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Chiral magnetic wave in an expanding QCD fluid
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As a consequence of the chiral anomaly, the hydrodynamics of hot quantum chromodynamics (QCD) matter
coupled to quantum electrodynamics allows for a long-wavelength mode of chiral charge density, the chiral
magnetic wave (CMW), that provides for a mechanism of electric charge separation along the direction of an
external magnetic field. Here, we investigate the efficiency of this mechanism for values of the time-dependent
magnetic field and of the energy density attained in the hot QCD matter of ultrarelativistic heavy-ion collisions.
To this end, we derive the CMW equations of motion for expanding systems by treating the CMW as
a charge perturbation on top of an expanding Bjorken-type background field in the limit μ/T � 1. Both,
approximate analytical and full numerical solutions to these equations of motion, indicate that for the lifetime
and thermodynamic conditions of ultrarelativistic heavy-ion collisions, the efficiency of CMW-induced electric
charge separation decreases with increasing center-of-mass energy and that the effect is numerically very small.
We note, however, that if sizable oriented asymmetries in the axial charge distribution (that are not induced by
the CMW) are present in the early fluid dynamic evolution, then the mechanism of CMW-induced electric charge
separation can be much more efficient.
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I. INTRODUCTION

Our understanding of how the chiral anomaly affects the
dynamics of relativistic plasmas has deepened considerably in
recent years. The appearance of macroscopic parity-violating
currents from quantum anomalies was noted already in the
1990s for systems as different as superfluid 3He-A [1,2], and
the electroweak plasma in the early universe [3,4]. Without di-
rect connection to the chiral anomaly, the possibility of parity-
violating currents had been noted even earlier by Vilenkin
for the case of neutrino-emission from a thermal system with
chiral fermions that is either rotating [5,6] or embedded in an
external magnetic field [7]. As understood more recently, it is a
direct consequence of the second law of thermodynamics that
the viscous relativistic hydrodynamics of any charged plasma
with triangle anomaly carries currents with terms proportional
to the vorticity and proportional to an external magnetic
field [8]. Rather than being set by new material properties,
the strength of these anomalous contributions is given in terms
of known thermodynamic functions and it is generally finite for
nonvanishing chemical potentials. Anomalous hydrodynamics
therefore must display currents with features that do not have
a direct counterpart in plasmas without quantum anomalies.
The charged plasmas of quantum field theories with gravity
duals provide examples for which these features arise in
explicit calculations [9–13]. There is also significant progress
in understanding how anomalous hydrodynamics arises in the
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long wavelength limit of classical kinetic theory supplemented
by the notion of Berry curvature [14–16], how it emerges in
the quantum kinetic approach [17,18], and which terms arise
in anomalous hydrodynamics beyond the first order in viscous
corrections [19].

In the quark-gluon plasma of the phenomenologically real-
ized quantum field theory of quantum chromodynamics (QCD)
coupled to electrodynamics, the fermionic degrees of freedom
carry both, the conserved electromagnetic and the anomalous
axial charge. The collective close-to-equilibrium dynamics of
the quark-gluon plasma provides therefore a special case of
anomalous hydrodynamics [20]: For nonvanishing chemical
potential of the axial charge μA, an external magnetic field �B
or a vorticity �ω in the fluid induces an electromagnetic vector
current �jV . And for nonvanishing vector chemical potential
μV , vorticity or an external magnetic field induces an axial
current �jA.

The question to what extent these characteristic features
of the chiral anomaly could lead to experimentally accessible
signatures in the plasma produced in ultrarelativistic heavy-ion
collisions is currently at the focus of an intense theoretical
debate [21–33] and of experimental searches [34–42]. In this
context, the mechanism of electric charge separation via the
chiral magnetic wave (CMW) is of particular interest. The
CMW was proposed first in Ref. [28] and then applied to
the case of finite baryon density in Refs. [30,31]. It is a
long-wavelength mode of chiral charge density that is an
unavoidable consequence of the chiral anomaly in QCD hy-
drodynamics coupled to quantum electrodynamics. The CMW
follows from general principles without any model-dependent
assumption (as can be seen, e.g., from our generalization of
the CMW to expanding fluids in Sec. II below). Thus, there is a
controlled model-independent dynamical framework, namely
anomalous hydrodynamics, within which one can discuss the
efficiency of mechanisms of electric charge separation in

0556-2813/2015/91(2)/024902(12) 024902-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevC.91.024902
http://creativecommons.org/licenses/by/3.0/


SEYED FARID TAGHAVI AND URS ACHIM WIEDEMANN PHYSICAL REVIEW C 91, 024902 (2015)

heavy-ion collisions.1 The main purpose of the present work
is to contribute to this discussion with a study of the CMW
that accounts for major confounding factors in ultrarelativistic
heavy-ion collisions, such as the strong time dependence of
the energy and charge densities attained in the collisions and
the transient nature of the generated magnetic field.

Our work is organized as follows: In Sec. II, we derive
the equations of motion of the chiral magnetic wave as a
charge perturbation for the simplified case of an expanding
Bjorken-type model. We explain how this leads to a transparent
model in which the efficiency of electric charge separation
in response to an external magnetic field can be studied
analytically and numerically. After discussing in Sec. III A an
approximate analytical solution of the chiral magnetic wave
that reveals already the main features of the full solution, we
turn in Secs. III B and IV to a numerical study of how efficient
the chiral magnetic wave is in separating electric charges. We
discuss how our results are related to (and consistent with)
previous discussions of the chiral magnetic wave, and we
discuss conclusions.

