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The Monte Carlo results in lattice QCD for the pressure and energy density at small temperature T < 155 MeV
and zero baryonic chemical potential are analyzed within the hadron resonance gas model. Two extensions of the
ideal hadron resonance gas are considered: the excluded volume model, which describes a repulsion of hadrons
at short distances, and the Hagedorn model with an exponential mass spectrum. Considering both of these models
we do not find conclusive evidence in favor of either of them. The controversial results appear because of rather
different sensitivities of the pressure and energy density to both excluded volume and Hagedorn mass spectrum
effects. On the other hand, we have found clear evidence for a simultaneous presence of both of them. They lead
to rather essential contributions: suppression effects for thermodynamical functions of the hadron resonance gas
due to the excluded volume effects and enhancement due to the Hagedorn mass spectrum.
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I. INTRODUCTION

Monte Carlo calculations in lattice QCD at finite temper-
ature T (see, e.g., Refs. [1–4], and references therein) reveal
two physical phases of strongly interacting matter: a hadron
phase at small T and a deconfined quark-gluon phase at
high T . A nontrivial analysis within lattice QCD indicates
that these phases at zero chemical potential are not separated
by a true phase transition but that they are rather connected
by an analytic crossover [5]. In Fig. 1 the lattice results of
Ref. [3] for the pressure and energy density (3p/T 4 and
ε/T 4) obtained at zero baryonic chemical potential in QCD
with 2 + 1 quark flavors and extrapolated to the thermo-
dynamical and continuum limits are shown as functions of
temperature T .

From Fig. 1 one observes a steep increase of thermody-
namical quantities near the crossover temperature Tc. This
temperature is estimated in the range of 150–160 MeV. The
values of 3p/T 4 and ε/T 4 in the deconfined quark-gluon
phase approach slowly from below the Stefan-Boltzmann limit
3pSB/T 4 = εSB/T 4 = σSB, a value which equals 19π2/12 ∼=
15.6 in the three-flavor QCD. At T < Tc the confined hadron
phase emerges. In the present paper the lattice data [3] will
be used to constrain the equation of state of the hadronic
matter.

A description of hadron multiplicities in high-energy
nucleus-nucleus collisions shows a surprisingly good agree-
ment between the results of the hadron resonance gas (HRG)
model (see, e.g., Refs. [6–11]) and the experimental data. In
most statistical model formulations the ideal HRG (Id-HRG)
is used. It is argued that the presence of all known resonance
states in the thermal system takes into account attractive
interactions between hadrons [12].

Two extensions of the Id-HRG model have been widely
discussed. The first one is the excluded volume HRG (EV-
HRG) model in which the effects of hadron repulsions at
short distances are introduced. One usually uses the van der

Waals procedure [13,14] and substitutes a system volume
V by the available volume V − ∑

i viNi , where vi is the
volume parameter for the ith hadron species, Ni is the number
of particles of the ith type, and the sum is taken over all
types i of hadrons and resonances. Another example of
attractive and repulsive interactions between hadrons is given
within relativistic mean-field theory [15] (see also the recent
paper [16], and references therein). Note that the EV-HRG
model can be equivalently formulated in terms of the mean
field (see Refs. [17–19]). This makes it possible to incor-
porate other hadron interactions within a unified mean-field
approach.

The second extension of the HRG model is the inclusion of
the exponentially increasing mass spectrum ρ(m) proposed
by Hagedorn about 50 years ago [20,21]. These excited
colorless states (named fireballs or strings) are considered as
a continuation of the resonance spectrum at masses m higher
than 2 GeV.

In the present paper we use the lattice data [3] at small
temperature T < 155 MeV to confirm the presence of the
excluded volume effects and effects of the Hagedorn mass
spectrum. The HRG model had been used for comparison
with the lattice data in the hadronic sector [22–24]. There
were as well several publications in which the EV-HRG model
(see, e.g., Refs. [25,26]) or the Hagedorn mass spectrum (see,
e.g., Refs. [27–29]) were confronted with the lattice data. Our
analysis extends these previous attempts to the case when
both these physical effects are treated simultaneously. Included
together they essentially improve the agreement of the HRG
model with the lattice results, while treated separately neither
of them can be clearly established.

The paper is organized as follows. In Sec. II the grand
canonical ensemble formulation of the Id-HRG and EV-HRG
models are considered. In Sec. III the EV-HRG model is
extended by inclusion of the Hagedorn mass spectrum. A
summary in Sec. IV closes the article.
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FIG. 1. (Color online) The lattice results from Ref. [3] for 3p/T 4

(circles) and ε/T 4 (squares) at zero baryonic chemical potential.

