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Self-consistent tensor effects on nuclear matter systems within a relativistic Hartree-Fock approach

Li Juan Jiang (���),1 Shen Yang (��),1 Jian Min Dong (���),2 and Wen Hui Long (���)1,*

1School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

(Received 20 October 2014; published 4 February 2015)

With the relativistic representation of the nuclear tensor force that is included automatically by the Fock
diagrams, we explored the self-consistent tensor effects on the properties of a nuclear matter system. The analysis
was performed within the density-dependent relativistic Hartree-Fock (DDRHF) theory. The tensor force is found
to notably influence the saturation mechanism, the equation of state, and the symmetry energy of nuclear matter,
as well as the neutron star properties. Without introducing any additional free parameters, the DDRHF approach
is a natural way to reveal the tensor effects on the nuclear matter system.

DOI: 10.1103/PhysRevC.91.025802 PACS number(s): 21.60.Jz, 21.65.Cd, 21.65.Ef, 26.60.Kp

I. INTRODUCTION

In the past several decades, covariant density functional
theories have achieved great successes in exploring the finite
nuclei and nuclear matter. One of the most outstanding
schemes is the relativistic mean field (RMF) theory with a lim-
ited number of free parameters [1–7]. Because of its covariant
formulation of strong scalar and vector fields, the RMF theory
is able to self-consistently describe the nuclear spin-orbit
effect. However, important degrees of freedom associated with
the π and tensor-ρ fields are missing in the limit of Hartree
approach. In fact, the dominant part of one-pion exchange
process is the nuclear tensor force component [8,9] that plays
significant roles in nuclear structure [9–11], excitation and
decay modes [12–16], and symmetry energy [17,18].

As an important ingredient of nuclear force, the tensor
force, together with the spin-orbit coupling, characterizes the
spin-dependent feature [8]. It was first recognized by the
discovery of electric quadrupole moment of the deuteron [19].
From the viewpoint of the meson exchange picture of the
nucleon-nucleon interaction [20], the nuclear tensor force was
thought to originate from the exchange processes of the π and
tensor-ρ fields, corresponding to the long- and short-range
parts, respectively [8,19]. In general, the nuclear tensor force
is identified by the following form:

S12 = 3(σ 1 · q)(σ 2 · q) − σ 1 · σ 2q2, (1)

where S12 is a rank-2 irreducible tensor well defined in
the nonrelativistic quantum mechanics, with the momentum
transfer q = p1 − p2. In recent years, the nuclear tensor force
was shown to play an essential role in determining the shell
evolution from the stable to exotic nuclear systems, either
by the nonrelativistic or relativistic calculations [8,10,21–25],
although some suspicions remain due to the fact that the
particle-vibration couplings were not included [26]. Further-
more, the inclusion of the nuclear tensor force also had a
substantial impact on the understanding of the nature of
nuclear excitations and decay modes [12,14,27,28]. For the
density-dependent behavior of nuclear symmetry energy—the
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key quantity to understanding the nuclear equation of state
(EoS) and relevant astrophysical processes [29,30]—the tensor
effects have also been revealed to be among the physics
responsible for the uncertainty of the symmetry energy at
supranuclear densities [17,18].

Although the nuclear tensor force has been well identified
with the form (1), researchers encounter some difficulties due
to the evident model dependence in determining its coupling
strength based on the well-developed energy functionals such
as the Skyrme forces [31]. Within the covariant density
functional theory founded on the meson exchange picture of
the nuclear force, people attempt to investigate the tensor
effects by including the Lorentz tensor couplings, e.g., in
terms of ω-tensor couplings [32]. However, the so-called
tensor is just pure central-type contributions in the limit of
Hartree approach. The solution is to introduce explicitly the
Fock diagrams of the meson-nucleon couplings, so that the
degrees of freedom associated with the π and tensor-ρ fields
can be efficiently taken into account, for instance by the
density-dependent relativistic Hartree-Fock (DDRHF) theory
[22,33,34]. Within DDRHF, substantial improvements due to
the tensor effects have been revealed in reproducing the shell
evolution without additional adjusted parameters [9,22,25].
The relativistic representation of the nuclear tensor force was
proposed very recently, with the new origin associated with
the Fock diagrams of the isoscalar scalar σ and vector ω
couplings [35]. It has been confirmed that the spin-dependent
feature—the nature of the nuclear tensor force—can be
extracted and quantified almost completely by the proposed
relativistic formalism [35].