II. ANOMALOUS HYDRODYNAMICS

We consider a model of the energy-momentum tensor T μν

of hot QCD matter in an external electromagnetic field Fμν .
This matter carries both electric charge (written here in terms of
the vector current j

μ
V = ψ̄γ μψ) and axial charge (with axial

current j
μ
A = ψ̄γ μ γ 5ψ). The electromagnetic field couples

to the vector current, and it determines the divergence of
the anomalous axial current. The fluid dynamic equations of
motion of this system read

∇μT μν = QV FνλjV λ,

∇μj
μ
V = 0, (1)

∇μj
μ
A = CE.B,

where the external electric and magnetic field is defined
via a tensor decomposition of Fμν with respect to the flow
field uμ, Eμ = Fμνuν , and Bμ = 1

2εμναβuνFαβ . We use a
convention with j

μ
electric = e j

μ
V , and where one power of e

is absorbed in the definition of j
μ
A , accordingly. The strength

of the Abelian anomaly is then C = e/2π2. For simplicity,
we set the vector charge to QV = e. This neglects that
different quark flavors carry different fractional electric charge.
(To avoid this simplification, one would have to introduce
flavor-dependent currents and chemical potentials.) It will

1The caveat here is that the application of fluid dynamics is limited
to sufficiently late times when gradients are small, while the effect
of the CMW arises at sufficiently early times when the magnetic
field is large. In the numerical studies of Secs. III and IV, we shall
typically work with initialization times τ0 = 0.1 fm/c. We regard
the extrapolation of hydrodynamics to these early times as the best
possible dynamical formulation of the CMW available at present.
Given that the main conclusions of Secs. III and IV depend only on
the logarithmic order of magnitude of charge separation, there is an
a posteriori argument that the inclusion of nonequilibrium effects at
early times should not affect these conclusions significantly.

be sometimes convenient to work in the basis of left- and
right-handed currents,

j
μ
R = 1

2

(
j

μ
V + j

μ
A

)
j

μ
L = 1

2

(
j

μ
V − j

μ
A

)
. (2)

Requiring that the second law of thermodynamics is satisfied
locally, i.e., that the divergence of the entropy current is
positive semidefinite everywhere, one can write Eq. (1)
explicitly in the gradient expansion of viscous fluid dynamics.
Following Son and Surowka [8], the energy momentum tensor
and currents read to first order [20]:

T μν = (ε + P )uμuν + Pgμν + τμν, (3)

j
μ
R,L = nR,Luμ + ν

μ
R,L, (4)

where

τμν = −ηs
μανβ(∇αuβ + ∇βuα)

−
(

ζ − 2

3
ηs

)
μν∇ · u, (5)

ν
μ
R,L = −σ

2

(
T μν∂ν

(
μR,L

T

)
+ Eμ

)

+ ξR,Lωμ + ξ
(B)
R,LBμ. (6)

Here, the nonideal part τμν of the energy-momentum tensor
is characterized by the shear viscous transport coefficient ηs

and the bulk viscous coefficient ζ . Up to first order, τμν can
be written in terms of gradients of the flow field uμ and the
projector μν = gμν + uμuν . The viscous part ν

μ
R,L of the

left- and right-handed currents j
μ
R,L contains a conventional

term that is proportional to the vector charge conductivity
σ . This contribution describes how the currents flow along
an electric field or a gradient in the chemical potentials. The
contribution of the external electric field in (6) is negligible,
of course, if the electric field is much smaller than the
magnetic one. In addition, if the external electric field is
sizable but its orientation differs from that of the magnetic
field, this may allow one to disentangle the standard charge
separation because of the ohmic contribution ∝ σEμ from
the anomaly-induced charge separation along the direction of
an external magnetic field. In recent works that discuss the
efficiency of the anomaly-induced charge separation effect, it
is therefore not uncommon to neglect this ohmic contribution,
and to focus on the terms in the second line of (6) that render
the hydrodynamics of the system (1) anomalous [30,31].
We shall follow this approach. We note, however, that there
are models of initial conditions for which �E and �B have
similar orientation [33,43]. In this case, the Ohmic contribution
in (6) is clearly relevant for describing charge transport in the
direction of the magnetic field. By neglecting this contribution
in the following, we shall quantify then not the total charge
density floating along �B, but only the contribution to this
charge density flow induced by the anomalous part of the
current. It is in this sense that our paper does not provide a full
phenomenological study but only the quantification of a novel
effect relevant for phenomenology.

We focus in particular on the term in (6) that induces
currents parallel to the magnetic field. Following Refs. [8,20]
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but keeping all terms, we find

ξ
(B)
R,L = 1

2
C

(
±μR,L − 1

2

nR,L

(
μ2

R − μ2
L

)
ε + P

)

+
(

±Tf ′
(

μR − μL

T

)
− nR,LT 2f (μR−μL

T
)

ε + P

)
. (7)

Here, the notation ∝ ±μR,L on the right-hand side is a
shorthand denoting +μR (−μL) for ξ

(B)
R (ξ (B)

L ). In this compact
notation, f is an additional integration constant that, as first
pointed out in [44], is not constrained by the thermodynamic
consistency relations for ξ

(B)
R,L [20]. The two terms proportional

to nR,L

ε+P
arise from rewriting terms proportional to ∂T /∂μR,L

with the help of thermodynamic relations; we assume that these
terms are much smaller than the other two terms in (7). More
generally, we shall consider in the following situations with
small charge densities and small chemical potentials, such that

ν
μ
V = (

ξ
(B)
R + ξ

(B)
L

)
Bμ + O(ωμ,σ ) � C μA Bμ,

ν
μ
A = (

ξ
(B)
R − ξ

(B)
L

)
Bμ + O(ωμ)

�
(
C μV + 2 T f ′

(μA

T

))
Bμ. (8)

Usually, discussions of experimental signatures neglect the
unknown but thermodynamically allowed function f (μA

T
) in

Eqs. (7) and (8). Then, an external magnetic field induces
an axial current in the presence of a finite vector charge
density. This phenomenon is referred to as chiral separation
effect (CSE). In addition, any time-dependent axial current will
change the axial chemical potential μA, and it will thus induce
a vector current νμ

V . This is referred to as chiral magnetic effect
(CME). The combination of both equations is the starting point
for the discussion of the chiral magnetic wave (CMW).

One may wonder to what extent for small chemical potential
and charge densities a nonvanishing function f could change
this picture. By construction, ν

μ
V will remain unchanged,

so charge separation along Bμ continues to take place for
nonvanishing axial chemical potential. A negative term ∝
Tf ′(μA

T
), however, would counteract the induction of the axial

current, and a positive contribution would enhance it. We note
that for the vortical effect, a corresponding term was found to
be nonvanishing in a holographic model [12]. Here, we follow
common practice and we neglect contributions proportional to
f , but we argue that a better understanding of these terms in
QCD is desirable.

