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Symmetry energy of nucleonic matter with tensor correlations
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The nuclear symmetry energy (Esym(ρ)) is a vital ingredient of our understanding of many processes, from
heavy-ion collisions to neutron stars structure. While the total nuclear symmetry energy at nuclear saturation
density (ρ0) is relatively well determined, its value at supranuclear densities is not. The latter can be better
constrained by separately examining its kinetic and potential terms and their density dependencies. The kinetic
term of the symmetry energy, Ekin

sym(ρ0), equals the difference in the per-nucleon kinetic energy between pure
neutron matter (PNM) and symmetric nuclear matter (SNM), often calculated using a simple Fermi gas model.
However, experiments show that tensor force induced short-range correlations (SRC) between proton-neutron
pairs shift nucleons to high momentum in SNM, where there are equal numbers of neutrons and protons, but have
almost no effect in PNM. We present an approximate analytical expression for Ekin

sym(ρ0) of correlated nucleonic
matter. In our model, Ekin

sym(ρ0) = −10 MeV, which differs significantly from +12.5 MeV for the widely-used
free Fermi gas model. This result is consistent with our analysis of recent data on the free proton-to-neutron ratios
measured in intermediate energy nucleus-nucleus collisions as well as with microscopic many-body calculations,
and previous phenomenological extractions. We then use our calculated Ekin

sym(ρ) in combination with the known
total symmetry energy and its density dependence at saturation density to constrain the value and density
dependence of the potential part and to extrapolate the total symmetry energy to supranuclear densities.
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The nuclear symmetry energy Esym(ρ), where ρ is the
nuclear density, is related to the difference in the energy per
nucleon of pure neutron matter (PNM) and symmetric nuclear
matter (SNM). It determines many nuclear and astrophysical
properties, such as the cooling of proto-neutron stars [1], the
mass-radius relations of neutron stars [2], properties of nuclei
involved in r-process nucleosynthesis [3], and heavy-ion
collisions [4–6].

Much effort is being invested in improving our knowledge
of Esym(ρ). In particular, several major radioactive beam facil-
ities being built around the world have all listed constraining
the symmetry energy as one of their major science drivers;
see, e.g., Ref. [7]. Moreover, observations of neutron stars from
current missions such as the Chandra X-ray and XMM-Newton
observatories and upcoming missions such as the Neutron
Star Interior Composition Explorer (NICER) [8] will provide
high-precision data to allow us to infer more accurately neutron
star radii, which are very sensitive to the symmetry energy
[9–12].

Significant progress has been made in recent years in
constraining Esym(ρ), especially around ρ ≈ ρ0, the saturation
density, using data from both terrestrial laboratory experiments
and astrophysical observations [13–18]. Recent surveys of
model analyses of world data found that the mean values
of the symmetry energy and its density dependence at ρ0

are consistent with 29 � Esym(ρ0) � 33 MeV and 40 � L =
3ρ

∂Esym(ρ)
∂ρ

|ρ0 � 60 MeV [19,20]. However, the decomposition
of the symmetry energy into its kinetic and potential parts and
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its behavior at both subsaturation (ρ < ρ0) and suprasaturation
(ρ > ρ0) densities are still poorly known.

A common method to improving our knowledge of the total
symmetry energy, Esym(ρ), is to separate it into its potential
(Epot

sym(ρ)) and kinetic (Ekin
sym(ρ)) parts,

Esym(ρ) = Ekin
sym(ρ) + Epot

sym(ρ) (1)

and probing them separately [6,12,18]. The kinetic part of the
symmetry energy, Ekin

sym(ρ), can be readily calculated from the
nuclear momentum distribution. The much less understood
potential part can then be calculated as E

pot
sym(ρ) = Esym(ρ) −

Ekin
sym(ρ).
This separation is valuable for several reasons. As Ekin

sym(ρ)

and E
pot
sym(ρ) have different density dependencies (typically

parameterized as Ekin
sym(ρ0)( ρ

ρ0
)α and E

pot
sym(ρ)( ρ

ρ0
)γ ) the total

symmetry energy can be more reliably extrapolated to higher
densities by extrapolating its kinetic and potential parts
separately. Second, knowledge of E