II. HADRON RESONANCE GAS

A. Ideal hadron resonance gas

In the grand canonical ensemble the pressure and energy
density of the Id-HRG are given by

pid(T ,μ) =
∑

i

pid
i (T ,μi)

=
∑

i

di

6π2

∫
dm fi(m)

∫ ∞

0

k4dk√
k2 + m2

×
[

exp

(√
k2 + m2 − μi

T

)
+ ηi

]−1

, (1)

εid(T ,μ) =
∑

i

εid
i (T ,μi)

=
∑

i

di

2π2

∫
dm fi(m)

∫ ∞

0
k2dk

√
k2 + m2

×
[

exp

(√
k2 + m2 − μi

T

)
+ ηi

]−1

, (2)

where di is the spin degeneracy of the ith particle and the
normalized function fi(m) takes into account the Breit-Wigner
shape of the resonance with finite width �i around their average
mass mi for the stable hadrons, fi(m) = δ(m − mi). The sum
over i in Eqs. (1) and (2) is taken over all nonstrange and
strange hadrons that are listed in Particle Data Tables [30].
These include mesons up to f2(2340) and (anti)baryons up to
N (2600). We also note that in these equations ηi = −1 for
bosons and ηi = 1 for fermions, while η = 0 corresponds to
the Boltzmann approximation. The chemical potential for the
ith hadron is given by

μi = bi μB + si μS + qi μQ (3)

with bi = 0,±1, si = 0,±1,±2,±3, and qi = 0,±1,±2 being
the corresponding baryonic number, strangeness, and electric
charge of ith hadron. The notation μ will be used to denote all
chemical potentials: μ ≡ (μB,μS,μQ).

B. Excluded volume hadron resonance gas

In this section the role of the repulsive interactions is
considered within the EV-HRG model. The van der Waals
excluded volume procedure corresponds to a substitution of
the system volume V by the available volume Vav ,

V → Vav = V −
∑

i

viNi, (4)

where Ni is the particle number, vi = 4(4πr3
i /3) is the

excluded volume parameter with ri being the corresponding
hard-core radius of particle i, and the sum is taken over all
hadrons and resonances. This result, in particular, the presence
of the factor of 4 in the expression for vi , can be rigorously
obtained for a low-density gas of particles of a single type
(see, e.g., Ref. [31]). In the grand canonical ensemble, the
substitution (4) leads to a transcendental equation for the
EV-HRG pressure [14]:

pev(T ,μ) =
∑

i

pid
i (T ,μ̃i); μ̃i = μi − vip

ev, (5)

and the energy density is calculated as

εev(T ,μ) =
∑

i ε
id
i (T ,μ̃i)

1 + ∑
j vjn

id
j (T ,μ̃j )

, (6)

where nid
i is the ideal-gas particle number density of the ith

hadron species,

nid
i (T ,μi) = di

2π2

∫
dmfi(m)

∫ ∞

0
k2dk

×
[

exp

(√
k2 + m2 − μi

T

)
+ ηi

]−1

. (7)

In what follows we restrict our consideration to the case of
equal volume parameters vi for all hadrons and resonances,
vi = v ≡ 16πr3/3. The Boltzmann approximation ηi = 0 in
Eqs. (1), (2), and (7) simplifies Eqs. (5) and (6) to

pev(T ,μ) = κev pid(T ,μ) = κev T nid(T ,μ), (8)

εev(T ,μ) = κev εid(T ,μ)

1 + v κev nid(T ,μ)
, (9)

where the excluded volume suppression factor κev and the total
particle number density nid in the Id-HRG are introduced as

κev ≡ exp

(
−v pev

T

)
, nid(T ,μ) ≡

∑
i

nid
i (T ,μi). (10)

Expressions (8)–(10) can be also obtained in the framework
of thermodynamically self-consistent mean-field theory (see
Sec. V in Ref. [19]). This approach gives a sequential treatment
of the problem when one can examine various different mean
fields that mimic the repulsive and attractive interactions (for
details see Refs. [17–19]).