A. A Bjorken-type model

For the strongly expanding system created in heavy-
ion collisions, the solution of the equations of motion of
viscous relativistic fluid dynamics is complicated, and a fully
realistic treatment requires numerical simulations. However,
analytically treatable models, and in particular Bjorken-type
models, have contributed in the past towards anticipating and
understanding results of full fluid dynamical simulations. We
expect that they can also play a useful role in understanding
the dynamics of the QCD fluid coupled to strong external
electromagnetic fields, where numerical studies are at the very

beginning [33]. To this end, we formulate and study here a
simplified fluid dynamical model of the chiral magnetic wave
that retains essential aspects of a strongly expanding fluid.

In general, analytically treatable models of fluid dynamics
assume additional symmetries in the initial conditions that are
preserved during evolution and thus simplify the equations of
motion. What is then simplified is not the dynamical treatment
of the QCD fluid, but the description of the initial conditions
under which this fluid is prepared. In practice, the symmetries
assumed to this end in Bjorken-type models [45] are longitudi-
nal boost invariance and invariance under azimuthal rotations
or under transverse translations. If all these symmetries are
invoked, one arrives at a 1+1-dimensional model that is
analytically solvable in ideal and first-order viscous fluid
dynamics. There is also a generalization of Bjorken-type
models from Gubser [46], with analytical solutions of fluid
dynamics that satisfy conformal symmetry.

Formulating a simplified model of the chiral magnetic wave
is complicated because the phenomenon breaks all symmetries
on which simplifications of fluid dynamics are typically based:
A realistic magnetic field is not Bjorken boost invariant and
the resulting fluid dynamic response breaks symmetry under
rotations in the transverse plane. To arrive at a model requires
one, therefore, to make simplifying assumptions not only about
the initial conditions but also about the dynamical treatment of
the QCD fluid. The main assumption in the following will be
that the axial and vector charge densities and the corresponding
chemical potentials are parametrically small so that one can
treat them as symmetry-breaking perturbations that have a
negligible effect on the energy density and pressure of the
system. This assumption can be realized for a QCD fluid whose
energy density is dominated by gluonic degrees of freedom,
and for which net charge densities and associated chemical
potentials are small. One can then consider energy density and
pressure as providing parametrically large background fields
for which initial conditions and subsequent evolution satisfy
the symmetries of Bjorken’s model to leading order in μ/T . In
particular, to leading order in μ/T , the velocity uμ that defines
the rest frame of the energy density ε = uμ T μν uν takes at all
space-time points the boost-invariant form,

uμ = (t/τ,0,0,z/τ ) = (cosh η,0,0, sinh η) , (9)

where z is the beam direction, τ the proper time, and η the
space-time rapidity. Charges propagate as small perturbations
(subleading in μ/T ) on top of this Bjorken background field,
and their propagation is seen in the dissipative parts ν

μ
R,L of

the currents as well as in the position dependence of the charge
densities nR,L in (4). It is only these latter terms that break the
symmetries of the Bjorken model in response to an external
magnetic field.

For a constant external magnetic field Bx , we can write to
leading order in μ/T Eqs. (1)–(6) as four equations for the
energy density ε and pressure P (we use μ̄R,L ≡ μR,L/T ),

∂τ ε + ε + P

τ
−

4
3ηs + ζ

τ 2

= Bx σT sinh η∂yμ̄V , (10)

∂xP = 0, (11)
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∂yP = Bx σT
1

τ
(cosh η∂ημ̄V − nV sinh η), (12)

∂ηP = −Bx σT τ∂yμ̄V , (13)

and two equations for the time evolution of the charge
densities,

∂τnR,L + nR,L

τ
− σ �∇(T �∇μ̄R,L) + Bx cosh η∂xξ

(B)
R,L = 0.

(14)

These equations are not yet self-consistent because they were
derived assuming longitudinal boost invariance for uμ,P ,
and ε while they contain terms with explicit η dependence
that break longitudinal boost invariance. The reason for this
is, of course, that (10)–(14) were derived for a constant
magnetic field Bx that breaks longitudinal boost invariance.
To obtain a consistent, longitudinally boost-invariant set of
differential equations, we could choose either a magnetic
field of longitudinally boost-invariant form that coincides at
η = 0 with the physical value of Bx at midrapidity. This
would give rise to a consistent dynamics that is physically
meaningful at η = 0. Equivalently, we can simply limit our
discussion of Eqs. (10)–(14) to the transverse plane at space-
time rapidity η = 0, for which all terms on the right-hand side
of Eqs. (10)–(13) vanish. For the terms ∝ ∂yμ̄V and ∝ ∂ημ̄V ,
this follows from the fact that even in the presence of a constant
magnetic field, the system is symmetric under translation in
the transverse direction orthogonal to the magnetic field and
under reflection η → −η. For η = 0, we, therefore, find for
energy density and pressure the equations of motion of the
Bjorken model to first order in viscous hydrodynamics,

∂τ ε + ε + P

τ
−

4
3ηs + ζ

τ 2
= 0, (15)

�∂P = 0, (16)

supplemented by a simple time evolution for the charge
densities,

∂τnR,L + nR,L

τ
− σ∇2μR,L ± Bx ∂xξ

(B)
R,L = 0. (17)

Equations (15)–(17) are the starting point of the following
discussion. We recall that they provide a simplified consistent
dynamical treatment if restricted to midrapidity. The following
analytical and numerical studies will be limited to the case
where the energy density is translationally invariant in the
transverse (x,y) plane and where the charge distributions
are invariant in the transverse direction y orthogonal to the
direction of the magnetic field. The advantage of translation
invariance with respect to y is that we arrive at a very transpar-
ent model for the efficiency of electric charge separation via
the CMW.

