactions with the neutrino
production occur only for the most massive neutron stars
(for M > 1.9 M�). The matrix element of the two-nucleon
modified Urca (MU) reactions are strongly increased provided
we take into account the pion softening with a nucleon density
increase. Following the notation of previously published
works, we call so-calculated MU reactions MMU reactions.
With our estimates, the bulk viscosity in the MMU reactions
increases up to three to four orders of magnitude for n ∼ 3n0

(see Fig. 8), which is in accord with the corresponding increase
of the emissivity of the MMU process incorporated in the
nuclear medium cooling scenario successfully exploited in
Refs. [22–25,42]. A contribution to the bulk viscosity from the
PU reaction processing on the pion condensate is included for
densities n > nπ

c . With our estimations, in presence of the pion
condensation for the most massive neutron stars the profile
averaged bulk viscosity term related to the MMU process
becomes only by an order of magnitude less than that owing
to the PU (see curves 2 and PU in Fig. 21), superfluidity
is suppressed, where we show partial contributions to the
soft-mode bulk viscosity from different reactions (the effects
of superfluidity are switched off in Fig. 21). In the absence
of the pion condensation but with the saturated or continued
pion softening with increase of the density, the profile
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averaged bulk viscosity term related to the MMU process
still increases (see curves 1b and 1c in Fig. 21). We also
reanalyzed the applicability of the usually made assumptions
on relation between the relaxation time of perturbed lepton
concentrations, τX,l , and the r-mode frequency ω, ωτX,l 
 1.
The ratio of the total bulk viscosity averaged over the star
density profile to the same average of the bulk viscosity
calculated in the limit case ωτX,l 
 1 begins to deviate from
unity with decrease of the frequency and/or with increase of
the temperature; see Fig. 22. Most of observed rapidly rotating
young pulsars have rotation frequencies � ∼ 102 Hz. At such
a frequency, for the heaviest neutron star the deviation of the
ratio from unity starts for T � 7 × 109.

We calculated the radiative bulk viscosity contribution from
the neutrino reactions going on the charged and neutral weak
currents. Previously, only reactions on charged currents were
considered with the NN interaction not including in-medium
modifications. We show that with paring gaps, which we
exploit, processes on the neutral currents, such as the NN
bremsstrahlung and the PBF processes, contribute only a
little. The resulting radiative bulk viscosity proves to be of
the same order as the soft-mode viscosity for temperatures
T � (5 × 109–1010) K (see Fig. 23), where the ratio of the
profile averaged radiative MMU bulk viscosity term to the
MMU soft-mode term is shown. This ratio tends to 1.5 for low
temperatures.

The exponential suppression factors for the soft-mode and
the radiative bulk viscosities are incorporated in the regions
with the NN pairing. Finally, with all effects included, the
resulting profile-averaged viscosity for the typical r-mode
frequencies ∼104 Hz is determined mainly by the lepton shear
viscosity term for T � (2 × 108–2 × 109) K (in dependence
on the neutron star mass) and by the bulk viscosity for
higher temperatures; see Fig. 25. The bulk viscosity is mainly
determined by the MMU reactions and, supplementary, by the
PU and DU reactions, whenever these reactions occur.

With all the processes included we calculated critical spin
frequencies, above which the star is unstable with respect to
the r-mode excitation. The critical spin frequency as a function
of the temperature νc(T ), computed in a broad range of the
neutron star masses, is presented in Fig. 20. This is the key
figure demonstrating results of our present study.

We showed that with the bulk viscosity calculated within
the minimal cooling paradigm [30], when the most efficient
neutrino processes are the MU and the PBF ones, the value of
the spin frequency of the most rapidly rotating young pulsar
PSR J0537-6910 (ν = 62 Hz) is above the minimum on curve
νc(T ). The observed frequency of pulsar PSR J0537-6910
would be hardly explained if the pulsar were in an unstable
region. Only when the DU reactions become efficient (for
M > 2.03M� with our EoS, i.e., very close to the maximum
mass of 2.05M�), the minimum of νc(T ) overwhelms the
frequency of PSR J0537-6910. However, because the star has
passed the r-mode unstable region during its early evolution,
it may hardly keep its mass very close to the maximal possible
value. Another possibility [60] to explain the data on PSR
J0537-6910 within the minimal cooling paradigm exists if the
trajectory ν(T ) is appropriately shifted to the left from the
minimum of the νc(T ). To find actual ν(T ) dependence, one

should solve the system of dynamical equations for the rotation
frequency ν(t), temperature T (t), and r-mode amplitude a(t).

The low values of the observed frequencies of the young
pulsars are naturally explained within the nuclear medium
cooling scenario of Refs. [22–25], which we exploit in the
present work. With the pion softening effects included, the
frequency 62 Hz proves to be below the minimum of νc(T )
provided the star mass is �(1.77–1.84)M�, whereas the DU
process appears for M > 1.9M�. At the same time, we observe
that the frequencies of most rapidly rotating recycled pulsars
in LMXB are substantially above curve νc(T ) at relevant
temperatures T ∼ 108 K. This statement is insensitive to any
possible enhancement of the bulk viscosity (in the MMU, PU,
and DU processes). Also, any artificial increase of the lepton
shear viscosity in reasonable limits does not help to raise the
line νc(T ) above the data points.

As a possibility to explain the stability of the rotation of the
pulsars in LMXB, we suggested a new mechanism allowing
to transfer a part of the angular momentum to inhomogeneous
condensates of bosonic excitations and/or to the inhomoge-
neous charged pion/kaon condensates. For this transfer to
occur [62–65], one needs bosonic modes with low energies at
sufficiently large momenta to exist in the neutron star matter.
When a part of the angular momentum is transferred to the
inhomogeneous condensate, as the consequence of the angular
momentum conservation, the remaining noncondensate part of
the matter participating in the r-mode generation will rotate
with a lower angular velocity. More specifically, we took into
account condensation of excitations occupying the mode at a
finite momentum in the proton superfluid. Then the part of
the star, where there is the proton pairing, may rotate with a
much lower speed than the other part of the star. We modeled
the effect in simplifying assumptions that the critical velocity
for the appearance of the condensate of excitations is very
low and a part of the star, where the condensate occurred, is
fully stopped. Our results presented in Fig. 30 show that, with
such effects taken into account, the critical frequency νc may
increase substantially and the data on the rapidly rotating old
pulsars may fall into the r-mode stable region.

One usually assumes that old pulsars are slowed down
owing to the magnetic dipole radiation, simultaneously losing
the magnetic field. At a longer time period old recycled pulsars
in LMXB are spin up owing to the accretion of matter from a
companion star [5]. We proposed a supplementary mechanism
of the pulsar acceleration owing to the charged pion/kaon
condensation with nonzero momentum accumulated in the
course of the accretion. Because it is energetically favorable
for the condensate to move as a whole in a one particular
direction, the noncondensate matter would be driven in the
opposite direction, which results in an acceleration of the
noncondensate part of the star, as seen by a distant observer.

Concluding, the data on young rapidly rotating pulsars
can be naturally explained provided one incorporates pion-
softening effects with increase of the density. As for the old
rapidly rotating recycled pulsars in LMXB, in spite of a lot of
works performed by many researchers, including the present
research, further more detailed calculations, as well as the
search for new stability mechanisms, are needed to arrive at a
convincing explanation of their r-mode stability.
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APPENDIX

The lepton collision times are given by

τe = νμ − ν ′
eμ
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In Eqs. (A2), (A3), (A4), and (A5) we retain only leading-order terms in the electromagnetic coupling constant α, with A ∝ α5/3

and B ∝ α3/2.
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