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The Cabibbo-Kobayashi-Maskawa matrix in the standard model is currently the only experimentally confirmed
source of CP violation. The intrinsic electric dipole moment of the nucleon induced by this CP phase via hadronic
loop and pole diagrams was studied more than two decades ago, but is subject to various theoretical issues such
as the breakdown of chiral power counting and uncertainties in the determination of low energy constants. I carry
out an up-to-date re-analysis on both one-loop and pole diagram contributions to the nucleon electric dipole
moment based on heavy baryon chiral perturbation theory in a way that preserves power counting, and I redo
the determination of the low-energy constants following the results of more recent articles. Combined with an
estimation of higher-order contributions, I expect the long-distance contribution to the standard model nucleon
electric dipole moment to be approximately (1 × 10−32 – 6 × 10−32) e cm.
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I. INTRODUCTION

The search for the permanent electric dipole moment
(EDM) of elementary and composite particles is motivated
by its CP violating nature. We live in a universe in which the
amounts of baryons and antibaryons are unequal. In order to
explain this asymmetry, CP-violating interactions are needed
to fulfill one of the three Sakharov criteria [1]. EDMs of
elementary and composite particles are, in most cases, direct
consequences of these interactions which can be probed in
low-energy experiments. Since the first upper limit on the
neutron EDM obtained by Smith, Purcell, and Ramsey in
1957 [2], numerous experiments have been performed to
improve the sensitivity of EDM measurements in different
particle systems. Currently, the most stringent bounds on
EDMs are set for the electron (8.7 × 10−29 e cm, 90% C.L.) [3]
and the mercury atom (3.1 × 10−29 e cm, 95% C.L.) [4], while
the current upper limits on neutron and proton EDMs are
2.9 × 10−26 e cm (90% C.L.) [5] and 7.9 × 10−25 e cm (95%
C.L.) respectively (the latter is deduced from the bound on the
mercury EDM). Future experiments are designed (or have been
considered) to push these bounds even further down. For the
neutron EDM, this includes the experiment at Paul Scherrer
Institut (PSI) [6], the CryoEDM and PNPI/ILL experiment
at Institut Laue-Langevin (ILL) [7], the SNS neutron EDM
experiment at Oak Ridge, the TRIUMF experiment in Canada,
and the Munich experiment at Germany. These experiments are
designed to reach a 10−28 e cm precision level for the neutron
EDM [8]. Also, both COSY [9] and BNL [10] have proposed
storage ring experiments designed to measure the proton EDM
to a level of 10−29 e cm precision.

Although numerous beyond-standard-model (BSM) sce-
narios have been proposed that give rise to measurable EDMs
within current experimental precision level, so far no definitive
signal of such physics has been observed.1 Therefore, the CP-
violating phase of the Cabibbo-Kobayashi-Maskawa (CKM)

1There are indeed some hopeful candidates, for example the muon
g − 2 anomaly; but no conclusive statement can be made before

matrix in the standard model (SM) remains the only source for
intrinsic EDMs. Questions have been raised concerning the
expected size of EDMs coming from purely SM physics [11].
A simple dimensional analysis using constituent quark masses
may suggest that the SM-induced neutron EDM could be as
large as 10−29 e cm, approaching the level of sensitivity for
future EDM experiments. It is therefore important to have a
better estimate for the SM contribution to the nucleon EDM.
To leading order, the quark EDM induced by the CKM matrix
starts at three loops [12]. A detailed calculation showed that
the valence-quark contribution to the neutron EDM is of
order 10−34 e cm [13]. It was also shown that long-distance
contributions, namely contributions with baryons and mesons
as effective degrees of freedom (DOFs), could generate a
much larger hadronic EDM. For instance, the pion-loop
contribution to the neutron EDM was first studied in a paper by
Barton and White [14] which produced log-divergent results
in the chiral limit, indicating that the long-range contribution
may dominate. On the other hand, in a series of papers,
Gavela et al. studied the pole-diagram contribution with the
CP-violating phase generated by |�S| = 1 electroweak [15]
and gluonic penguin diagrams [16]. They claimed that the
latter is dominant and derived a SM neutron EDM of order
10−31 e cm. The possibility of a long-range contribution to
the neutron EDM from the CKM matrix was first pointed
out by Khriplovich and Zhitnitsky [17]. He et al. [18] did
a thorough chiral-loop calculation and re-analyzed the pole-
diagram contribution in [15,16] and argued that the two are of
the same order of magnitude. Their estimate for the neutron
EDM is 1.6 × 10−31 – 1.4 × 10−33 e cm, which is currently the
most widely accepted estimate for the SM neutron EDM. In
recent years, the charm contribution to nucleon EDMs is also
considered and it is roughly 10−31 e cm [19].