B. The chiral magnetic wave in an expanding fluid

Equation (17) describes the hydrodynamic propagation of
chiral charge density in a Bjorken-expanding background. To
make contact with earlier discussions of the chiral magnetic

wave, we work in the limit of small chemical potential when

μR,L � 2 α nR,L, α ≡ ∂μR,L

2∂nR,L

∣∣∣∣
nR,L=0

. (18)

Keeping only the dominant first term of Eq. (7), ξ
(B)
R,L =

± 1
2CμR,L, we obtain

∂μ(nR,Luμ) ± BxCα∂xnR,L − 2σαnR,L = 0. (19)

According to this equation of motion, right-handed (left-
handed) charge density is transported with velocity,

vx = Bx C α, (20)

along (opposite) the magnetic field. This charge transport
is accompanied by diffusion characterized by the diffusion
constant,

D = 2 σ α. (21)

We note that Eq. (19) derived here is a natural generalization of
the equation for a chiral magnetic wave written in Refs. [30,31]
for the case of a static medium. Indeed, inserting the veloc-
ity profile for a time-independent medium, uμ = (1,0,0,0),
into (19) one finds the form discussed in Refs. [30,31],(

∂t ± vx∂x − D∂2
x

)
nR,L = 0. (static medium) (22)

The main features of charge transport in a static medium
can be inferred from general considerations without explicit
calculation. In particular, one knows that the velocities uμ,u

μ
(E)

of the fluid dynamic frames comoving with energy density
(Landau frame) and with a charge density (Eckhart frame) are
related in first-order hydrodynamics by the linear relation (see,
e.g., Ref. [47]),

u
μ
R,L(E) = uμ + ν

μ
R,L

nR,L

. (23)

The velocities of charge transport are then given by the
difference between the velocity that defines the Landau
frame of comoving energy density and the Eckhart frames
of comoving left(+)- or right(−)-handed charge densities.
Inserting the above relations, one checks easily the expectation
that the velocity of charge transport,

±vx = u
μ
R,L(E) − uμ = 1

2
C

μR,L

nR,L

Bx = BxCα, (24)

is determined by the transverse boost from the Landau frame
of comoving energy density to the Eckhart frame that comoves
with left(+)- or right(−)-handed charges. The velocity vx of
charge transport derived for the Bjorken-type model in (20)
equals that obtained from this general consideration. In
Refs. [30,31], also the presence of a diffusion term ∝ nR,L

was argued for on physical grounds. In summary, we have
shown in this subsection that the fluid dynamic equations of
motion (15)–(17) are a natural generalization of the chiral
magnetic wave equation of Refs. [30,31] to the case of a
Bjorken-expanding background field, and we have recalled
how the physics encoded in these equations is related to general
considerations about charge transport.
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III. SOLUTIONS TO THE CMW IN AN EXPANDING
BACKGROUND

In general, solutions to the fluid dynamic equations of mo-
tion depend on the initial conditions for all fluid dynamic fields,
the equation of state and the value of transport coefficients, and
the strength of external fields. As for the equation of state, there
are lattice simulations [48] that determine for two-flavor QCD
up to sixth order (k = 3) the coefficients Ck in the power series,

P (T ,μR,μL) = T 4
∑

k

Ck

[(μR

T

)2k

+
(μL

T

)2k
]

. (25)

As we shall work in the present case for small chemical
potentials only, we shall focus on the first two terms in this
series, setting Ck = 0 for k � 2. This is also justified by the
observation in Ref. [48] that the coefficients Ck of higher
orders k � 1 are numerically smaller by factors O(10−k).
Numerically, it was found that at temperatures well above
Tc, the coefficients C0 and C1 are approximately 80% of the
value of a free gas of gluons and nf = 2 quarks [48]. This is in
line with results for field theories with gravity duals for which
the equation of state is known to vary between the limits of
vanishing and infinite coupling by a constant factor 3/4 [49]
or by a factor close to 3/4 [50]. For numerical studies, we shall
therefore choose (25) with

C0 = 0.8

(
8π2

45
+ π2

15

7

4
nf

)
, (26)

C1 = 0.8
1

4
nf . (27)

Furthermore, to allow for analytical calculations, we consider
in the following an ideal equation of state ε = 3 P . For the
purpose of a numerical study of the chiral magnetic wave, an
ideal equation of state with pressure (25)–(27) is a transparent
but simplified starting point. We note in particular that the
equation of state will depend in general also on the external
magnetic field. Recent studies indicate significant changes of
the equation of state in a magnetic field. For instance, the chiral
and deconfinement phase transitions may split [51,52] and one
finds a magnetization of the QCD plasma [53]. However, in
these works and in the references cited therein, the natural
scale for the onset of significant modifications of the equation
of state from B fields is eB > 0.1 GeV2 ≈ 10 m2

π . As we shall
see in the following discussion, the external magnetic field
strength realized in ultrarelativistic heavy-ion collisions lies
below this scale. Because we study in the following scenarios
with eB < 10(mπ )2 only, we shall neglect possible effects of
the Landau quantization of the energy spectrum of quarks on
the equation of state at finite B, and we shall work with the
ansatz (25)–(27).

With the help of the thermodynamic relation, dP = s dT +
nRdμR + nLdμL and the equation of state (25), we can
write the equations of motion (15)–(17) as coupled partial
differential equations for the temperature and the chemical

potentials μR and μL. Using M2 ≡ μ2
R + μ2

L, we write

(2C0T
3 + C1TM2)∂τT + 1

2
C1T

2∂τM2

+ 2

3τ
(C0T

4 + C1T
2M2) = 4 η

s

9τ 2
(2C0T

3 + C1TM2), (28)

and

∂τμR,L + μR,L

τ
+ 2

μR,L

T
∂τT ± 1

4

C

C1

Bx

T 2
∂xμR,L

− σ

2C1T 2
∂2
xμR,L = 0. (29)

These equations of motion can be solved numerically for
arbitrary initial conditions, and we shall discuss such numer-
ical results in the following. First, however, we turn to an
approximate analytical solution that will turn out to illustrate
the main features of the full numerical result.

A. Approximate analytical solution for Gaussian
initial condition

In the limit of small charge densities and negligible
viscosity, the solution to the equation of motion (28) is the
Bjorken solution up to parametrically small corrections,

T = T0

(
τ0

τ

)1/3

+ O
(μR,L

T
,
η

s

)
. (30)

Entering with this expression Eq. (29) and neglecting all
nonlinear, higher order terms in the charge density, one finds

∂τ μ̃R,L ± C

4C1

τ 2/3 Bx

T 2
0 τ

2/3
0

∂xμ̃R,L − τ 2/3σ

2C1T
2

0 τ
2/3
0

∂2
x μ̃R,L = 0.