pot
sym(ρ) is important for

constraining key parameters in calculations of the symmetry
energy, such as three-body forces [21] and high-order chiral
effective interactions [22]. These improved models then
allow extrapolation of E

pot
sym(ρ) to suprasaturation densities

with improved accuracy [18,23–25]. Third, knowing Ekin
sym(ρ)

and E
pot
sym(ρ) separately is required to describe heavy-ion

reactions and describe the isovector dynamical observables.
For example, the density dependence of Esym(ρ) as extracted
from heavy-ion collisions depends on models of Ekin

sym(ρ) [26].
The kinetic part is often approximated in a nonrelativistic

free Fermi gas model [6,12] as the per-nucleon difference
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between the kinetic energy of pure neutron matter at a density
ρ and the kinetic energy of symmetric nuclear matter where
the protons and neutrons each have density ρ/2:

Ekin
sym(ρ)|FG = (2

2
3 − 1) 3

5EF (ρ) ≈ 12.5MeV(ρ/ρ0)2/3, (2)

where EF (ρ) is the Fermi energy at density ρ.
However, short-range correlations (SRC) due to the tensor

force acting predominantly between neutron-proton pairs
significantly increase the average momentum and hence the
kinetic energy in SNM but have almost no effect in PNM.
They thus reduce significantly the kinetic symmetry energy,
possibly even to negative values. This has been shown recently
in both phenomenological models [27] and microscopic
many-body theories [28–31]. For a given symmetry energy,
Esym(ρ), the SRC-induced decrease of Ekin

sym(ρ) increases

E
pot
sym(ρ) beyond its Fermi gas model limit of E

pot
sym(ρ0) =

Esym(ρ0) − Ekin
sym(ρ0)|FG ≈ 19.1 MeV at saturation density.

This is important for transport model simulations of heavy-ion
collisions [4–6,32,33].

In this paper we provide a phenomenological analytical
expression for the kinetic symmetry energy of correlated
nucleonic matter based on calculations of nuclear momentum
distributions and on data at saturation density (ρ0) from
inclusive (e,e′) and exclusive (e,e′pN ) scattering experiments
at the Thomas Jefferson National Accelerator Facility (JLab)
[34–38]. We give credence to our model by comparing
to a transport model analysis of nucleon emission data in
intermediate energy heavy-ion collisions [40,41] and to many-
body theoretical calculations of nuclei and nuclear matter
[28–31,41,42]. Last we use the known values of the total
symmetry energy, Esym(ρ0), and its density dependence, L,
at saturation density to extract the total symmetry energy at
supranuclear densities and to constrain the value and density
dependence of the potential part of the symmetry energy.

It has long been known that the tensor-force-induced
SRC leads to a high-momentum tail in the single-nucleon
momentum distribution around 300–600 MeV/c [43,44]. This
high-momentum tail scales; i.e., its shape is almost identical
for all nuclei from deuteron to infinite nuclear matter. See,
e.g. Refs. [42,45,46]. This is shown by the constancy of
the ratio of the per-nucleon inclusive (e,e′) cross sections
for nucleus A to the deuteron, a2(A), for Bjorken scaling
parameter xB between about 1.5 and 1.9 [34–36,47]. The ratio
of the momentum distribution in nucleus A to the deuteron
for 300 � k � 600 MeV/c is just the cross-sectional ratio
a2(A). Extrapolation of the measured a2(A) to infinite SNM
using three different techniques [48–50] yields an average
value of a2(∞) = 7 ± 1. The uncertainty in the extrapolation
represents about 50% of the difference between a2(A) ≈ 5 for
heavy nuclei and a2(∞) = 7 for SNM.

Exclusive two-nucleon knockout experiments
[37,38,51–53] show that, for 300 � k � 600 MeV/c,
proton knockout is accompanied by a recoil second nucleon
and that second nucleon is predominantly a neutron, i.e., that
np-SRC pairs dominate over pp pairs by a factor of about
20. For recent reviews, see Refs. [54,55]. This implies that
correlations are about 20 times smaller in PNM than in SNM.
Since the integral of the deuteron momentum distribution

from 300 to 600 MeV/c is about 4% [56] and a2(∞) = 7 ± 1,
the probability of finding a high-momentum nucleon in SNM
is about 25% and in PNM is about 1–2%.