The purpose of this paper is to revisit the previous study of
both chiral-loop and the pole contributions to the nucleon EDM

one could further improve the experimental precision and reduce the
theoretical uncertainty of the SM prediction.
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in order to sharpen our SM benchmark value. On the theoretical
side, one could improve earlier work in several ways. For
instance, the chiral loop calculation in [18] adopted an older
meson theory utilizing a pseudoscalar strong baryon-meson
coupling that should be replaced by the standard axial-vector
coupling. Also, their work that utilized an effective hadronic
Lagrangian in computing chiral-loop diagrams faced another
well known problem in the loss of power counting similar
to that happening in the relativistic chiral perturbation theory
(ChPT). ChPT is a nonrenormalizable theory that involves in-
finitely many interaction terms. Its predictive power therefore
relies on the fact that higher-order terms are suppressed by
powers of p/�χ , where p is the typical mass or momentum
scales of hadronic DOFs, and �χ ∼ 1 GeV. This expansion,
however, becomes ambiguous when baryons are included
because a typical baryon mass is MB ∼ 1 GeV. Therefore,
MB/�χ is no longer a small expansion parameter. Heavy
baryon chiral perturbation theory (HBchPT) [20] provides
a convincing way to get around this issue by performing a
field redefinition in the baryon field to scale out its mass
dependence. By doing this, one can split the baryon field into
“light” and “heavy” components, where the former depends
only on its residual momentum which is well below 1 GeV.
After integrating out the heavy component of the baryon field,
the effective Lagrangian can be written as a series expansion of
1/mN . This eliminates the possibility of a factor mN appearing
in the numerator and thus restores the power counting. Many
works have appeared recently calculating the nucleon EDM
induced by different BSM physics using HBchPT (see [21] for
a general overview). Although the convergence of the SU(3)
HBchPT is not as good as its SU(2) counterpart because
mK/mN is not very small [22–26], it is still theoretically
beneficial as it provides a formal classification of different
contributions into leading and subleading orders. In this
work, the chiral-loop contributions to the nucleon EDM are
recalculated up to the leading order (LO) in the heavy baryon
(HB) expansion.

Additionally, previous numerical results of loop and pole
contributions face large uncertainties due to poorly known
values of physical constants in the weak sector at that time.
For example, the CP-violating phase δ of the CKM matrix
quoted in Ref. [18] had an uncertainty that spans one order
of magnitude. The fitting of certain low-energy constants
(LECs), such as weak baryon-meson interaction strengths,
has been updated since. Also, their theoretical estimation
of various CP-phases in the effective weak Lagrangian was
based on older work [27,28] which had been improved by
others. Furthermore, for previous work on pole contributions,
their estimation on effective CP phases was based only on
a single gluonic penguin operator without considering the
full analysis of operator mixing and renormalization group
running. Moreover, the approximate form of their analytic
expressions was based on the out-of-date assumption that
mt � mW . In this work, I do a more careful determination of
weak LECs, taking all these issues into account. Combining
my calculation and an estimate of higher-order effects, I
predict a range of the long-distance SM contribution to the
nucleon EDM to be around (1–6) × 10−32 e cm. I identify
the main sources of uncertainty and discuss possible steps

one could take to improve upon that. At the same time,
I use dimensional analysis to estimate the size of possible
short-distance counterterms. I find that they could be as large
as 4 × 10−32 e cm.

This work is arranged as follows: in Sec. II, I will briefly
outline the main ingredients of the SU(3) HBchPT and
introduce the weak Lagrangian responsible for the generation
of the nucleon EDM. In Sec. III, I will determine the LECs.
In Secs. IV and V, I derive the analytic expressions for loop
and pole contributions to the nucleon EDM respectively and
calculate their numerical values. In Sec. VI, I will provide
some further discussions and draw my conclusions.

II. HBchPT: STRONG AND ELECTROWEAK
INTERACTIONS

In this section, I review some basic concepts of ChPT
with the primary aim of establishing conventions and notation.
ChPT is a low-energy effective field theory (EFT) of quantum
chromodynamics (QCD) with hadrons as low-energy DOFs.
QCD exhibits a global chiral symmetry in the limit of massless
quarks. However, this symmetry is spontaneously broken in
the ground state and leads to the emergence of Goldstone
bosons which are identified as pseudoscalar mesons. The
corresponding EFT obeys the same symmetry. An infinite
tower of operators respecting the symmetry with increasing
mass dimensions is organized in the Lagrangian. However,
only a finite number of operators are retained since the the
dropped higher-dimensional operators make contributions that
are suppressed by powers of p/�χ .

I use the standard nonlinear representation of chiral
fields [29–31], in which the pseudoscalar meson octet is
incorporated in the exponential function U = exp{iφ/Fπ },
where

φ =
8∑

a=1

φaλa =

⎛
⎜⎜⎝

π0 + 1√
3
η8

√
2π+ √

2K+
√

2π− −π0 + 1√
3
η8

√
2K0

√
2K− √

2K̄0 − 2
3η8

⎞
⎟⎟⎠

(1)

with Fπ ≈ 93 MeV. The matrix U transforms under the
chiral rotation as U → LUR†, where L and R are elements
of SU(3)L and SU(3)R respectively. The mass term of the
meson octet is introduced using spurion analysis: the QCD
Lagrangian would exhibit chiral invariance if the quark mass
matrix M = diag{mu,md,ms} transforms as M → LMR†.
Therefore, its low-energy effective theory written in terms of
the spurion field M should also exhibit a similar invariance.
The lowest-order operator that is invariant is Tr[MU † +
UM†]. This operator gives rise to nonzero meson masses
which are isospin symmetric.

The ground state JP = (1/2)+ baryon octet is assembled
into the matrix

B =

⎛
⎜⎝


0√
2

+ �√
6


+ p


− − 
0√
2

+ �√
6

n

�− �0 − 2�√
6

⎞
⎟⎠ . (2)
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It transforms as B → KBK† with K = K(L,R,U ) being
a unitary matrix. In order to couple baryons with the
pseudoscalar octet, we define ξ = √

U which transforms as
ξ → LξK† = KξR† and introduce the Hermitian axial vector

Aμ = i

2
[ξ∂μξ † − ξ †∂μξ ], (3)

which transforms as Aμ → KAμK† under the chiral rotation
(we have neglected its coupling with external fields because it
is not needed in this work).