(31)
Here, we have separated the leading time dependence of the
charge densities, that is from longitudinal Bjorken expansion,

μR,L(τ,x) = μ̃R,L(τ,x)

(
τ0

τ

)1/3

. (32)

We consider first initial conditions of heavy-ion collisions
that show event-by-event an initially negligible density nA

of axial charges but a nonvanishing density of electric charges
of approximately Gaussian shape, centered at initial time τ0

at transverse position x = 0. We want to understand how this
electric charge distribution evolves from the effects of the
QCD anomaly in the presence of a large and time-dependent
magnetic field Bx(τ ). The fluid dynamic problem studied here
is simpler than the situation in heavy-ion collisions in that it
ignores transverse gradients in energy density and pressure and
thus retains a one-dimensional translational symmetry in the
transverse direction y. However, the problem is sufficiently
complex to study the effects of charge separation along the
magnetic field in a Bjorken expanding fluid. Interestingly,
while the discussion of (31) for general initial conditions
requires numerical techniques, the solution for a Gaussian
initial density distribution can be given analytically,

μR,L(τ,x) =
(τ0

τ

)1/3 const.

R(τ )
exp

[
−1

2

(x + s±(τ ))2

R2(τ )

]
. (33)
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Here, the peak of the Gaussian distribution for right- and left-
handed charges evolves in time according to

s±(τ ) = ∓1

4

C

C1

τ
−2/3
0

T 2
0

∫ τ

τ0

τ ′2/3Bx(τ ′)dτ ′. (34)

For the equation of state (25), one finds nR,L = 2C1T
2μR,L

and therefore α = ∂μR,L

2∂nR,L
= 1/4C1T

2. From this, one checks
easily that the position of the peak moves with the expected
velocity (20),

ds±(τ )

dτ
= vx(τ ) = Bx(τ ) C α. (35)

The spatial separation s+ − s− of right- and left-handed
charges is of direct phenomenological relevance. In the fluid
dynamic model studied here, this separation is proportional
to a particular time average of the time-dependent external
magnetic field,

∫ τ

τ0
τ ′2/3Bx(τ ′)dτ ′. One may wonder whether

this finding is valid also outside the model-dependent frame-
work in which we have derived it here. In this context, we
note that for small charge densities, one generally expects a
linear relation between chemical potentials and charges. In the
absence of other dimensionful parameters, this dependence
must be of the form nR,L ∝ T 2μR,L, and therefore α ∝ 1/T 2.
For an expanding fluid, it is then the time dependence of
the dimensionless ratio Bx(τ )/T 2(τ ) that determines the time
dependence of the velocity vx(τ ) with which right- and
left-handed charges separate. The time dependence of the
integrand of (34) is therefore generally expected for fluids
with Bjorken expansion. We note as an aside that for the
case of a fluid with transverse expansion, when one expects
T (τ ) = T0 (τ0/τ )δ ,1/3 < δ < 1, these considerations suggest
that the spatial separation s+ − s− will depend on a weighted
time average

∫ τ

τ0
τ ′2δBx(τ ′)dτ ′ of the magnetic field.

The square of the Gaussian width in (33) broadens accord-
ing to the differential equation ∂τ ( 1

R2 ) = − σ
C1 T 2 ( 1

R2 )2. In the
present paper, we consider mainly the case of a temperature-
independent electrical conductivity, for which one finds

R2(τ )

∣∣∣∣
σ=const.

= R2(τ0) + 3

5

σ

C1T
2

0 τ
2/3
0

(
τ 5/3 − τ

5/3
0

)
. (36)

We note, however, that in calculations of the conductivity σ
of conserved U(1) charges in theories with gravity dual, one
finds a linear dependence on temperature, σ = σ0 T [54,55],
and this is also expected on dimensional grounds. Including in
the calculation of R2(τ ) the time dependence of σ that would
result from a linear temperature dependence, one finds instead
of (36) a slightly weaker time dependence,

R2(τ )

∣∣∣∣
σ=σ0 T

= R2(τ0) + 3

4

σ0

C1T0τ
1/3
0

(
τ 4/3 − τ

4/3
0

)
. (37)

This illustrates that details of the diffusion will depend on
the temperature dependence of the conductivity. However,
these effects turn out to be numerically small, and we
therefore fix in the following the conductivity to a value σ =
e2 200 MeV that is consistent with the recent (quenched) lattice
QCD studies [56], 1

3e2 Tc < σ < e2 Tc, where e2 = 4π/137.

B. Numerical results for initial Gaussian vector
charge distribution

We start by summarizing the input used in the following
numerical study of the fluid dynamic equations of mo-
tion (15)–(17) of the chiral magnetic wave. We use the ideal
equation of state ε = 3P with pressure given in Eq. (25)
and with nonvanishing coefficients (26) and (27). The default
values for the ratio of shear viscosity over entropy and for
the electrical conductivity are η/s = 1/4π [57] and σ =
e2 200 MeV, respectively. As default, we initialize the system
with a temperature T (τ0 = 0.1 fm/c) = T0 = 650 MeV that
corresponds for a fluid with Bjorken expansion to the initial
temperature T (τ0 = 0.6 fm/c) = 360 MeV consistent with
fluid dynamic simulations of heavy-ion collisions at RHIC en-
ergy (

√
sNN = 200 GeV). We initialize the chemical potentials

with a Gaussian profile (33) of transverse width R = 3 fm. We
use an initial strength μR,L(τ0,x = 0) = 10 MeV consistent
with the assumption that the contribution of charges to the
pressure of the system is perturbatively small, μ/T � 1.
We note, however, that the dependence on μR,L is linear for
sufficiently small charge densities, and most of our results will
be normalized such that they are independent of μR,L(τ0,x =
0). For the strength of the abelian anomaly, we use C = e

2π2 ;
this means that we do not take the fractional charge of quarks
into account.

One aim of the following study is to arrive at some
qualitative statement about how phenomenologically testable
effects of the chiral magnetic wave depend on the center-of-
mass energy. To allow for this discussion, we include in the
calculation the

√
sNN dependence of the initial temperature

by requiring that the entropy of the system matches the√
sNN dependence of the measured charged particle multi-

plicity at midrapidity, T 3(τ = fixed) = const. dNch/dη. For
the event multiplicities in heavy-ion collisions published in
Refs. [58,59], this implies that in comparison to the upper
RHIC energy (Au+Au at

√
sNN = 200 GeV), the initial

temperature T0 at fixed τ0 is a factor ∼ 1.35 larger at LHC
(Pb+Pb at

√
sNN = 2.76 TeV) and a factor ∼ 0.81 smaller

at lower RHIC or upper SPS energy of
√

sNN = 17 GeV.
Moreover, we choose for the external magnetic field in our
calculations the dependence on center-of-mass energy

√
sNN,

proper time τ , and impact parameter b expected for realistic
heavy-ion collisions. We calculate the strength of this magnetic
field from the distributions of electric charges of spectators
and participants according to the classical electrodynamic
calculation described in the appendix of Ref. [22]; see Fig. 1.