The EV-HRG model was used to fit the data on hadron
multiplicities in Ref. [32] with values of r in the region of
0.2–0.8 fm. A numerical value of the hard-core radius was
estimated as r = 0.3 fm in Ref. [33]. Note that, if radii of
all hadrons are assumed to be the same, the chemical freeze-
out parameters, temperature and baryon chemical potential,
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FIG. 2. (Color online) (a) The Id-HRG pressure, pid(T )/T 4, as a function of temperature at μ = 0 (dotted line) and the Boltzmann
approximation ηi = 0 (solid line). (b) The Id-HRG pressure and EV-HRG pressure functions for several different values of hard-core radius r .
The Stefan-Boltzmann limit for the deconfined quark-gluon phase, pSB/T 4 = σSB/3 ∼= 5.2, is indicated by the horizontal dotted line.

fitted to the data on hadron multiplicities, are identical to
those obtained within the Id-HRG model. Indeed, the particle
number ratios are not sensitive to the numerical value of r .
Hence, in order to establish the presence of nonzero hard-core
hadron radii, independent measurements of the total system
volume are needed. On the other hand, it was shown that
the particle number fluctuations depend straightforwardly on
the hard-core hadron radius [34,35]. Thus, an interpretation

of these data within the EV-HRG model opens the way to
estimate the value of r from the data. This is, however, not an
easy task as there are many other effects which influence the
particle number fluctuations.

C. Id-HRG and EV-HRG versus the lattice data

In Fig. 2(a) the Id-HRG pressure (1) divided by T 4 is shown
as a function of temperature for the case of zero chemical

FIG. 3. (Color online) The results of the EV-HRG model for different values of r compared to the lattice data for p/T 4 (a) and ε/T 4 (c).
The values of χ 2

p/Ndf (b) and χ 2
ε /Ndf (d) shown as functions of r; the shaded gray area corresponds to r � 0.13 fm.
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potentials,

μB = μS = μQ = 0. (11)

Equation (11) corresponds to zero values of all conserved
charges, baryonic number, strangeness, and electric charge of
the strongly interacting matter. This is approximately valid
for matter created at the Large Hadron Collider (LHC) of
the European Organization for Nuclear Research (CERN). As
seen from Fig. 2(a) the Boltzmann approximation ηi = 0 (solid
line) gives a very accurate evaluation of pid(T )/T 4 calculated
with the quantum statistics (dashed line). In fact, the difference
between the solid and dashed lines is hardly seen in Fig. 2(a).
The Boltzmann approximation will be thus adopted for our
further analysis. Note that a shift of the chemical potential
according to Eq. (5) makes the Boltzmann approximation in
the EV-HRG model even more accurate than in the case of the
Id-HRG model.

In Fig. 2(b) the Id-HRG pressure (1) is compared with
EV-HRG pressures (8) at several values of the hard-core
radius r . Note that the Id-HRG model shows a strong increase
of pid (T )/T 4 at high T which exceeds the Stefan-Boltzmann
pressure of the deconfined quarks and gluons, pSB(T )/T 4 =
σSB/3 ∼= 5.2. Therefore, according to the Gibbs criterion
pointlike hadrons would always be the dominant phase at high
temperatures [36] due to the large number of different types
of mesons and baryons. This feature of the Id-HRG equation
of state contradicts the lattice QCD results; hence it shows a
shortcoming of the model based on the concept of pointlike
particles. Just the excluded volume effects ensure a transition
from a gas of hadrons and resonances to the quark-gluon
plasma. One needs therefore the EV-HRG equation of state
for the hydrodynamic model calculations of nucleus-nucleus
collisions (see, e.g., Refs. [37–39]). For any finite particle
volume, i.e. r > 0, the behavior of pressure is found as
pev(T )/T 4 ∼ (vT 3)−1 → 0 at T → ∞. However, as seen
from Fig. 2(b), a more rigid restriction, r � 0.13 fm, is needed
to guarantee that pev(T )/T 4 < σSB/3 at all T > Tc.

In Fig. 3(a), the EV-HRG results for pev/T 4 are compared
to the lattice data plat/T 4 [3] at T < 155 MeV for several
different values of hard-core radius r . In Fig. 3(b), the value
of χ2

p/Ndf at different r values is shown. This quantity is
calculated as

χ2
p/Ndf = 1

Ndf

N∑
i=1

[(pev/T 4)i − (plat/T 4)i]2

[�(plat/T 4)i]2
, (12)

where Ndf is the number of points, N (equal to 10 in our case),
minus the number of fitting parameters (one parameter r in our
fit). The most essential part of uncertainties in the lattice data
is not statistical. The systematic uncertainties dominate, and
these uncertainties are significantly correlated. In this case,
the use of the χ2/Ndf criterion is not perfectly reasonable.
However, we still use this quantity as a way to quantify the
deviations of HRG calculations from the lattice data.