I now proceed with with the formulation of HBchPT. In
order to scale out the heavy mass-dependence, I rewrite its
momentum as

pμ = mNvμ + kμ, (4)

where mN is the nucleon mass, vμ is the velocity of the
baryon (which is conserved in the mN → ∞ limit) and kμ

is the residual momentum of the baryon which is well below 1
GeV. I therefore rescale the baryon field and retain its “light”
component:2

Bv(x) = eimN v·x 1 + v/

2
B(x). (5)

The subscript v will be dropped from now on. I integrate
out the remaining component which is “heavy.” The baryon
propagator thus becomes

iSB(k) = i

v · k − δB + iε
(6)

where δB = mB − mN is the baryon mass splitting. This
procedure also reduces Dirac structures to either 1 or Sμ

with the latter being the spin matrix of the baryon satisfying
S · v = 0. In this work I concentrate only on terms that are
leading order in the HB expansion (with the exception of the
baryon electromagnetic dipole transition operator that appears
in pole diagrams, as I will explain below).

The lowest-order strong Lagrangian involving only the
(1/2)+ baryons, Goldstone bosons, and electromagnetic fields
relevant to our work is given by

L = F 2
π

4
Tr[DμUDμU †] + F 2

π

4
Tr[χ+] + Tr[B̄iv · DB]

+ 2D Tr[B̄Sμ{Aμ,B}] + 2F Tr [B̄Sμ[Aμ,B]]

+ bD

2B0
Tr[B̄{χ+,B}] + bF

2B0
Tr [B̄[χ+,B]]

+ b0

2B0
Tr[B̄B] Tr[χ+], (7)

where D = 0.80, F = 0.50 [29], and DμU = ∂μU +
ieAμ[Q,U ]. Here Q = diag{2/3,−1/3,−1/3} is the quark
charge matrix while B0 is a parameter characterizing the chiral
quark condensate and χ+ = 2B0(ξ †Mξ † + ξMξ ) introduces
the quark-mass dependence. The last three terms in Eq. (7) are
responsible for the mass splitting within the baryon octet [32].
Since I have scaled out the nucleon mass from the baryon field

2In the sense that it only depends on the residual momentum.

B, the proton and neutron will appear as massless excitations
and the other baryons will have an excitation energy given
by the “residual” mass δB . This is important later during the
computation of pole diagrams.

For the purpose of pole diagram contributions I need
also to include the (1/2)− baryon octet. The importance
of these resonances can be traced back to the observation
of the unexpectedly large violation of Hara’s theorem [33]
which states that the parity-violating radiative B → B ′γ
transition amplitude should vanish in the exact SU(3) limit.
The authors of Ref. [34] (later improved by [35]) pointed out
that this apparent puzzle could be resolved by including baryon
resonances that give rise to pole diagrams which enhance the
violation of Hara’s theorem. Therefore, one should naturally
expect that the same kind of diagrams will also play an
important role in the determination of the nucleon EDM. The
resonance (1/2)− octet is denoted as R:

R =

⎛
⎜⎜⎜⎝


0∗√
2

+ �∗√
6


+∗ p∗


−∗ −
0∗√
2

+ �∗√
6

n∗

�−∗ �0∗ − 2�∗√
6

⎞
⎟⎟⎟⎠ . (8)

It transforms in the same way as B except that it has a negative
intrinsic parity.

The part of strong and electromagnetic chiral Lagrangian
involving R which is relevant to our work is given by

LR = Tr[R̄iv · DR] − δ̄R Tr[R̄R] + b̃D

2B0
Tr[R̄{χ+,R}]

+ b̃F

2B0
Tr [R̄[χ+,R]] + b̃0

2B0
Tr[R̄R] Tr[χ+]

− 2rD(Tr[R̄(vμSν − vνSμ){f μν
+ ,B}]

+ Tr[B̄(vμSν − vνSμ){f μν
+ ,R}])

− 2rF (Tr [R̄(vμSν − vνSμ)[f μν
+ ,B]]

+ Tr [B̄(vμSν − vνSμ)[f μν
+ ,R]]). (9)

The second to fifth terms of LR give the average residual mass
and mass splitting among the (1/2)− baryon octet. Constants
rD and rF are electromagnetic coupling strengths between
B and R, and f

μν
+ is the chiral field strength tensor of the

electromagnetic field that, in the SU(3) version of ChPT, is
given by [29]

f
μν
+ = −e[ξ †Qξ + ξQξ †]Fμν (10)

with e > 0. The reason we include rD and rF terms even
though they are formally 1/mN suppressed is that they will
then be compensated by small denominator δB factors in pole
diagrams.