The deuteron momentum distribution, nd (k), decreases
as 1/k4 for 300 � k � 600 MeV/c [57]. Since the nuclear
momentum distribution, nA(k), in that range is predominantly
due to np-SRC pairs and since it is proportional to the deuteron
distribution, we can write that nA(k/kF )(k/kF )4 = Rda2(A),
where Rd = 0.64 ± 0.10 is extracted from the deuteron mo-
mentum distribution and kF is the Fermi momentum [57]. At
higher momenta, the momentum distribution n(k) drops much
more rapidly.

This is supported by “exact” variational Monte Carlo
(VMC) momentum distributions calculated [41] for 4He and
10B, which decrease as k−4 for np pairs with small-pair center-
of-mass momentum for nucleon momenta 1.2 < k/kF < 3 to
within about 10%.

We therefore model n(k) for SNM with a depleted Fermi
gas region and a correlated high-momentum tail:

nSRC
SNM(k) =

⎧⎨
⎩

A0 k < kF

C∞/k4 kF < k < λk0
F

0 k > λk0
F

, (3)

where C∞ = Rda2(∞)kF ≡ c0kF is the phenomenological
height factor [57], c0 = 4.16 ± 0.95, k0

F is the Fermi momen-
tum at ρ0, and λ ≈ 2.75 ± 0.25 is the high-momentum cutoff
obtained from the momentum distribution of the deuteron [57].
A0 is a constant given by

A0 = 3π2(
k0
F

)3

ρ0

ρ

{
1 −

[
1 − 1

λ

(
ρ

ρ0

)1/3
]

c0

π2

}
, (4)

determined by the normalization

4π

(2π )3

∫ λk0
F

0
nSRC

SNM(k)k2dk ≡ 0.5. (5)

Based on the JLab data [38], fewer than 2% of neutrons belong
to nn-SRC pairs. We thus use the free Fermi gas model for
PNM and include the 2% upper limit for correlated neutrons
in our estimate of the uncertainty band. In what follows we
refer to this as the correlated Fermi gas (CFG) model.

The per-nucleon kinetic energy of nuclei and of symmetric
nuclear matter can then be calculated from the momentum
distribution using

Ekin = 4π

(2π )3

∫ ∞

0

�
2k2

2m
n(k)k2dk. (6)

Figure 1 shows the resulting kinetic energy for finite nuclei,
calculated within the CFG model using a2(A) = 5 ± 0.3 and
shown as a function of λ. The CFG kinetic energy is much
larger than that of the uncorrelated Fermi gas. It agrees with the
kinetic energies from many-body nuclear calculations for 12C,
16O, 40Ca, 56Fe, and 208Pb [42] and from VMC calculations
for 12C [41].

Figure 2 shows the average nucleon kinetic energy for
SNM, Ekin

SNM(ρ0) calculated at saturation density and shown
as a function of λ. The CFG calculation is done using
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FIG. 1. (Color online) The per-nucleon kinetic energy calculated
using the correlated Fermi gas (CFG) model (diagonal red [gray]
band) for atomic nuclei from 12C to 208Pb. The calculated kinetic
energy is shown as a function of λ, the high-momentum tail cutoff
parameter. The vertical blue (gray) band shows the constraints on λ

from the deuteron momentum distribution. The red band reflects the
model uncertainties. Also shown are the results from the uncorrelated
Fermi gas model (dashed purple [gray] line) and a horizontal black
band spanning the results from many-body nuclear calculations for
various nuclei from 12C to 208Pb [42] and from exact variational Monte
Carlo (VMC) calculations for 12C [41].

a2(∞) = 7 ± 1 and Rd = 0.64 ± 0.10 and is compared with
the free Fermi gas model and the predictions of several
microscopic models [28,30,31]. The error band on the CFG
results combines estimated uncertainties in Rd and a2(∞). The
self-consistent Green’s function (SCGF) calculations of the
kinetic energy of symmetric nuclear matter, Ekin

SNM(ρ0) [30,31],
agree with our CFG calculation (Fig. 2).