In this work, we study the effects of the nuclear tensor
force components which hide in the Fock diagrams of the
meson-nucleon couplings, particularly the isoscalar scalar σ
and vector ω couplings, on the properties of nuclear matter
and neutron stars. Section II briefly introduces the relativistic
formalism of the nuclear tensor forces for nuclear matter. In
Sec. III we present the calculated results and discussions,
including the tensor effects on the bulk properties of symmetric
nuclear matter and the EoS in Sec. III A, on the density-
dependent behavior of the symmetry energy in Sec. III B, and
on the neutron star structure in Sec. III C. Finally, a summary
is given in Sec. IV.
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II. RELATIVISTIC FORMALISM OF TENSOR FORCE
COMPONENTS IN NUCLEAR MATTER

A. RHF energy functional

Relativistically, the nucleon-nucleon (NN) interactions can
be established on the picture of the meson exchanges, including
the isoscalar and isovector ones. Consistent with this criterion,
the Lagrangian density, i.e., the starting point of the relativistic
Hartree-Fock (RHF) theory, can be constructed by enclosing
the degrees of freedom of nucleon (ψ), two isoscalar mesons
(scalar σ and vector ωμ), two isovector ones (pseudoscalar �π
and vector �ρμ), and photon (Aμ) fields [22,36,37]. Namely the
σ - and ω-meson fields are introduced to simulate the strong
midrange attraction and short-range repulsion, respectively,
the isovector part is evaluated by the π - and ρ-meson fields,
and the photons take the Coulomb effects into account.

In general, the Lagrangian density L is composed of two
parts, the free Lagrangian L0 and the one LI describing the
interactions between the nucleons and mesons (photons),

L = L0 + LI , (2)

L0 = ψ̄(iγμ∂μ − M)ψ (3)

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 + 1

2
m2

ωωμωμ + 1

4
	μν	

μν

+ 1

2
m2

ρ �ρμ · �ρμ− 1

4
�Rμν · �Rμν + 1

2
∂μ �π · ∂μ �π− 1

4
FμνF

μν,

LI = −ψ̄

[
gσσ + gωγ μωμ + gργ

μ�τ · �ρμ − fρ

2M
σμν �τ · ∂ν �ρμ

+ fπ

mπ

γ5γ
μ�τ · ∂μ �π + eγ μ 1 − τ3

2
Aμ

]
ψ, (4)

where 	μν = ∂μων − ∂νωμ, �Rμν = ∂μ �Rν − ∂ν �Rμ, and
Fμν = ∂μF ν − ∂νFμ. In the Lagrangians (3) and (4), M
and mi (gi or fi) denote the masses (coupling constants) of
(between) nucleon and mesons. In the above expressions and
the following context, the arrows are used to denote isovector
quantities and the bold type is used for the vectors in coordinate
space.

Following the standard variational procedure, the Hamilto-
nian H can be effectively derived from the Lagrangian density
L as

H =
∫

dx ψ̄(x)(−iγ · ∇ + M)ψ(x)

+ 1

2

∑
φ

∫
dx1dx2 ψ̄(x1)ψ̄(x2)
φ(1,2)

×Dφ(1,2)ψ(x2)ψ(x1), (5)

where φ denotes the meson-nucleon coupling channels,
namely the Lorentz scalar (σ -S), vectors (ω-V, ρ-V, and A-V),
vector-tensor (ρ-VT), tensor (ρ-T) and pseudovector (π -PV)
couplings. In the Hamiltonian (5), the interacting vertices

φ(1,2) read as


σ -S(1,2) ≡ −gσ (1)gσ (2), (6a)


ω-V(1,2) ≡ +[gωγμ]1[gωγ μ]2, (6b)


ρ-V(1,2) ≡ +[gργμ�τ ]1 · [gργ
μ�τ ]2, (6c)


ρ-T(1,2) ≡ +
[

fρ

2M
σμν �τ∂ν

]
1

·
[

fρ

2M
σμλ�τ∂λ

]
2

, (6d)


ρ-VT(1,2) ≡ +
[

fρ

2M
σμν �τ∂μ

]
1

· [gργ
ν �τ ]2

+ [gργ
ν �τ ]1 ·

[
fρ

2M
σμν �τ∂μ

]
2

, (6e)