From Fig. 3(b) one observes that the lattice data for plat/T 4

are fitted well in a rather wide range of hard-core radius of
r � 0.4 fm. Therefore, the lattice data for the hadron pressure
are consistent with the presence of rather significant excluded
volume effects and suggest reasonable numerical values for

the hard-core radius r . However, a comparison of the EV-HRG
model with the lattice results for εlat/T 4 shown in Fig. 3(c)
does not indicate the presence of excluded volume effects. This
is clear from Fig. 3(d), where we show the value of χ2

ε /Ndf

calculated as in Eq. (12) but with ε/T 4 instead of p/T 4.
The value of r = 0 corresponds to the best fit of εlat/T 4.
Let us, however, recall that Fig. 2(b) shows that too small
values of the hard-core radius, r � 0.13 fm, look doubtful.
For these small values of r the EV HRG pressure becomes
larger than the Stefan-Boltzmann limit for quarks and gluons.
The “forbidden” region of the hard-core radius, r < 0.13 fm,
is shown as the gray area in Figs. 3(b), 3(d), 5(a), and 5(b).

Therefore, while a reasonable r value, e.g., r = 0.3 fm,
gives a good agreement, χ2

p/Ndf
∼= 0.4, with the plat/T 4 lattice

data, it also leads to a rather large value of χ2
ε /Ndf

∼= 2.5 and,
thus, looks unreasonable for the fit of εlat/T 4.

III. EXCLUDED VOLUME HRG WITH HAGEDORN
MASS SPECTRUM

The analysis presented in the previous section gives no
conclusive answer about the presence of the excluded volume
effects. The value of r = 0.3 fm in the EV-HRG model leads
to sizable suppression effects of the Id-HRG pressure and to
a good agreement with the lattice data plat/T 4, whereas the
εlat/T 4 data prefer the value of r ∼= 0 and are thus consistent
with the Id-HRG model. From our point of view, this obser-
vation may indicate the presence of additional contributions
to pev and εev in the EV-HRG model. These contributions
should be small enough for the pressure and much larger for
the energy density. We argue that massive Hagedorn states are
the ideal candidates for this role. Indeed, each heavy particle
with m � T gives its contribution, T , to the pressure, and a
much larger contribution, m + 3T/2, to the energy density.

For a further analysis we use the following parametrization
for the Hagedorn mass spectrum [21]:

ρ(m) = C
θ (m − M0)(
m2 + m2

0

)a exp

(
m

TH

)
. (13)

The spectrum (13) with the parameters M0 = 2 GeV, TH =
160 MeV, m0 = 0.5 GeV, and a = 5/4 will be used. The
parameter C in (13) will be the only free parameter in the
following analysis. We have checked that another set of
parameters, e.g., the same set with M0 = 2.5 GeV, and also
a set with m0 = 0, a = 3/2, and M0 = 3 GeV, lead to very
similar results.

Our final assumption concerns the proper volume for the
Hagedorn states. To avoid additional free parameters we adopt
the same value of v = 16πr3/3 for all known hadrons and
resonances as well as for the Hagedorn states. The EV-HRG
model with the Hagedorn mass spectrum will be denoted as
EV-HRG-H. The pressure pH(T ) in the EV-HRG-H model is
given by the following equation:

pH = exp

(
−vpH

T

)
T

∫
dm

∫ ∞

0

k2dk

2π2

× exp

(
−

√
m2 + k2

T

)[∑
i

difi(m) + ρ(m)

]
. (14)
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FIG. 4. (Color online) The results of the EV-HRG-H model for different values of r compared to the lattice data for p/T 4 and ε/T 4 in (a)
and (b), respectively. The value of C is fixed as C = 0.05 GeV3/2.