Next I introduce the relevant weak Lagrangian that gives
rise to the nucleon EDM. As the only CP-violating effect in
the SM is the complex phase in the CKM matrix, the strange
quark must be included. The CP phase is attached to various
|�S| = 1 four-quark operators that are responsible for kaon
decay and nonleptonic hyperon decays. It is well known that
the product of two charged weak currents could transform
as (8L,1R) or (27L,1R) under the SU(3) chiral rotation.
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Extra |�S| = 1 operators could be induced via gluonic or
electroweak penguin diagrams. The former transforms as
(8L,1R) while the latter may introduce a (8L,8R) component
that is, however, suppressed by the smallness of the fine
structure constant. Furthermore, since (8L,1R) operators have
isospin I = 1/2 while (27L,1R) operators can have both I =
1/2 and I = 3/2 components, we would naturally expect the
latter to be subdominant as compared to the (8L,1R) operators.
Otherwise the I = 3/2 channel would be as important as the
I = 1/2 channel in nonleptonic decay processes, violating
the experimentally observed |�I | = 1/2 dominance in these
processes. Hence, effective operators I introduce later should
also transform as (8L,1R).

The pure mesonic Lagrangian that triggers the |�I | = 1/2
kaon decay channel is given by [31]

L8 = g8e
iϕ Tr[λ+DμUDμU †] + H.c., (11)

where λ+ = (λ6 + iλ7)/2. The non zero value of ϕ introduces
the CP-violating effect. Meanwhile, the corresponding bary-
onic operator that triggers the nonleptonic hyperon decay is
given by [36]

L(s)
w = hDeiϕD Tr[B̄{ξ †λ+ξ,B}]

+hF eiϕF Tr [B̄[ξ †λ+ξ,B]] + H.c. (12)

Here the superscript (s) indicates that these operators mediate
S-wave decays. In principle there is a counterpart operator
with the Dirac structure γ5, which is time-reversal odd and is
proportional to the complex phase in the CKM matrix. I do not
need this extra operator because it vanishes at leading order
in the HB expansion upon the nonrelativistic reduction of the
Dirac structure. Also, our definitions of hD and hF here are
slightly different from [36] as we take hD,hF to be real, with
the complex phases explicitly factored out.

Finally, for the purpose of including pole-diagram contri-
butions, I need the weak Lagrangian that triggers the B − R
transition. The lowest-order Lagrangian is given by [37]

LBR
w = iwDeiϕ̃D Tr[R̄{h+,B}]

+ iwF eiϕ̃F Tr [R̄[h+,B]] + H.c., (13)

where h+ ≡ ξ †λ+ξ + ξ †λ−ξ . The counterpart with a γ5 struc-
ture similarly vanishes at leading order in the HB expansion.

III. DETERMINATION OF THE LECS

There are altogether 12 LECs that enter into the es-
timate for the nucleon EDM: seven interaction strengths
{rD,rF ,g8,hD,hF ,wD,wF } and five CP-violating phases
{ϕ,ϕD,ϕF ,ϕ̃D,ϕ̃F }. They are either extracted from experiments
or obtained by theoretical modeling.3

Pure electromagnetic B − R transition coupling strengths
rD and rF are fitted to electromagnetic decays of (1/2)−
resonances. The authors of Ref. [35] obtain

erD = 0.033 GeV−1, erF = −0.046 GeV−1. (14)

3Unfortunately, none of these LECs in the literature come with error
bars, so I cannot estimate the error introduced by the fitting of LECs.

The constant g8 is fitted to the K0
s → π+π− decay rate,

ignoring the small CP-violating effect [38], giving

g8 = 6.84 × 10−10 GeV2. (15)

The CP phase ϕ is, up to a negative sign, the phase of the
K0 → ππ (I = 0) decay amplitude:

ϕ = −ξ0 = − Im A0

Re A0
(16)

In principle one could extract ξ0 from the measurement of the
CP-violating parameter ε′ in the kaon decay. However, ε′ is a
linear combination of ξ0 and another CP-violating phase, ξ2,
of the I = 3/2 channel. Simple estimation [31] suggests that
ξ2 is of the same order as ξ0, making ξ0 hard to extract directly
from the experiment. I therefore refer to theoretical estimation
based on the large-Nc approach [39] which gives

ϕ =−ξ0 ≈ −
√

2|ε| × (−6 × 10−2) ≈ 1.89 × 10−4 ≈ 6.4J,

(17)

where J = (2.96+0.20
−0.16) × 10−5 [38] is the Jarlskog invari-

ant [40]. It is worthwhile to mention that, in Ref. [18] the
uncertainty of J spans an order of magnitude leading to
the main source of the error in the estimate of the neutron
EDM during that time. Today, J is determined with much
higher precision so the associated uncertainty is subleading
compared to uncertainties due to higher-order effects in the HB
expansion and unknown short-distance counterterms, which
we will discuss later.

The four remaining interaction strengths hD,hF ,wD,wF

were determined in [37] by simultaneously fitting them to the
s- and p-wave amplitudes of nonleptonic hyperon decays:

hD ≈ 0.44 × 10−7 GeV, hF ≈ −0.50 × 10−7 GeV,

wD ≈ −1.8 × 10−7 GeV, wF ≈ 2.3 × 10−7GeV. (18)

The last two constants were determined by setting mR ≈
1535 MeV.