π-PV(1,2) ≡ −
[

fπ

mπ

�τγ5γμ∂μ

]
1

·
[

fπ

mπ

�τγ5γν∂
ν

]
2

, (6f)


A-V ≡ +
[
eγμ

1 − τ3

2

]
1

[
eγ μ 1 − τ3

2

]
2

, (6g)

and Dφ(1,2) are the propagators of meson and photon fields
with the following Yukawa form:

Dφ = 1

4π

e−mφ |x1−x2|

|x1 − x2| , DA-V = 1

4π

1

|x1 − x2| . (7)

It should be noticed that in deriving the Hamiltonian (5) we
have introduced the simplifying assumption of neglecting the
time component of the four-momentum carried by the mesons,
which means that the meson fields are time independent. This
assumption has no consequence, in the static case, on the direct
(Hartree) terms while it amounts to neglecting the retardation
effects for the exchange (Fock) terms [36].

To provide an accurate quantitative description of nu-
clear systems, one also has to treat the nuclear in-medium
effects of the nucleon-nucleon interactions properly, either
by introducing the nonlinear self-couplings of the meson
fields [38–40] or the density dependence of meson-nucleon
couplings [33,41]. In the current framework, i.e., the density-
dependent relativistic Hartree-Fock (DDRHF) theory [22,33],
the meson-nucleon coupling constants are assumed to be a
function of baryon density ρb. For the isoscalar σ and ω
mesons, the density dependences of the coupling constants
gi (i = σ , ω) are chosen as

gi(ρb) = gi(ρ0)fi(ξ ), fi(ξ ) = ai

1 + bi(ξ + di)2

1 + ci(ξ + di)2
, (8)

where ξ = ρb/ρ0, and ρ0 denotes the saturation density
of nuclear matter. In addition, five constraint conditions
fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), and f ′′

i (0) = 0 are introduced to
reduce the number of free parameters. For the ones in the
isovector channels, i.e., gρ , fρ , and fπ , an exponential density
dependence is utilized:

gρ = gρ(0)e−aρξ , fρ = fρ(0)e−aT ξ , fπ = fπ (0)e−aπ ξ .
(9)

At the mean field level, the contributions from the Dirac
sea are neglected, i.e., the widely used no-sea approximation.
Consequently the HF ground state can be determined as

|�0〉 =
∏
α

c†α|0〉, (10)

where c†α is the creative operator of the particle, |0〉 is the
vacuum state, and the index α only runs over the positive
energy states. With respect to the ground state |�0〉, the RHF
energy functional can be obtained from the expectation of the
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Hamiltonian H as

E = 〈�0|H |�0〉 ≡ 〈�0|T |�0〉 + 1

2

∑
φ

〈�0|Vφ|�0〉, (11)

where T and Vφ denote the kinetic and potential energy parts,
respectively, and the latter contains two types of contributions:
the direct (Hartree) 〈V 〉D and exchange (Fock) terms 〈V 〉E
[36].

B. Relativistic representation of nuclear
tensor force components

In Ref. [35], the relativistic formalism to identify the nuclear
tensor force components hidden in the Fock terms of the
meson-nucleon couplings are proposed respectively for π -PV,
σ -scalar (S), ω-vector (V), and ρ-tensor (T) couplings, and
they read as

H T
π-PV = −1

2

[
fπ

mπ

ψ̄γ0�μ�τψ

]
1

·
[

fπ

mπ

ψ̄γ0�ν �τψ

]
2

×D
T, μν
π-PV (1,2), (12)

H T
σ -S = −1

4

[
gσ

mσ

ψ̄γ0�μψ

]
1

[
gσ

mσ

ψ̄γ0�νψ

]
2

D
T, μν
σ -S (1,2),

(13)

H T
ω-V = 1

4

[
gω

mω

ψ̄γλγ0�μψ

]
1

[
gω

mω

ψ̄γδγ0�νψ

]
2

×D
T, μνλδ
ω-V (1,2), (14)

H T
ρ-T = 1

2

[
fρ

2M
ψσλμ�τψ

]
1

·
[

fρ

2M
ψσδν �τψ

]
2

D
T, μνλδ
ρ-T (1,2),

(15)

where �μ = (γ 5,�), and the propagator terms DT read as

D
T, μν
φ (1,2) = [

∂μ(1)∂ν(2) − 1
3gμνm2

φ

]
Dφ(1,2)