The expression (14) can be equivalently rewritten similarly to
Eq. (10) as

pH(T ) = κH pid
H (T ) = κH T nid

H(T ), (15)

where κH ≡ exp(−vpH/T ), and pH
id and nH

id are, respectively,
the expressions for the pressure and total number density of all
particles (hadrons, resonances, and Hagedorn excited states) in
the ideal HRG with the Hagedorn mass spectrum (Id-HRG-H),
i.e., with the Hagedorn mass spectrum but without excluded
volume effects. One can easily calculate the energy density as

εH(T ) = T
dpH

dT
− pH = κH εH

id

1 + v κH nH
id

, (16)

where

εH
id(T ) =

∫
dm

∫ ∞

0

k2dk

2π2

√
m2 + k2 exp

(
−

√
m2 + k2

T

)

×
[∑

i

difi(m) + ρ(m)

]
(17)

denotes the energy density of the Id-HRG-H model.
In Fig. 4, a comparison of the EV-HRG-H model with

the lattice data [3] is presented. The results for pH/T 4 and

εH/T 4 are presented by the solid lines in Figs. 4(a) and 4(b),
respectively. These lines correspond to different values of r but
fixed C = 0.05 GeV3/2. The dashed lines show the EV-HRG
results without the Hagedorn mass spectrum, i.e., at C = 0.
The inclusion of the Hagedorn mass spectrum become clearly
visible at T > 130 MeV, and its contribution to the energy
density is essentially larger than that to the pressure.

A simultaneous fit of the plat/T 4 and εlat/T 4 lattice data is
done. The quality of the fit is now controlled by χ2/Ndf with
20 = 10 + 10 number of points and two fitting parameters (r
and C). At each value of r one can find the C parameter which
minimizes χ2/Ndf at fixed r . This introduces the correlation
between parameters C and r , which is shown in Fig. 5(a).
The data are well fitted for a rather wide range of values for
hard-core radius: χ2/Ndf � 1 for r � 0.4 fm. In Fig. 5(b)
the dependence of χ2/Ndf on r is shown for C = 0 and
C = C(r), where C(r) is depicted in Fig 5(a). A simultaneous
fit of plat/T 4 and εlat/T 4 within the EV-HRG model (i.e.,
for C = 0) does not show the necessity of r > 0. Similarly,
the Id-HRG-H model (i.e., at r = 0) admits only very small
contributions from Hagedorn states to the thermodynamical
functions [a small value of C at r = 0 seen in Fig. 5(a)].
Therefore, no clear evidence for r > 0 or C > 0 can be found if

FIG. 5. (Color online) (a) Parameter C which minimizes χ 2/Ndf at each value of r shown as a function of r . (b) The quantity χ2/Ndf as a
function of r . For each value of r , parameter C is fitted in order to minimize χ2/Ndf . The shaded gray area corresponds to r � 0.13.
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these two effects are considered separately, i.e., within the EV-
HRG or the Id-HRG-H model. On the other hand, taking them
simultaneously within the EV-HRG-H model indicates the
presence of these two effects and improvement of the Id-HRG
model.

Let us also note that the inclusion of the Hagedorn mass
spectrum led to a successful description of the lattice data for
the confined glueball phase in the pure SU(3) case (without
quarks) in Ref. [40]. This analysis is based on the assumption
that glueball decay widths and interactions (i.e., excluded
volume effects too) are rather small and can be neglected.
In the full SU(3) theory (with quarks) this assumption may not
be valid.

IV. SUMMARY

In summary, the lattice data of Ref. [3] for plat/T 4 and
εlat/T 4 are considered with the HRG model. Two extensions of
this model are analyzed: the excluded volume model (with the
same hard-core radius r for all particles) and the exponential
the Hagedorn mass spectrum model. A condition that the
pressure of the HRG should not exceed the Stefan-Boltzmann
limit for quarks and gluons indicates that hadrons should have
a nonzero hard-core radius of at least 0.13 fm. However, a
comparison of the excluded volume HRG model with the
lattice data at T < 155 MeV yields no conclusive evidence
in favor of the presence of excluded volume effects. Namely,
the fit of plat/T 4 prefers values of r � 0.4 fm, while the best
fit of εlat/T 4 corresponds to r ∼= 0. If r = 0, there is also not

much room for the contribution from the Hagedorn states, with
the best fit in this case corresponding to C ∼= 0; i.e., it suggests
the absence of contributions from the Hagedorn states.