Finally, I need to know the four remaining CP phases
{ϕD,ϕF ,ϕ̃D,ϕ̃F }. These phases have been considered in
Ref. [15], but their treatments are less satisfactory due to the
neglect of the operator mixing effect and a certain outdated
approximation of the small top-quark mass assumption. In
order to improve upon that, I review a more recent work
done in Ref. [36] that determined {ϕD,ϕF } and apply scaling
arguments to provide an estimate of {ϕ̃D,ϕ̃F }. Reference [36]
pointed out that, after considering operator mixing and renor-
malization group running, the dominant operator that gives
rise to the CP-violating phase in the |�S| = 1, |�I | = 1/2
sector is given by

Q̂6 = −2
∑

q

d̄(1 + γ5)qq̄(1 − γ5)s. (19)

Reference [36] then computed the factorizable and nonfactor-
izable contributions to ϕD,ϕF induced by Q̂6. Here “factor-
izable” means to regard Q̂6 as a product of two chiral quark
densities and match it to chiral operators. The matching is done
by realizing that q̄RqL ∼ ∂LQCD/∂mq = ∂Lchiral/∂mq . On
the other hand, the “nonfactorizable” contribution is obtained
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simply by taking the hadronic matrix element of Q̂6 using the
quark model. These two contributions are distinct because the
factorizable piece contains a factor of chiral quark condensate
F 2

πB0 through

〈0|q̄i
Lq

j
Rq̄k

Rql
L|BB̄ ′〉 ∼ 〈0|q̄i

Lq
j
R|0〉〈0|q̄k

Rql
L|BB̄ ′〉

= − 1
2F 2

πB0δij 〈0|q̄k
Rql

L|BB̄ ′〉 (20)

while the same quantity never appears in a quark
model calculation. Combining the two, the authors found
Im(hD exp iϕD) ≈ −2.2, Im(hF exp iϕF ) ≈ 6.1, both in units
of

√
2FπGF m2

π+J . This leads to

ϕD ≈ −1.5J, ϕF ≈ −3.6J. (21)

It is straightforward to see that ϕ̃D and ϕ̃F receive no
factorizable contribution. This is because it would require
terms like R̄mqB to appear in the strong chiral Lagrangian.
Such terms would violate parity and therefore cannot exist.
For the nonfactorizable part, my strategy is the following: first
I compute the matrix elements 〈R| Q̂6 |B〉 and

〈
B ′∣∣ Q̂6 |B〉

using the quark model to find their ratio. Then, I use this ratio
to infer the value of the nonfactorizable part of ϕ̃D , ϕ̃F by
appropriately scaling the nonfactorizable part of ϕD , ϕF given
in Ref. [36].

To obtain an estimate of hadronic matrix elements I adopt
the harmonic oscillator model [34]. The structure of the spin-
flavor wavefunction of the baryon octet leads to the following
ratio:

〈n∗|Q̂6|
0〉 : 〈n∗|Q̂6|�〉 : 〈p∗|Q̂6|
+〉 = 1 :
√

3 : −
√

2,

(22)

which requires that wF ϕ̃F = (1/3)wDϕ̃D in our chiral La-
grangian. I also obtain the ratio between B − B ′ and B − R
matrix elements:

〈p∗|Q̂6|
+〉
〈p|Q̂6|
+〉 = −

√
2

3π

1

mR0
. (23)

where m ≈ 0.34 GeV, R0 ≈ 2.7 GeV−1 are harmonic oscil-
lator parameters. With this ratio and the nonfactorizable con-
tribution to ϕD,ϕF given in [36], I obtain the nonfactorizable
contribution to ϕ̃D,ϕ̃F :

ϕ̃D ≈ 0.04J, ϕ̃F ≈ −0.01J. (24)

These phases are about two orders of magnitude smaller than
the three other CP phases because they are not enhanced by
the chiral quark condensate. Therefore, I disregard them in the
rest of our calculation.

To end this section, I point out that there is an important sign
issue in the determination of LECs. Since LECs are fitted to
experiments that only involve squared amplitudes, an overall
undetermined sign is left ambiguous. Therefore, if two sets
of LECs are fitted separately to two unrelated experiments
(for example, {rD,rF } are to fit to baryon electromagnetic
transitions and {hD,hF ,wD,wF } are to fit to non leptonic
hyperon decays), there is no unique way to determine the
relative sign between these two sets of LECs. This introduces
an extra uncertainty because a change of a relative sign can

turn a constructive interference to destructive and vice versa.
I will discuss the impact of this uncertainty in the last section.

IV. ONE-LOOP CONTRIBUTION

In this section I present analytic and numerical results of the
one-loop contribution to the proton and neutron EDM using
HBchPT. The nucleon EDM dN is defined by the term linear
in the incoming photon momentum q of the P- and T-violating
NNγ amplitude

iM ≡ −2dNv · εūNS · quN . (25)

Here εμ is the photon polarization vector. Note that the
equation has been simplified by applying the on-shell condition
to the nucleon: v · q = −q2/2mN → 0.

Since each weak interaction vertex has |�S| = 1, I need at
least two insertions of weak interaction vertices to obtain an
EDM that is flavor diagonal. Most one-loop integrals are UV
divergent and are regularized using the MS scheme in which
the combination

L ≡ 2

4 − d
− γ + ln(4π ) (26)

is subtracted. Also, since all CP-violating phases {ϕi} are
small, I use the small-angle approximation sin ϕi ≈ ϕi . Finally,
following the usual spirit of ChPT, during the calculation of
loops we assume that the heavy DOFs could be integrated out
and that their effects showing up in the LECs of the effective
operators consist of lighter DOFs.4 Hence what enter the loops
are the lightest DOFs, which in our case are the pseudoscalar
meson octet and the ground-state (1/2)+ baryon octet.