+ 1
3gμνδ(x1 − x2), (16)

D
T, μνλδ
φ′ (1,2) = ∂μ(1)∂ν(2)gλδDφ′(1,2)

− 1
3

(
gμνgλδ − 1

3gμλgνδ
)
m2

φ′Dφ′(1,2)

+ 1
3

(
gμνgλδ − 1

3gμλgνδ
)
δ(x1 − x2). (17)

In the above expressions (16) and (17), φ stands for the σ -
S and π -PV couplings, and φ′ represents the ω-V and ρ-
T channels. For the ρ-V coupling, corresponding formalism
H T

ρ-V can be obtained simply by replacing mω (gω) in Eqs. (14)
and (17) by mρ (gρ) and inserting the isospin operator �τ in
the interacting index. Consistent with the theory itself, the
μ,ν = 0 components of the propagator terms will be omitted in
practice, which amounts to neglecting the retardation effects.
Transferring to the momentum space, the interaction index
together with the propagator term in H T

φ (φ = σ -S and π -PV)
can be expressed as

V T
φ (q) = 1

3

3(γ0�1 · q)(γ0�2 · q) − (γ0�1) · (γ0�2)q2

m2
φ + q2

, (18)

and the numerator term in the right-hand side is exactly a rank-
2 irreducible tensor operator similar as S12 [see Eq. (1)]. For
φ′ = ω-V, ρ-T, and ρ-V, one may obtain the irreducible tensor
operators with higher ranks. The q2 term in the numerator of
Eq. (18), together with the denominator m2

φ + q2, contributes
two types of the interactions:

q2

m2
φ + q2

= 1 − m2
φ

m2
φ + q2

, (19)

which are respectively the δ and m2
φ terms in the propagator

term (16) if transferring back to the coordinate space.
For the uniform nuclear matter, relevant contributions to

the energy density functional (EDF) from the nuclear tensor
force components, namely the expectations of the proposed
Hamiltonians (12)–(15), can be derived as

ET
σ = +1

2

1

(2π )4

g2
σ

m2
σ

∑
τ1,τ2

δτ1,τ2

∫
p1dp1p2dp2

× P̂1P̂2

[(
p2

1 + p2
2 − 1

3
m2

σ

)
�σ − p1p2�σ

]
, (20)

ET
ω = + 1

(2π )4

g2
ω

m2
ω

∑
τ1,τ2

δτ1,τ2

∫
p1dp1p2dp2

×
{[(

p2
1 + p2

2 + 1

6
m2

ω

)
�ω − p1p2�ω

]
P̂1P̂2

+
(

1

4
m2

ω�ω − p1p2

)
(M̂1M̂2 − 1)

}
, (21)

ET
π = + 1

(2π )4

f 2
π

m2
π

∑
τ1,τ2

(
2 − δτ1,τ2

) ∫
p1dp1p2dp2

× P̂1P̂2

[(
p2

1 + p2
2 − 1

3
m2

π

)
�π − p1p2�π

]
, (22)

ET
ρ-T = +1

2

1

(2π )4

f 2
ρ

M2

∑
τ1,τ2

(
2 − δτ1,τ2

) ∫
p1dp1p2dp2

× P̂1P̂2

[(
p2

1 + p2
2 − 1

3
m2

π

)
�π − p1p2�π

]
, (23)

where τ1 and τ2 denote the third components of the isospin of
nucleons. For the quantities �, �, and the hatted ones P̂ and
M̂ , they read as

�φ(p1,p2) = ln
m2

φ + (p1 + p2)2

m2
φ + (p1 − p2)2

, (24)

�φ(p1,p2) = p2
1 + p2

2 + m2
φ

4p1p2
�φ(p1,p2) − 1, (25)

P̂ = p∗

E∗ , M̂ = M∗

E∗ , (26)

with p∗ = p + p̂VV , M∗ = M + VS , and E∗ = E − V0 [36],
where VS is the scalar self-energy and V0 and VV are the time
and space components of the vector one, respectively. For ρ-V
coupling, its expression can be obtained by replacing mω(gω)
and isospin factor δτ1,τ2 in Eq. (21) with mρ(gρ) and (2 − δτ1,τ2 ),
respectively. With the EDFs (20)–(23) of the nuclear tensor
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forces, the corresponding contributions to the self-energies
can also be obtained. Notice that the extraction of the tensor
force contributions does not introduce any additional free
parameters, which is exactly the advantage of the method to
treat the tensor effects self-consistently.