FIG. 2. (Color online) The per-nucleon kinetic energy for sym-
metric nuclear matter calculated using the correlated Fermi gas (CFG)
model (diagonal red [gray] band). The calculated kinetic energy is
shown as a function of λ, the high-momentum tail cutoff parameter.
The vertical blue (gray) band shows the constraints on λ from the
deuteron momentum distribution. The red band reflects the model
uncertainties. Also shown are the results from the uncorrelated
Fermi gas model (dashed purple [gray, bottom] line), the Brueckner-
Hartree-Fock (BHF) model using the AV-18 interaction [28], and the
self-consistent Green’s function (SCGF) approach using the CDBonn,
N3LO, and AV18 nucleon-nucleon interactions [30,31].

FIG. 3. (Color online) The per-nucleon kinetic symmetry energy
at saturation density, Ekin

sym(ρ0), calculated using the correlated Fermi
gas model (diagonal red [gray] band) as a function of λ, the high-
momentum tail cutoff parameter. The dashed purple (gray, top) line
shows the results of the uncorrelated Fermi gas model. The horizontal
green (gray) band shows the results from transport model analyses of
Sn+Sn collisions described in the text. Also shown for comparison
are the results from microscopic calculations: Brueckner-Hartree-
Fock (BHF) [28], Fermi hypernetted chain (FHNC) [29], and the
self-consistent Green’s gunction (SCGF) using the CDBonn, N3LO,
Nij1, and AV18 nucleon-nucleon interactions [30,31].

Almost all phenomenological and microscopic many-body
theories lead to equations of state (EOS) of asymmetric nucle-
onic matter that vary quadratically with the isospin-asymmetry
δ = (ρn − ρp)/(ρn + ρp) according to the so-called empirical
parabolic law E(ρ,δ) = E(ρ,δ = 0) + Esym(ρ)δ2 + O(δ4).
The coefficient of the δ4 term at ρ0 has been found to be
less than 1 MeV [33]. The symmetry energy can thus be
calculated equally accurately from either the energy difference
between PNM and SNM, i.e., Esym(ρ) = E(ρ,1) − E(ρ,0), or

the curvature Esym(ρ) = 1
2

∂2E(ρ,δ)
∂δ2 at any δ.

However, it has never been tested whether the empirical
parabolic law is valid separately for the kinetic and potential
parts of the EOS. While the free Fermi gas kinetic energy
satisfies the parabolic law, models that include SRC may not
[58]. To be consistent and compare with the free Fermi gas
model and microscopic many-body theories, we will define
the kinetic symmetry energy of correlated nucleonic matter
as Ekin

sym(ρ) = Ekin
PNM(ρ) − Ekin

SNM(ρ). We add a SRC correction
term to the Fermi gas symmetry energy to get the full kinetic
symmetry energy:

Ekin
sym(ρ) = Ekin

sym(ρ)|FG − 	Ekin
sym(ρ), (7)

where the SRC correction term is

	Ekin
sym ≡ E0

F

π2
c0

[
λ

(
ρ

ρ0

)1/3

− 8

5

(
ρ

ρ0

)2/3

+ 3

5

1

λ

(
ρ

ρ0

)]
.

(8)

As one expects, the SRC correction increases with both the
height (c0 = C∞/kF = Rda2(∞)) and width (λ) of the high-
momentum tail in SNM.