The
√

sNN dependence of the maximal value of the magnetic
field strength and the temporal fall-off shown in Fig. 1
is in rough quantitative agreement with numerical results
of a microscopic transport model [60] for fixed target and
RHIC energies, and with calculations for RHIC and LHC
energies [61]. In comparison to a model of hadron string
dynamics [62], Fig. 1 overestimates the magnetic field strength
somewhat. On the other hand, it was demonstrated in model
studies that event-wise fluctuations in the incoming charge
distributions can lead to larger values of the magnetic field
strength in some events [43,63], and that they can also
lead to very large fluctuations in the electric field strength.
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FIG. 1. (Color online) Time-dependent strength of the transverse
component of the external magnetic field obtained in a classical
electromagnetic calculation [22] field for nucleus-nucleus colli-
sions at different center-of-mass energies and for different impact
parameter b.

In summary, these findings suggest that the time-dependent
magnetic field strengths plotted in Fig. 1 provide reasonable
ballpark estimates for the following discussion. One may
wonder whether this conclusion could change significantly
because of the effects of magnetization of the QGP that may
prolong the lifetime of the magnetic field [64]. For this to
happen, one would have to require a dynamical mechanism
able to trap magnetic fields of strength > 1017 Gauss in a
fluid of quarks and gluons. A recent analysis suggests that
at least for the values of the electric conductivity obtained
from lattice QCD calculations, such effects of magnetization
are relatively small [65]. In the following numerical studies,
we therefore use the strength and time dependence of the Bx

field in Fig. 1. Because the dependence on impact parameter is
relatively mild, we show results only for a default value of the
Bx field at b = 4 fm. In the present model, this magnetic field
is position independent and permeates the fluid at midrapidity.

4 6 8 10 12 14
b fm10 5

10 4

0.001

0.01

s s fm
sNN 2.76 TeV

sNN 200 GeV

sNN 17 GeV

FIG. 2. (Color online) Spatial separation of right- and left-
handed axial charge, occurring according to Eq. (34) in the magnetic
field of Fig. 1 between times τ0 and τ = 10 fm/c. The upper (lower)
end of the uncertainty band corresponds to initial value τ0 = 0.01
fm/c (0.1 fm/c).

Figure 1 shows clearly that while the peak strength of
the magnetic field increases with increasing center-of-mass
energy, its temporal fall-off is much faster for larger

√
sNN. As

a consequence, the external magnetic field at upper CERN
SPS and lower RHIC energy of

√
sNN = 17 GeV exceeds

from times τ > 0.1 fm/c onwards the corresponding external
fields attained at upper RHIC and LHC energies. Whether
phenomenologically testable effects of the chiral magnetic
wave are maximized at higher or lower center-of-mass energy
thus becomes a dynamical question. To inform us about
this point, we plot in Fig. 2 the spatial separation s+ − s−
of right- and left-handed charges, evaluated according to
Eq. (34) for different centralities and different center-of-mass
energies. Before commenting on the absolute size of the spatial
separation, let us comment on the observed dependencies. In
particular, we find that the spatial separation is larger at smaller
center-of-mass energy. We recall that the velocity of charge
separation in (34) is vx(τ ) ∝ Bx(τ )/T 2(τ ). This explains that
the

√
sNN dependence of s+ − s− seen in Fig. 2 is mainly from

the weaker temporal fall-off of the magnetic field at small√
sNN, but the fact that the temperature at fixed time τ decreases

with decreasing
√

sNN does also play a role. Because Bx(τ )
peaks at very small times, there is a significant τ0 dependence
of s+ − s−. Initializing a hydrodynamic calculation at too short
times τ0 is certainly questionable. However, to quantify the
uncertainty in varying τ0, it is useful to note that the integral∫ τ

τ0
τ ′2/3Bx(τ ′)dτ ′ in (34) stays finite even in the limit τ0 → 0.

For this reason, we plot in Fig. 2 upper values that correspond
to maximizing the contribution of this integral by choosing a
very small lower integration boundary τ0 = 0.01 fm/c. Even
with this optimistic ansatz, the spatial separation of right-
and left-handed charges during the evolution is only of order
O(10−2 fm) at SPS energies and it is one (two) orders smaller
at RHIC (LHC) energies. This raises the question under which
circumstances phenomenological consequences of the chiral
magnetic wave may become testable.

We now turn to the discussion of numerical solutions of
the equations of motion (28) and (29) for the CMW. We
first consider an initial condition that corresponds along the
direction x of the magnetic field to a Gaussian distribution
of vector charge nV = nR + nL and a vanishing distribution
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nR Τ0,x , nL Τ0,x fm 3

FIG. 3. (Color online) Initial condition for the distribution of
charge densities nR,nL, corresponding to Gaussian distribution (33)
with norm μR,L(τ0,x = 0) = 10 MeV and Gaussian width R(τ0) =
3 fm.

of axial charge nA = nR − nL. Figure 3 shows this distribu-
tion for the default values of the thermodynamic variables
discussed above. One sees that the default values chosen here
correspond to a small charge density, consistent with the idea
that we can treat charge transport as a perturbation on top of a
dynamically evolving background. According to Fig. 2 and the
analytical considerations of Sec. III A, we expect that the peak
of the Gaussian distribution evolves very little with time. For
clarity, we therefore follow the procedure of Ref. [30] and we
subtract from the time-evolved vector charge distribution nV

the vector charge distribution without chiral magnetic wave,
that is, the distribution nV |B=0 obtained from evolving Fig. 2
in the absence of a magnetic field. In Fig. 4, we show this
difference normalized to the time-dependent vector charge
density at the center x = 0. The top panel of Fig. 4 shows how
the chiral magnetic wave separates vector charge density in the
transverse plane with increasing time. The middle and lower
panel of Fig. 4 shows that our analytical solution (33)–(35),
although being accurate only to leading order in μ/T , accounts
for the full numerical result of the normalized charge difference
(nV − nV |B=0) /nV |B=0 very well. To this end, we show first
that analytical and numerical results for this ratio coincide
almost for vanishing shear viscosity, and that a finite value of
η/s reduces the effect only mildly. We then show in the lower
panel that the analytical result is highly sensitive to the value
of the transverse velocities v± that determine the norm of the
spatial separation s± in (34). This demonstrates that Eq. (34)
and the spatial charge separation plotted in Fig. 2 provides
a quantitative basis for understanding the size of the effect.
Figure 5 then shows how the corresponding asymmetry of the
axial charge distribution nA develops with time. Because this
distribution vanishes at τ0 for the initial condition of Fig. 3
studied here, we normalize the distribution to nV |B=0.