III. RESULTS AND DISCUSSION

Since a nuclear tensor force emerges simultaneously with
the presence of Fock diagrams of meson-nucleon couplings, it
is worthwhile to study its effects with the proposed relativistic
representation [see Eqs. (12)–(15)]. In this study, we focus
on the role played by the naturally involved tensor force
components in the saturation mechanism, the EoS and the
symmetry energy of nuclear matter, and the bulk properties of
neutron star, using the DDRHF functionals PKA1 [22], PKO1
[33], and PKO2 and PKO3 [9]. Among these functionals,
PKA1 has the complete RHF scheme of meson-nucleon
couplings as a list in Eq. (6), whereas in PKO series the ρ-T
and ρ-VT couplings are missing, and the π -PV one is not
included in PKO2, either. In order to reveal the self-consistent
tensor effects in describing the nuclear matter and neutron
star properties, we performed the comparison between two
self-consistent calculations: one with the full EDF and the
other with an EDF that drops the tensor force components.
With these two self-consistent procedures, the tensor force
contributions to the EDF can be completely included or
excluded, respectively.

A. Symmetric nuclear matter

Table I shows the bulk properties of symmetric nuclear
matter at saturation point, namely the saturation density ρ0

(fm−3), the binding energy per nucleon E/A (MeV), and the
incompressibility K (MeV). To reveal the tensor effects in de-
termining the saturation mechanism, the values in the brackets
are the results extracted from the calculations which drop the
tensor contributions. With the full DDRHF functionals which
have the nuclear tensor force components involved in the Fock
diagrams automatically, the saturation points have been well
established as the saturation density ρ0 ∼ 0.16 fm−3 and the
binding energy E/A ∼ −16 MeV, and both are in a good
agreement with the empirical values. As generally expected,
the nuclear tensor force presents tiny contributions to the
energy functional indeed, while the saturation mechanism is
disturbed essentially, if removing the tensor force contributions

TABLE I. Bulk properties of symmetric nuclear matter at satura-
tion point, i.e., the saturation density ρ0 in unit of fm−3 and binding
energy per particle E/A and incompressibility K in unit of MeV. The
results are calculated by using the DDRHF functionals PKA1, PKO1,
PKO2, and PKO3. The results which drop the tensor contributions
(W/O) are given in the brackets for comparison.

ρ0 (W/O) E/A (W/O) K (W/O)

PKA1 0.160 (0.148) −15.83 (−14.18) 229.96 (203.56)
PKO1 0.152 (0.140) −16.00 (−14.21) 250.24 (221.96)
PKO2 0.151 (0.139) −16.03 (−14.31) 249.60 (222.65)
PKO3 0.153 (0.140) −16.04 (−14.22) 262.47 (229.82)
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FIG. 1. (Color online) The binding energy per nucleon E/A

(MeV) of symmetric nuclear matter as a function of the baryonic
density ρb. The results are calculated with the full EDFs determined
by the DDRHF functionals PKA1, PKO1, and PKO3, as compared to
those dropping the tensor force contributions (red [gray] lines). The
subset shows the results around ρ0 with smaller scale.

from the DDRHF functionals. As shown in Table I, the
saturation densities becomes 0.012 fm−3 smaller due to the
dropping of the nuclear tensor force components and such
reduction almost accounts for 8% of the saturation density.
Consistently the changes of 1.7 MeV are found on the binding
energy per nucleon E/A. For the incompressibility K that has
wide ranges in theoretical predictions [42], the tensor effects
enhance distinctly the K values by 26–33 MeV.