Figure 3 shows the kinetic symmetry energy, Ekin
sym(ρ0),

calculated at saturation density assuming a free Fermi gas
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model for PNM and shown as a function of λ. The error
band on the CFG results combines estimated uncertainties in
Rd,a2(∞) and the amount of SRC in PNM (<2%). Within the
uncertainty range of the parameter λ = 2.75 ± 0.25, Ekin

sym(ρ0)
is found to be −10 ± 7.5 MeV, much less than the free Fermi
gas result of ≈ +12.5 MeV. The microscopic many-body
theories yield results that are significantly smaller than the
free Fermi gas prediction but significantly larger than our
CFG model. Despite the agreement between our CFG model
and the SCGF calculations of the kinetic energy of symmetric
nuclear matter, Ekin

SNM(ρ0) [30,31], the SCGF symmetry energy,
Ekin

sym(ρ0) = Ekin
PNM(ρ0) − Ekin

SNM(ρ0), is significantly larger than
our model’s. This is because the SCGF calculations include
about 10% correlations in PNM.

To further validate our CFG model, we perform a transport
model analysis of nucleon emission data in intermediate
energy heavy-ion collisions. The dynamics of heavy-ion
collisions around the Fermi energy are sensitive to the density
dependence of the nuclear symmetry energy around ρ0 [32,33].
Specifically, the ratio of free neutrons to protons emitted
in heavy-ion collisions was found to be sensitive to the
symmetry energy [4]. This ratio has been measured recently in
124Sn + 124Sn and 112Sn + 112Sn reactions at Ebeam/A = 50
and 120 MeV at MSU [40] with improved precision as
compared to earlier measurements [39]. The data are given
for the double ratio of neutrons to protons in 124Sn + 124Sn to
112Sn + 112Sn reactions to reduce systematic errors associated
with neutron detection.

Using the Isospin-dependent Boltzmann-Uehling-
Uhlenbeck (IBUU) transport model [33], analysis of this
double ratio was done by introducing two parameters, η and
γ , to describe the potential symmetry energy:

Epot
sym(ρ) = [

Esym(ρ0) − ηEkin
sym(ρ0)

∣∣
FG

]
(ρ/ρ0)γ . (9)

Without considering the momentum dependence of nuclear
potentials, the corresponding symmetry potential is then

V n/p
sym (ρ,δ) = [

Esym(ρ0) − ηEkin
sym(ρ0)

∣∣
FG

]
(ρ/ρ0)γ

× [±2δ + (γ − 1)δ2]. (10)

The 2δ term dominates. The ± sign is due to the fact that
neutrons and protons feel repulsive and attractive symmetry
potentials respectively.

We varied η and γ on a large two-dimensional (2D) fine
lattice to minimize the χ2 between the model calculations
and the MSU data at both beam energies. We then performed
a covariance analysis to find the uncertainties of η and γ
corresponding to a ±1σ error band using the method reviewed
recently in Refs. [59,60]. We used an impact parameter of 3 fm,
consistent with that estimated for the data [61]. Free nucleons
are identified as those with local densities less than ρ0/8 at the
time of their final freeze-out from the reaction. Calculations
using a phase-space coalescence model lead to similar results
within the error band [26].

Figure 4 shows the double free neutron-proton ratios
in the two 124 and 112 Sn+Sn reactions at Ebeam/A =
50 MeV/nucleon [40]. The calculations (red band) shown

FIG. 4. (Color online) The calculated double ratio of free
neutron-protons in the two reactions in comparison with the MSU
data for transversely emitted nucleons in the angular range of
70◦ � θcms � 110◦ [40]. The bands represent 1σ uncertainty of the
calculations.

used the optimized parameters η0 = −0.30 (1 ± 18.53%)
that corresponds to Ekin

sym(ρ0) = −(3.8 ± 0.7) MeV and
γ0 = 0.80 (1 ± 5.98%) with a χ2

0 = 8. This value of Ekin
sym(ρ0)

was determined without considering the momentum depen-
dence of the symmetry potential known to decrease somewhat
the free neutron-proton ratio [62]. It thus represents an upper
bound on the kinetic symmetry energy used to reproduce the
MSU data within the IBUU model. For comparison, results
with a χ2 = 21 using Ekin

sym(ρ0)|FG = 12.5 MeV and γ = 0.8
are also shown. Calculations with Ekin

sym(ρ0)|FG and other values
of γ between 0.4 and 1 leads to even higher χ2 values.

The value of Ekin
sym(ρ0) determined from the IBUU transport

analysis of the neutron to proton ratios in Sn+Sn collisions
is consistent with that calculated using our CFG model (see
Fig. 3).