Distributions for nV − nV |B=0 and nA at times τ = 10 fm
were shown previously in Figs. 1 and 2 of Ref. [30]. In
contrast to the present study, these results were obtained for
a static medium and a constant time-independent magnetic
field of strength e B = m2

π which corresponds approximately
to the peak value of eBx(τ ) in Fig. 1. In addition, this study
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10 9

0.3 fm c
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(a)

10 5 5 10
x fm

3

2

1

1

nV Τ, x nV Τ, x B 0

nV Τ, 0 B 0

10 8

Η

s
0, analytical

Η

s
0, numerical

Η

s

1

4 Π
, numerical

(b)
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5

5

nV Τ, x nV Τ, x B 0

nV Τ, 0 B 0

10 8

analytical

v 2 v

v .5 v

(c)

FIG. 4. (Color online) The normalized and subtracted vector
charge distribution for initial conditions corresponding to b = 4 fm
at

√
sNN = 17 GeV and initial charge distributions shown in Fig. 3.

(a) Numerical solution of (28) and (29) for different times into the
evolution. (b) Comparison of the analytical result (34)–(36) with the
full numerical solution at vanishing and at finite shear viscosity. (c)
Dependence of the analytical result on the analytically determined
transverse velocity of charge transport.

in Ref. [30] was for a smaller constant temperature T =
165 MeV which according to our discussion helps to maximize
the effect. Reference [30] set the initial axial chemical potential
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FIG. 5. (Color online) The normalized axial charge distribution
determined for the same input as in Fig. 4(a).

to zero, consistent with the initial conditions considered here.
They initialized a two-dimensional vector chemical potential
with a Woods-Saxon profile and they evolved the chiral
magnetic wave Eq. (22) numerically. Despite these qualitative
and quantitative differences, we observe that if one cuts the
resulting two-dimensional distributions nV − nV |B=0 and nA

of Ref. [30] at transverse position y = 0 along the direction of
the magnetic field, their shape and the transverse positions of
their peaks resembles closely the results shown in Figs. 4 and 5
of the present work.

Given that the transverse displacement s+ − s− of charges is
very small (see Fig. 2), it is clear that the positions of the peaks
of the distributions in Figs. 4 and 5 cannot be of dynamical
origin alone. Rather, irrespective of the exact size of v± and
of the time dependence of s+ − s− that is sensitive to the
chiral magnetic wave, the peaks in the distribution of Figs. 4
and 5 will always be positioned at approximately twice the
Gaussian width of nV (τ0), because they result from subtracting
two equally normalized Gaussian distributions with almost
the same width. This conclusion may be expected to depend
only mildly on whether the shape of the charge distribution is
Gaussian or Woods-Saxon, and this may explain the similarity
between our results and those of Ref. [30]. As for the size of the
effect, we note that the results of Figs. 4 and 5 are normalized
such that they are independent of the absolute value of the
charge density. According to our results, the effective charge
transport caused by the chiral magnetic wave affects only a
very small fraction O(10−9 − 10−10) of all the vector charges
at midrapidity. Similarly, Fig. 5 indicates that the dynamical
buildup of an axial charge asymmetry is a numerically very
small effect, at least for the input parameters considered here.
One may wonder whether one can obtain numerically larger
effects by changing input parameters. Given that the size of
the effect is clearly governed by the integral (34), the only
way of maximizing the effect is to go to even larger magnetic
fields and/or to even smaller temperatures than those estimated
for collisions at SPS energy. The results found for upper RHIC
(LHC) energy are similar in shape to those in Figs. 4 and 5, but
they are approximately one (two) orders of magnitude smaller
in size (data not shown). Here, we note that even if we choose

a time-independent magnetic e B = m2
π , the distribution in

Fig. 4 does not rise larger than peak values of O(10−5) which
is still less than one charged particle per collision.

IV. INITIAL CONDITIONS WITH FINITE AXIAL
CHEMICAL POTENTIAL

For a fluid dynamic evolution initialized with vanishing
axial charge density, we have seen in Sec. III that the chiral
magnetic wave is unlikely to generate an experimentally
testable electric quadrupole moment within the mesoscopic
and finite-lived systems created in ultrarelativistic heavy-ion
collisions. In our studies, the fraction of the total charge
density, separated by the CMW along the direction of Bx turned
out to be several orders of magnitudes too small, even under
optimistic choices of thermodynamic variables; see Fig. 4.
We have traced back this finding to the parametrically and
numerically small value of the transverse velocity vx of charge
transport, which leads to spatial separations of vector charge
that are typically much smaller than 1 fm; see Fig. 2.

We now investigate to what extent this conclusion can
change for initial conditions with nonvanishing axial charge
asymmetry in the direction of Bx . The physical motivation for
exploring this possibility is twofold. First, for a nonvanishing
initial axial charge density distribution as the one shown in the
lower panel of Fig. 6, vector charge separation can be expected
to be dynamically more efficient because a sizable finite
axial chemical potential needed for vector charge transport
is present from τ0 onwards and does not need to be generated
dynamically from gradients of the vector charge distribution.
Second, as pointed out in particular in the recent works
of Refs. [32,33], the nonconservation of the axial current
∂μj

μ
A = C E.B may provide a source for a spatial asymmetry

of nA(x) along the direction of Bx . This is so, if one starts
from a picture of the heavy-ion collision in which there is not
only a strong Bx field, but also a strong electric field E, and if
the E field is directed preferentially along (opposite) Bx in the
positive (negative) transverse half-plane x > 0 (x < 0), as one
expects from general geometric considerations. In the study of
Ref. [33], such a term was included in the dynamical evolution.
As noted in the discussion following (6), if E.B �= 0 during the
hydrodynamic evolution, then the charge density flow along
the direction of the magnetic field receives contributions from
the Ohmic term in (6). In the present work, however, we restrict
ourselves to quantifying the effects induced by the anomalous
terms in the current.