These results mean that neither the excluded volume
HRG model nor the ideal HRG model with additional
Hagedorn states being considered separately demonstrates any
advantages for fitting the lattice data in a comparison to the
ideal HRG model (with no excluded volume effects and no
Hagedron states). On the other hand, if both these physical
effects are considered simultaneously the situation is changed:
the data are well fitted for r � 0.4 fm and C � 0.2 GeV3/2

with χ2/Ndf � 1; i.e., there is a clear indication that both
the hard-core repulsion and the Hagedorn mass spectrum
should be taken into account simultaneously in the framework
of the hadron resonance gas model. Accounting for these
leads to rather essential contributions: suppression effects
for pH/T 4 and εH/T 4 due to the excluded volume effects
and enhancement due to the Hagedorn mass spectrum. These
simultaneous contributions ensure a better agreement with the
lattice data and lead, therefore, to improvement of the ideal
HRG model.
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H. Stöcker, S. N. Yang, and W. Greiner, J. Phys. G 24, 1777
(1998).

[37] Y. Hama, T. Kodama, and O. Socolowski, Jr., Braz. J. Phys. 35,
24 (2005).

[38] K. Werner, Iu. Karpenko, T. Pierog, M. Bleicher, and
K. Mikhailov, Phys. Rev. C 82, 044904 (2010).

[39] L. M. Satarov, M. N. Dmitriev, and I. N. Mishustin, Phys. At.
Nucl. 72, 1390 (2009); A. V. Merdeev, L. M. Satarov, and I. N.
Mishustin, Phys. Rev. C 84, 014907 (2011).

[40] H. B. Meyer, Phys. Rev. D 80, 051502 (2009).

024905-7

http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevC.56.2210
http://dx.doi.org/10.1103/PhysRevC.56.2210
http://dx.doi.org/10.1103/PhysRevC.56.2210
http://dx.doi.org/10.1103/PhysRevC.56.2210
http://dx.doi.org/10.1103/PhysRevC.59.2788
http://dx.doi.org/10.1103/PhysRevC.59.2788
http://dx.doi.org/10.1103/PhysRevC.59.2788
http://dx.doi.org/10.1103/PhysRevC.59.2788
http://dx.doi.org/10.1016/S0370-2693(99)01076-X
http://dx.doi.org/10.1016/S0370-2693(99)01076-X
http://dx.doi.org/10.1016/S0370-2693(99)01076-X
http://dx.doi.org/10.1016/S0370-2693(99)01076-X
http://dx.doi.org/10.1103/PhysRevC.76.024901
http://dx.doi.org/10.1103/PhysRevC.76.024901
http://dx.doi.org/10.1103/PhysRevC.76.024901
http://dx.doi.org/10.1103/PhysRevC.76.024901
http://dx.doi.org/10.1016/j.physletb.2013.04.018
http://dx.doi.org/10.1016/j.physletb.2013.04.018
http://dx.doi.org/10.1016/j.physletb.2013.04.018
http://dx.doi.org/10.1016/j.physletb.2013.04.018
http://dx.doi.org/10.1088/0031-8949/48/3/004
http://dx.doi.org/10.1088/0031-8949/48/3/004
http://dx.doi.org/10.1088/0031-8949/48/3/004
http://dx.doi.org/10.1088/0031-8949/48/3/004
http://dx.doi.org/10.1088/0954-3899/24/9/010
http://dx.doi.org/10.1088/0954-3899/24/9/010
http://dx.doi.org/10.1088/0954-3899/24/9/010
http://dx.doi.org/10.1088/0954-3899/24/9/010
http://dx.doi.org/10.1590/S0103-97332005000100003
http://dx.doi.org/10.1590/S0103-97332005000100003
http://dx.doi.org/10.1590/S0103-97332005000100003
http://dx.doi.org/10.1590/S0103-97332005000100003
http://dx.doi.org/10.1103/PhysRevC.82.044904
http://dx.doi.org/10.1103/PhysRevC.82.044904
http://dx.doi.org/10.1103/PhysRevC.82.044904
http://dx.doi.org/10.1103/PhysRevC.82.044904
http://dx.doi.org/10.1134/S1063778809080146
http://dx.doi.org/10.1134/S1063778809080146
http://dx.doi.org/10.1134/S1063778809080146
http://dx.doi.org/10.1134/S1063778809080146
http://dx.doi.org/10.1103/PhysRevC.84.014907
http://dx.doi.org/10.1103/PhysRevC.84.014907
http://dx.doi.org/10.1103/PhysRevC.84.014907
http://dx.doi.org/10.1103/PhysRevC.84.014907
http://dx.doi.org/10.1103/PhysRevD.80.051502
http://dx.doi.org/10.1103/PhysRevD.80.051502
http://dx.doi.org/10.1103/PhysRevD.80.051502
http://dx.doi.org/10.1103/PhysRevD.80.051502