We now turn to extracting the total symmetry energy at
supra-nuclear densities and the density dependence of its
potential part using the CFG model. We use the general
form of the total symmetry energy given by Eq. (1), with the
CFG corrections to the kinetic energy term given by Eq. (7)
and (8). As detailed above, by comparing the CFG model
results to the known values of the total symmetry energy
(Esym(ρ0) = 31.0 ± 1(1σ ) MeV [19]) we can extract the value
of the potential part of the symmetry energy at saturation
density: E

pot
sym(ρ0) = Esym(ρ0) − Ekin

sym(ρ0). Simillarly, using
the known density dependence of the total symmetry energy at
saturation density (L = 50 ± 5(1σ ) MeV [19]) we can extract
the density dependence of the potential part of the symmetry
energy:

γ =
1
3L − dEkin

sym(ρ)
dρ

∣∣
ρ0

Esym(ρ0) − Ekin
sym(ρ0)

.

Our results are summarized in Table I where we list
the value of γ extracted using the CFG model. This is
compared with free fermi gas model results (i.e. α = 2/3)
assuming different values for the kinetic symmetry energy (i.e.
Ekin

sym(ρ0) = −10, 0, 12.5, 17 MeV), and with recent analyses
of heavy ion collisions [6] and neutron star data [12], which
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TABLE I. Density dependence parameter, γ , of the potential part
of the symmetry energy extracted within the Correlated Fermi Gas
(CFG) and Free Fermi Gas (FG) models, assuming a total symmetry
energy of Esym(ρ0) = 31 MeV. Also shown are the value of γ and
its 1σ and 2σ confidence intervals, extracted from analysis of heavy
ion collision data [6] and neutron stars observations [12], assuming a
Free FG model. The assumed value of the kinetic symmetry energy
at saturation density used in each extraction is also listed.

Ekin
sym(ρ0) γ

[MeV] ±1σ (2σ )

CFG −10 ± 3 0.25 ± 0.05

−10 ± 3 0.58 ± 0.05
0 0.55 ± 0.06FG 12.5 0.48 ± 0.10
17 0.41 ± 0.13

Tsang et al. [6] 12.5 0.7+0.1(0.35)
−0.2(0.3)

Steiner et al. [12] 17.0 0.3+0.1(0.5)
−0.1(0.3)

also assume a free fermi gas model (i.e. α = 2/3). As can
be seen, even within the FG model, the value of γ varies
significantly depending on the value of the kinetic symmetry
energy. Furthermore, CFG and FG results for the same kinetic
symmetry energy also differ due to the density dependence of
the SRC correction term [Eq. (8)]. The value of γ obtained
from the neutron star analysis of Ref. [12] is very similar to
that of the CFG model.

Figure 5 shows the density dependence of the kinetic,
potential and total symmetry energy obtained using both the
CFG and FG models. While the two models differ significantly
in the values and density dependences of their kinetic and
potential parts, their total symmetry energies are almost
identical.

To summarize, we provide an analytical expression for a
kinetic symmetry energy of correlated nucleonic matter at ρ =
ρ0, using the dominance of short-range correlated neutron-
proton pairs at high momentum observed in electron scattering
data. Our model yields Ekin

sym(ρ0) = −10 ± 7.5 MeV, signifi-
cantly lower than Ekin

sym(ρ0) = +12.5 MeV of the widely-used
free Fermi gas model. This result is consistent with our analysis
of recent data on the free proton-to-neutron ratios measured
in intermediate energy nucleus-nucleus collisions as well as

FIG. 5. (Color online) The density dependence of the kinetic,
potential and total symmetry energy extracted using the CFG and
FG models. See text for details.

with microscopic many-body calculations, and previous phe-
nomenological extractions. We also extract the density depen-
dence of E

pot
sym(ρ) and Esym(ρ) from our model of E

pot
sym(ρ)

together with the value of the total symmetry energy and
its density dependence at saturation density. While the total
symmetry energy exacted using different models is consistent,
its separation into kinetic and potential parts is not.
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