We recall that the chiral magnetic wave leads to spatial
asymmetries of the axial charge in response to a finite vector
charge chemical potential, and it does not require a finite E
field. In contrast, a creation of spatial asymmetries in nA from
∂μj

μ
A = C E.B requires a finite E field but does not depend

on a finite vector charge chemical potential. Here, we do not
address the important question about the size of the spatial
asymmetries in nA that may be created by this alternative
mechanism, nor do we discuss the time scale on which such
an asymmetry may arise in the collision or dynamical effects
that arise outside a hydrodynamical framework. We note in this
context that quark-gluon plasmas with finite μA are expected
to be dynamically unstable. This plasma instability is not
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FIG. 6. (Color online) (a) and (b) Same as in Fig. 4(a), but
calculated in (a) for the shown nonvanishing initial axial charge
density distribution nA of (c), and calculated in (b) for a 100 times
larger density nA.

accounted for in anomalous hydrodynamics and it will tend to
dampen μA by the exponential growth of color electromagnetic

fields at the early stage of the collision [66] (see also [67,68]).
By neglecting the role of this plasma instability, we will thus
overestimate the importance of a finite axial charge density
for the spatial separation of vector charges. This is the starting
point of the present section: We simply accept the logical
possibility that a finite spatial asymmetry of nA along Bx

may be present in the initial conditions and we seek an upper
bound on the efficiency with which the CMW could transfer
these spatial asymmetries in nA into a spatial separation of
the vector charge distribution. To this end, we have repeated
in Fig. 6 the calculation shown in the upper panel of Fig. 4
for the same input values and the same initial vector charge
density nV (τ0,x), but for the nonvanishing axial charge density
nA(τ0,x) shown in Fig. 6. We find that—although the signal
is still numerically small—it is enhanced by almost 5 orders
of magnitude compared to the case in Fig. 4. This supports
the general argument that the mechanism of vector charge
separation from the chiral magnetic wave is significantly more
efficient if a finite axial chemical potential needs not be
generated dynamically but is present in the initial conditions.
We further observe that for a given x dependence of the initial
asymmetry nA(τ0,x), the size of the vector charge separation
grows approximately linearly with the amplitude of nA(τ0,x).
In fact, rescaling nA in Fig. 6 by a factor 100 (which for the
parameters chosen here still corresponds to μA(τ,x)/T (τ ) < 1
everywhere), we find that the relative size of the normalized
vector charge difference (nV − nV |B=0) /nV |B=0 increases by
a factor ∼100 as well. We note as a speculative aside that if one
starts from the numerical finding that the peak values of eBx

reached in heavy-ion collisions are O(m2
π ) and if one assumes

that |eE| ∼ |eBx | ∼ O(m2
π ), then the nonconservation of the

axial current is parametrically large, ∂μj
μ
A ∝ m4

π

e
, and large

initial values for nA may be feasible indeed.

V. CONCLUSION

The chiral magnetic wave is a direct and unavoidable
consequence of formulating QCD hydrodynamics in an ex-
ternal electromagnetic field. Experimental confirmation of
this phenomenon would be of considerable interest because
it would underline the relevance of quantum anomalies for
the properties of hot and dense matter. However, whether the
chiral magnetic wave can lead to unambiguous signals of
experimentally accessible strength in ultrarelativistic heavy-
ion collisions (and whether the CMW can offer a dynamical
explanation for experimental signals of given strength) is a
question that requires theoretical exploration. In the present
paper, we have shown that in an expanding fluid and for
small charge densities, the chiral magnetic wave separates
axial charges with a local velocity,

v±(τ ) = C

4C1

Bx(τ )

T 2(τ )
, (38)

where C = e
2π2 is the strength of the axial anomaly and C1 is

a factor of order O(1) in the equation of state (25). For the
special case of a fluid that satisfies to leading order in μ/T
the symmetries of Bjorken’s model and where propagating
charges can be treated as perturbations at subleading order in
μ/T , we have derived explicitly the equations of motion for
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the chiral magnetic wave and the velocity (38). Moreover, we
have argued on general grounds that we expect Eq. (38) to
describe the CMW-induced velocity of charge separation also
for fluids whose collective expansion differs from that of the
Bjorken-type model studied in Secs. III and IV.

For choices of the magnetic field strength and of the time-
dependent temperature that are realistic for ultrarelativistic
heavy-ion collisions, the values found for vx from (38) are
nonrelativistic, and the resulting time-integrated value of the
spatial separation of right- and left-handed charges tends to
be very small; see Fig. 2. For the simplified Bjorken-type
model studied in Sec. III, and for initial conditions without
finite axial charge potential, the CMW therefore typically
induces asymmetries in the electric charge distribution that
we regard as being too small to be experimentally accessible
because they affect on average the distribution of much less
than one charge per collision. This conclusion is reached
on the basis of a simplified model. While numerical results
may change somewhat for the case of a fully realistic fluid
dynamic simulation of relativistic heavy-ion collisions, we
emphasize that our main conclusion is based on the logarithmic
order of the asymmetry of charge separation [O(10−8) in
Fig. 4]—a more realistic simulation alone is unlikely to

overcome this big suppression factor. As discussed in Sec. IV,
however, there may be physics effects that lead to initial
conditions with significant axial chemical potential so that
phenomenological consequences can be much enhanced. The
findings of Sec. IV, therefore, call for a better understanding
of the initial conditions with which the CMW is initialized.

Note added in proof: One month after completion of our
work, Ref. [69] appeared. This work states consistency with
our findings, and it elaborates on a scenario according to which
effects occurring at the freeze-out stage could give numerically
significant contributions. Thus, enhanced phenomenological
consequences of the CMW may arise not only from modified
initial conditions, as argued in Sec. IV, but also from the
hadronic decoupling at the end of the fluid dynamic evolution.
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