There are four distinct types of one-loop diagrams (see
Fig. 1) that give nonzero contribution to the nucleon EDM.
(Diagrams of other kinds are all vanishing at leading order
in the HB expansion. See the Appendix for the argument.)
Figures 1(a)–1(c) (plus reflections) show contributions to both
neutron and proton EDMs. For the neutron, it reads

d1-loop
n = −eg8(DhD{ϕ − ϕD} + FhF {ϕ − ϕF })

4π2F 4
π

(
m2

π − m2
K

)

×
(

m2
π ln

m2
π

μ2
− {π ↔ K}

)

− δ
eg8(D − F )(hD{ϕ − ϕD} + hF {ϕF − ϕ})
4π2F 2

π

(
m2

π − m2
K

)

×
(

m2
π

arctan
√

m2
π −δ2




δ
√
m2

π − δ2



− {π ↔ K}
)

. (27)

I found that all terms analytic in quark masses cancel each
other. Also notice that there is no extra singularity in the limit
mK → mπ or δB → 0. Numerical estimation with μ = mN

4The reader should anyway be alerted that this may not always be
the case. For example, in Ref. [43] the authors pointed out that one
needs to include the baryon decuplet in order to reconcile with the
result of the large Nc expansion.
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FIG. 1. One-loop contributions to the nucleon EDM. Each round dot denotes a |�S| = 1 weak insertion. Figs. 1(a)–1(c) (and reflections)
contribute to both neutron and proton EDMs, while Fig. 1(d) (and reflection) contributes only to proton EDM.

gives

∣∣d1-loop
n

∣∣ = 1.5 × 10−32 e cm. (28)
Similar calculations are done for the proton EDM.

Figsures 1(a)–1(c) give

d1-loop,1
p = eg8(D{hD[ϕ − ϕD] + 3hF [ϕ − ϕF ]} + 3F {hD[ϕ − ϕD] + hF [ϕF − ϕ]})

24π2F 4
π

(
m2

π − m2
K

)
(

m2
π ln

m2
π

μ2
− {π ↔ K}

)

− δ
eg8(D − F )(hD{ϕ − ϕD} + hF {ϕF − ϕ})
8π2F 4

π

(
m2

π − m2
K

)
⎛
⎝m2

π

arctan
√

m2
π −δ2




δ
√
m2

π − δ2



− {π ↔ K}
⎞
⎠

− δ�eg8(D + 3F )(hD{ϕ − ϕD} + 3hF {ϕ − ϕF })
24π2F 4

π

(
m2

π − m2
K

)
⎛
⎝m2

π

arctan
√

m2
π −δ2

�

δ�√
m2

π − δ2
�

− {π ↔ K}
⎞
⎠ . (29)

There is one extra type of diagram contributing to the proton EDM, corresponding to two insertions of hi vertices [Fig. 1(d)].
The corresponding diagrams do not generate the neutron EDM simply because there is no appropriate nonvanishing combination
of B,B ′,φ. This diagram for the proton EDM gives

d1-loop,2
p = −

ehDhF (D − F )(ϕD − ϕF )
(
π − 2 arctan δ
√

m2
K−δ2




)

16π2F 2
π

√
m2

K − δ2



−
ehDhF (D + 3F )(ϕD − ϕF )

(
π − 2 arctan δ�√

m2
K−δ2

�

)

48π2F 2
π

√
m2

K − δ2
�

. (30)

This contribution is interesting since it is UV finite. It
depends nonanalytically on quark masses and hence uniquely
characterizes long-distance physics.5 Numerically, these give∣∣d1-loop,1

p

∣∣ = 6.1 × 10−33 e cm,∣∣d1-loop,2
p

∣∣ = 1.1 × 10−32 e cm. (31)

I choose to present numerical results of d1-loop,1 and d1-loop,2

separately because the former is proportional to g8hi while the
latter is proportional to hihj . Since the relative sign between
g8 and hi is experimentally undetermined, these two terms can
either add to or subtract from each other.

As a short conclusion, I stress once again that within the
HBchPT formalism, my analytic results of one-loop diagrams,
Eqs. (27), (29), and (30), fully respect power counting as no
powers of mB appear in the numerator upon carrying out loop
integrals. This is in contrast with the relativistic calculation
done in Ref. [18], in which the authors include diagrams
involving MDM-like coupling that should have an explicit
1/mB suppression according to the power counting, but is

5One can show that Eq. (30) remains real even when δK,δ� > mK

by using the identity arctan z = 1
2i

ln 1+iz
1−iz

.

canceled by a factor of mB appearing in the numerator coming
from the loop integral.

Finally let me discuss the effect of counterterms. Since
d

1-loop
n and d

1-loop,1
p are UV divergent, I need to introduce

corresponding counterterms d0
n,d0

p to absorb the infinities.
These counterterms are generated by short-distance physics.
Therefore their precise values cannot be calculated. To
estimate the size of these counterterms we perform a naive
dimensional analysis (NDA). Following [41], there are ten
�S = 1 four-quark operators that mix under renormalization.
The effective Hamiltonian can be written as

H�S=1
eff = GF√

2
VudV

∗
us

10∑
i=1

Ci(μ)Q̂i(μ) + H.c. (32)

Under conditions that �QCD ≈ 0.2 GeV, μ = 1 GeV, and the
top-quark mass mt = 174 GeV, the largest flavor-diagonal CP-
violating effect comes from the product of Q̂2 and Q̂6 with
Wilson coefficients C2 = 1.31 − 0.044τ and C6 = −0.011 −
0.080τ , where τ = −VtdV

∗
ts /VudV

∗
us. This gives

d0
p,d0

n ∼ 1

16π2

G2
F

2
|VudV

∗
us|2 Im(C2C

∗
6 )�3

χ ≈ 4×10−32 e cm.