It should be noticed that the candidates of nuclear tensor-
related observables, such as the nuclear spin-isospin reso-
nances [16] and single-particle shell evolution [10], were not
utilized in parameterizing the DDRHF functionals PKA1 [22]
and PKO series [33] even though, as seen from Table I, the
nuclear saturation mechanism is influenced fairly distinctly
by the natural tensor force components in the DDRHF
functionals. From Eqs. (20)–(23), these tensor contributions to
the energy functional depend on the momentum p, and gradual
enhancements on the tensor EDFs are therefore predictable
at high-density region, as well demonstrated in Fig. 1. The
black lines in Fig. 1 are the EoSs of symmetric nuclear matter
calculated with the full DDRHF functionals PKA1, PKO1,
and PKO3, and the red (gray) lines correspond to the relevant
calculations which drop the tensor force components. By
comparing the calculations with the full DDRHF functional
and those dropping the tensor terms, it seems that in the
low-density region (ρb � ρ0), the nuclear tensor force does
not change much the EoSs. If concentrating on the density
region ρb ∼ ρ0 with smaller scale, the deviations between two
types of the calculations are still remarkable, as seen from
the subset in Fig. 1. Qualitatively it can be easily justified that
the presence of the tensor terms in the full DDRHF functionals
increases the curvatures of the EoSs at ρb = ρ0; i.e., the values
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TABLE II. The symmetry energy J together with its slope L

and curvature Ksym obtained by the calculations of DDRHF with
PKA1, PKO1, PKO2, and PKO3. The results which drop the tensor
contributions (W/O) are listed in the brackets for comparison. All
values are in unit of MeV.

J (W/O) L (W/O) Ksym (W/O)

PKA1 36.02 (35.95) 103.50 (115.49) 212.90 (317.31)
PKO1 34.37 (33.50) 97.70 (101.66) 105.85 (158.87)
PKO2 32.49 (31.73) 75.93 (81.12) 77.51 (128.77)
PKO3 32.98 (32.26) 83.00 (88.91) 116.43 (176.39)

of the incompressibility K are enhanced by the tensor effects.
In the supranuclear density region, the nuclear tensor force
presents much more distinct effects, which contributes about
30 MeV to the energy functional and makes the EoSs softer.

B. Symmetry energy

The symmetry energy and its density-dependent behavior
play crucial roles in understanding the properties of neutron-
rich nuclei, isospin asymmetric nuclear matter, and neutron
stars. Although much effort was devoted to its study by
experimental and theoretical researchers, the density behavior
of symmetry energy at supranuclear density region is still not
well constrained. Theoretically very different high-density be-
haviors of symmetry energy are predicted by various models,
varying from extremely soft to very stiff ones [43–45]. Re-
cently, some studies were performed to reveal the tensor effects
on the density dependence of the symmetry energy [17,18].

Table II shows the symmetry energy J with its slope L
and curvature Ksym, and those extracted from the calculations
dropping the tensor contributions are given in the brackets
for comparison. For the symmetry energy J at saturation
density, the subtractions of the tensor contributions bring very
tiny changes, whereas both the slope L and curvature Ksym

increase fairly distinctly. Similar to the results shown in Table I,
the tensor effects on the symmetry energy J with its slope
L and curvature Ksym are not so notable. Such results are
closely connected with the nature of relativistic EDFs of the
tensor force components (20)–(23), which essentially depend
on the momentum carried by the nucleons. In the low-density
region associated with the low momentum, the nuclear tensor
force shows little impact on the nuclear matter properties, and
with the density increasing that is equivalent to increasing the
momentum p the tensor effects may become remarkable.

In Fig. 2 the symmetry energies calculated with the DDRHF
functionals PKA1, PKO1, and PKO3 are shown as a function
of baryon density ρb. To reveal the tensor effects, Fig. 2(a)
presents the comparison between the calculations with the full
functionals and those dropping the tensor terms, and using
the DDRHF functional PKA1, Fig. 2(b) shows the tensor
contributions to the symmetry energy. Consistent with the
results in Table II, it is found from Fig. 2 that the withdrawal of
the tensor force contributions does not bring distinct changes
on the symmetry energy at subsaturation density region.
However, with the density increasing, the tensor effects on
the symmetry energy become notable due to the fact that the
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FIG. 2. (Color online) The symmetry energy (MeV) of nuclear
matter as a function of baryon density ρb (fm−3). The results are
calculated with the full EDFs determined by the DDRHF functionals
PKA1, PKO1, and PKO3, as compared to those dropping the tensor
force contributions (red [gray] lines). The lower plot shows the
symmetry energy (solid line) and the contributions only from the
tensor terms (dashed line) taking PKA1 as an example.

relativistic EDFs [see Eqs. (20)–(23)] of the tensor forces
depend on the momentum p essentially. Compared to the
calculations which drop the tensor terms [red (gray) lines
in Fig. 2(a)], the symmetry energies at supranuclear density
region are fairly softened by the tensor effects. This is well
demonstrated by the tensor contributions to the symmetry
energy in Fig. 2(b), which are negative and counteract about
20% of the contributions from the other channels at high
density. It is worthwhile to mention that the tensor force
components are naturally introduced with the presence of the
Fock diagrams in the DDRHF functionals. Hence the current
results provide a self-consistent explanation for the tensor
effects on the density dependence of the symmetry energy.

Furthermore with the relativistic EDFs (20)–(23), the tensor
contributions to the symmetry energy from different channels
can be extracted, namely the σ -S, ω-V, ρ-V, ρ-T, and π -PV
couplings as shown in Fig. 3(a). Using the DDRHF functional
PKA1, it is clear that the tensor component in the σ -S coupling
channel dominates the tensor contributions to the symmetry
energy, followed by the ω-V couplings, while those in π and ρ
exchanges are close to zero. This result can be well understood
from the tensor coupling constants shown in Fig. 3(b), namely
gσ /(

√
2mσ ), gω/(

√
2mω), gρ/(

√
2mρ), fρ/(2M), and fπ/mπ

025802-5



JIANG, YANG, DONG, AND LONG PHYSICAL REVIEW C 91, 025802 (2015)

-30

-20

-10

0
(a)

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.5

1.0

1.5

2.0

2.5

E
sy
m
(M
eV
) Tensor

σ-S
ω-V
ρ-V
ρ-T
π-PV

ρb (fm
-3)

C
ou
pl
in
g
co
ns
ta
nt
s

FIG. 3. (Color online) Contributions to the symmetry energy
from the tensor force components in various meson-nucleon coupling
channels [plot (a)] and the tensor coupling constants [plot (b)] as
functions of baryon density ρb (fm−3). The results are extracted from
the calculations of DDRHF with PKA1.

in the relativistic formalism (12)–(15). It is seen that the tensor
coupling constants in σ -S and ω-V channels tend to certain
values at high density, whereas due to the exponential density-
dependent behavior of gρ , fρ , and fπ , those from the isovector
ρ-V, ρ-T and π -PV channels vanish at the supranuclear density
region where the tensor effects become notable.

C. Neutron star

In understanding the cooling mechanism of neutron stars,
the proton fraction x = ρp/(ρn + ρp) is a key quantity which
carries significant information of the EoS of asymmetric
nuclear matter. By emitting thermal neutrinos through the
direct Urca (DU) processes n → p + e− + ν̄e and p + e− →
n + νe, the stars would cool rapidly. If the proton fraction
goes beyond a threshold value xDU, the DU process works.
Following the triangle inequality for momentum conservation
and charge neutrality condition [46,47], it is easy to obtain
the threshold of the proton fraction xDU as 11.1% � xDU �
14.8%.

Within the density range of static and β-equilibrium neutron
star matter, the proton fractions x are shown as functions of
baryon density ρb in Fig. 4 and the results are extracted from
the calculations with the DDRHF functionals PKA1, PKO1,
and PKO3, as compared to those dropping the tensor force
components. It is seen from Fig. 4 that the density-dependent
behaviors of the proton fraction x are also softened with
the presence of the nuclear tensor force components in the
DDRHF functionals, consistent with the systematics of the
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FIG. 4. (Color online) Proton fraction x = ρp/(ρp + ρn) of neu-
tron star matter as a function of baryon density ρb (fm−3). The
results are calculated with the full EDFs determined by the DDRHF
functionals PKA1, PKO1, and PKO3, as compared to those dropping
the tensor force components (red [gray] lines). The shadow area
corresponds to the threshold values 11.1% ≤ xDU ≤ 14.8% for the
occurrence of the direct Urca process.