(33)
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FIG. 2. Class I pole diagrams (with reflections).

Here 1/16π2 is a necessary loop factor while the factor �3
χ is

included to achieve the correct mass dimension. I choose �χ ∼
1 GeV instead of some other scale like �QCD ∼ 200 MeV to
provide a conservative upper limit for d0

p and d0
N . This analysis

shows that the short-distance contribution to the nucleon EDM
could be as large as the long-distance contribution.6 However
the NDA estimation is rarely trustable and it may happen that
some accidental cancelations could suppress the actual value
of d0

n,d0
p from what is expected in Eq. (33). In this sense, a

detailed study of the long-distance contribution is worthwhile
because it sets a solid bound below which any measurable
nucleon EDM could be safely regarded as being consistent
with the SM prediction.

V. POLE CONTRIBUTION

Next I estimate the contribution of pole diagrams to the
nucleon EDM. For baryon intermediate states, I include
the flavor octet part of the (56,0+) and (70,1−) baryon
supermultiplets. Here I adopt the standard spin-flavor SU(6)
notation (D,Lp) where D is the dimension of the SU(6)

representation, L is the orbital angular momentum, and p is
the parity. For generality, we first write down all possible pole
configurations that can contribute and divide it into two classes:
Class I are those in which the photon vertex involves a weak
insertion and Class II are those in which the photon vertex is
purely electromagnetic (see Figs. 2 and 3).

I want to single out the leading pole diagrams. First, one
would expect that Class I contributions are much smaller than
Class II for two reasons: (1) the weak photon vertex in Class
I diagrams is due to the transition quark magnetic dipole
moment (MDM) that contains a ms + md suppression factor or
the transition quark EDM that is suppressed by ms − md (the
latter, which vanishes if ms → md , is an explicit demonstration
of Hara’s theorem [33]); (2) Class II diagrams have one more
pole in the denominator. With these observations I may safely
discard Class I diagrams since they are subleading.

Within Class II, Figs. 3(a)–3(d) can be shown to have an
extra 1/mN suppression [42]. These four diagrams involve
MDM-like baryon radiative transition vertices that have
the structure of (1/mB)εμναβvνqαSβ at leading order. This
structure is orthogonal to the EDM structure vμS · q so it
cannot generate an EDM. Therefore in order to obtain an EDM
one needs to go to the next order in the HB expansion leading
to an extra 1/mN suppression, so I can discard these four
diagrams. Finally, Fig. 3(e) is smaller than Figs. 3(f) and 3(g)
due to an extra propagator of a heavy excited state R. After
all these considerations, I only need to evaluate Figs. 3(f)
and 3(g). Using Feynman rules obtained from the Lagrangian
in Sec. II, I obtain

dpole
n = 4erD

9δ�δ�∗δN∗δ
∗δ


(hDϕD{3wF [2δ�∗δ
∗ (δ� − δ
) + δN∗ {δ�∗(δ� + δ
)

+ δ
∗ (δ
 − 3δ�)}] − wD[2δ�∗δ
∗ (3δ� + δ
) + δN∗ {3δ�∗ (δ� + δ
) + δ
∗ (3δ� − δ
)}]}
+ 3hF ϕF {wD[2δ�∗δ
∗ (δ� − δ
) + δN∗ {δ�∗(δ� − 3δ
) + δ
∗ (δ� + δ
)}]
+wF [δN∗ {3δ
∗ (δ� + δ
) − δ�∗ (δ� − 3δ
)} − 2δ�∗δ
∗ (δ� + 3δ
)]}),

dpole
p = −8e(δN∗ − δ
∗ )(rD + 3rF )(wD − wF )(hDϕD − hF ϕF )

3δN∗δ
∗δ


. (34)

In the expression above I have neglected the two small phases
ϕ̃D and ϕ̃F . Note that Eq. (34) diverges in the δ → 0 limit. This
simply indicates that nondegenerate perturbation theory fails
in this limit and one needs to switch to degenerate perturbation
theory. Numerically, Eq. (34) gives∣∣dpole

n

∣∣ ≈ ∣∣dpole
p

∣∣ ≈ 1.4 × 10−32 e cm. (35)

Numerical results are summarized in Table I. I caution the
readers that all these numbers are only indicative of the size,
because I have not yet addressed the sign ambiguities plaguing
the determination of certain LECs as emphasized at the end of
Sec. III. This will be done in the next section.

6A followup work from the author to compute these short-distance
contributions within certain nucleon model framework is currently in
progress.