symmetry energy in Fig. 2(a). For a given xDU, it corresponds
to a threshold density ρDU of the DU process occurring that
relies on the symmetry energy. Once when the central density
ρc of a neutron star exceeds the threshold density ρDU, the star
will cool rapidly via the DU processes. One can see that the
threshold density ρDU, determined by the DDRHF calculations
with the full EDFs which contain the tensor force components
in the Fock diagrams, are higher than those dropping the tensor
terms. Such result indicates that the nuclear tensor force is
unfavorable for the occurrence of the DU process. Considering
the well-known fact that the occurrence of the DU process is
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FIG. 5. (Color online) Mass-radius relations of the neutron stars.
The results are calculated by using the DDRHF functionals PKA1,
PKO1, and PKO3, as compared to those dropping the tensor terms
(red [gray] lines).
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TABLE III. The radius (km) and central density ρc (fm−3) of the
neutron stars with 1.4M� (upper panel) and the ones with Mmax (lower
panel). The results are calculated by using the DDRHF functionals
PKA1, PKO1, PKO2, and PKO3 (W/T), as compared to those
dropping the tensor terms (W/O).

1.4M� M (M�) R (km) ρc (fm−3)

W/T W/O W/T W/O W/T W/O

PKA1 1.40 1.40 14.06 14.84 0.31 0.27
PKO1 1.40 1.40 14.17 14.84 0.31 0.27
PKO2 1.40 1.40 13.79 14.44 0.32 0.28
PKO3 1.40 1.40 13.96 14.64 0.31 0.27
Mmax

PKA1 2.42 2.54 12.35 12.93 0.81 0.74
PKO1 2.45 2.56 12.42 12.94 0.80 0.74
PKO2 2.46 2.56 12.30 12.82 0.81 0.74
PKO3 2.50 2.61 12.49 13.01 0.78 0.72

not supported by the modern observational soft x-ray data in
the cooling curve, it seems that the predictions with nuclear
tensor force are in better agreement with the observations.

Figure 5 shows the mass-radius relation of neutron stars
calculated with the DDRHF functionals PKA1, PKO1, and
PKO3, and those dropping the tensor terms (in red [gray]
lines) are also shown for comparison. It is found that the
curves of mass-radius relation of neutron star are collectively
shifted rightward about 0.8 km with the dropping of the tensor
terms. In general, a larger neutron star radius corresponds to
a stiffer density-dependent symmetry energy. Combined with
the results in Fig. 2(a), it can be concluded that the tensor
effects on the mass-radius relation of neutron star and on the
density dependence of symmetry energy are congruous with
each other. Due to the fact that the tensor EDFs depend on the
momentum p essentially [see Eqs. (20)–(23)], fairly distinct
tensor effects are therefore observed on the mass-radius
relation of neutron star.

Table III lists the radii R (km) and central densities ρc

(fm−3) of the canonical neutron stars with 1.4M� (upper panel)
and the ones with the maximum mass limits Mmax (lower
panel). The results are calculated with the DDRHF functionals
(W/T) and those dropping the tensor terms (W/O). For the
canonical neutron stars, the radii R are reduced about 0.7 km

and the central densities ρc become larger, as compared to the
calculations dropping the tensor terms. That is, the presence
of the nuclear tensor force leads a neutron star to be more
compact. From the lower panel of Table III, one can also find
similar systematical changes due to the nuclear tensor force.

IV. CONCLUSION

With the relativistic representation of the nuclear tensor
forces that originate from the Fock diagrams of the meson-
nucleon coupling, we studied the self-consistent tensor effects
on the saturation mechanism, the equation of state, the density-
dependent behavior of the symmetry energy, and the neu-
tron star properties. Within the density-dependent relativistic
Hartree-Fock (DDRHF) theory, two types of the calculations
were performed to reveal the tensor effects, i.e., the ones with
the full DDRHF functional and those dropping the tensor
terms. It is found that by removing the tensor force components
in the DDRHF functionals the saturation mechanism of nuclear
matter is notably influenced. Due to the fact that the tensor
EDFs depend on the momentum essentially, the tensor effects
become more distinct with the density increasing. Due to
the naturally involved tensor force components in the Fock
diagrams, the density-dependent behavior of the symmetry
energy is fairly softened and consequently it leads neutron
stars to be more compact. Moreover, for the direct Urca (DU)
process that cools the neutron star rapidly, the threshold density
is raised by the nuclear tensor force. Finally we emphasize that
unlike other nuclear functionals such as the Skyrme+tensor
methods, the nuclear tensor force is included automatically
with the presence of the Fock diagrams in DDRHF, and
therefore the current scheme is a self-consistent way to explore
the tensor effects on the nuclear matter system.
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