VI. DISCUSSION AND SUMMARY

Now I consider the uncertainty due to the undetermined
relative sign between different groups of LECs. Since rD and
rF are fitted simultaneously to the electromagnetic decay of
(1/2)− resonance they should be multiplied by a common
undetermined sign factor δr = ±1. The constant g8 is fitted to
the kaon decay rate, so it should carry a separate sign factor
δg . Its phase ϕ, however, is determined theoretically so it does
not have a sign ambiguity. The four remaining interaction
strengths {hD,hF ,wD,wF } are fitted simultaneously to s-
and p-wave amplitudes of the hyperon nonleptonic decay,
so they should carry a common undetermined sign factor
δhw. Their corresponding phases are determined by first
calculating Im{hi exp iϕi} and Im{wi exp iϕ̃i} theoretically
and then by dividing them by the experimentally determined
{hi,wi} so the four remaining phases {ϕD,ϕF ,ϕ̃D,ϕ̃F } should
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FIG. 3. Class II pole diagrams (with reflections).

also carry the same sign factor δhw. Summing up loop and
pole diagram contributions and allowing {δr ,δg,δhw} to freely
change between 1 and −1, I obtain a range of possible dn and
dp:

8.7 × 10−34 < |dn| < 2.8 × 10−32 e cm,

3.3 × 10−33 < |dp| < 3.3 × 10−32 e cm. (36)

The surprisingly small lower bounds of |dn|,|dp| are due
to an accidental cancellation between loop and pole-diagram
contributions for a very specific set of {δi}. There is no reason
to believe that this cancellation persists at higher order. To
estimate the size of higher-order contributions, I recall that the
HB-expansion parameter is of order mK/mN ∼ 0.5. Therefore
to be conservative, I could assign a 100% error due to the next-
to-leading-order (NLO) effects in the HB expansion. Also, by
looking at Table I one can see that both loop and pole diagrams
are of order 10−32 e cm. So if I assume no fine cancellation
between these two parts after adding the NLO contributions
from the HB expansion, then I should expect the long-distance
contribution to the nucleon EDM to lie within the range

1 × 10−32 < {|dn|,|dp|} < 6 × 10−32 e cm. (37)

My estimated upper bound for dn is about half the correspond-
ing value predicted in [18]. Equation (37) is three (four) orders
of magnitude smaller than the proposed precision level of the
future proton (neutron) EDM experiments.

To summarize, even though it is well known that the
nucleon EDM induced by the standard model CKM matrix
is well below the limit of our current experimental precision,
it is still worth a thorough study as it is currently the
only source of intrinsic EDMs in nature whose existence is
certain. I re-analyze previous works on chiral loop and pole
diagram contributions to the nucleon EDM using HBchPT

TABLE I. Different contributions to the SM neutron and proton
EDMs in units of e cm, assuming the signs of LECs are those given
in Sec. III.

EDM
Nucleon |d1-loop,1

N | |d1-loop,2
N | |dpole

N |
neutron 1.5 × 10−32 0 1.4 × 10−32

proton 6.1 × 10−33 1.1 × 10−32 1.4 × 10−32

at the leading order in HB expansion, with an up-to-date
determination of relevant LECs that enter our calculation.
Combined with the uncertainty due to unknown relative signs
of LECs and an estimate of higher-order contributions, I obtain
the range for the long-distance contribution to the nucleon
EDM in Eq. (37). Although an incalculable short-distance
physics which appears as counterterms in our work could be
as large as the long-distance contribution, the study of the
long-distance contribution is still worthwhile as it provides a
safe borderline below which any nucleon EDM is consistent
with the SM prediction. Finally, there are several ways to
improve upon the estimate carried out in this work. For
instance, a combined analysis of lattice simulations and
better experimental measurements of various hadronic decay
processes is expected to provide a better control of both the
magnitudes and signs of the required LECs. If the LECs could
be determined more precisely, then a complete analysis of
NLO effects in the HB expansion would be much desired to
further restrict the allowed range of dn and dp.
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APPENDIX: VANISHING ONE-LOOP DIAGRAMS

Here I will show that all one-loop diagrams, other than
those in Fig. 1, do not give rise to the nucleon EDM, at least
at leading order in the HB-expansion.

All other possible one-loop diagrams beside those I
have calculated are summarized in Fig. 4. Since the weak
Lagrangian used in my work does not involve covariant
derivatives of baryon fields, any baryon-photon coupling term
has to arise from the ordinary P- and T-conserving Lagrangian.

For Fig. 4(a), the photon vertex must arise from Dirac
coupling since an MDM coupling is suppressed by (1/mN )2

as pointed out in [42]. Since the Dirac coupling is independent
of the photon momentum q, one can define loop momenta in a
way such that the dependence of q only appears in the baryon
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FIG. 4. One-loop diagrams that vanish at LO HBchPT. The weak vertices could be placed at any allowed position and therefore are not
explicitly shown.

propagator. However, using the on-shell condition v · q = 0,
the baryon propagator is actually q independent and therefore
so is the whole diagram. As a result, Fig. 4(a) cannot generate
an EDM that is linear in q.

For Fig. 4(b), at leading order in the HB expansion the
BB ′φγ vertex is proportional to Sμ, so it cannot generate
an EDM because the latter is proportional to vμ which is
perpendicular to Sμ.

For Fig. 4(c), first I note that the BB ′φφ′ vertex cannot
come from the D or F term of the ordinary chiral Lagrangian
because that would violate parity. Therefore it can only come

from L(s)
w . In this case, it can only be parity conserving and

time-reversal conserving (PCTC), or parity conserving and
time-reversal violating (PCTV). So in order to get an EDM
which is PVTV, one needs to place another PVTC or PVTV
vertex in some other part of the diagram. This cannot be
done because all φφ′ and φφ′γ operators I have are parity
conserving.

For Fig. 4(d), one could generate an EDM by coupling the
resulting complex mass term of the baryon to its MDM. But
again this contribution is suppressed by (1/mN )2 and should
be discarded at leading order in the HB expansion.
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