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Using the evolutionary model-independent S-matrix approach, we show that a simultaneous correct description
of the pictures of nuclear rainbow, prerainbow, and anomalous large-angle scattering (ALAS) in the 4He-40Ca
elastic scattering can be achieved with help of the S-matrix moduli and the real nuclear phases exhibiting
smooth monotonic dependencies on angular momentum, while the quantum deflection functions have a form
characteristic of the nuclear rainbow case. The special role of the surface partial waves in the formation of ALAS
is revealed.
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I. INTRODUCTION

The elastic scattering of α particles by nuclei with mass
numbers A � 40 at E ≈ 5–25 MeV/nucleon shows a variety
of scattering pictures. At E � 20 MeV/nucleon the nuclear
rainbow picture with the characteristic wide maximum fol-
lowed by the regular falloff of the differential cross section is
observed (see, e.g., Refs. [1–3]). As the energy decreases,
the prerainbow scattering picture with various interference
structures (e.g., Airy structures of different order) and the
violation of the regular falloff of the differential cross section
appear (see, e.g., Refs. [4,5]). At lower energies the anomalous
large angle scattering (ALAS) picture, mostly pronounced in
the scattering on the nuclei with equal numbers of protons
and neutrons, with the unusual enhancement (by the order of
magnitude and more) of the oscillating cross section in the
region of large angles comes into play (see, e.g., Refs. [6–8]).

This variety of the scattering pictures makes a problem for
their valid theoretical description. The mentioned picture of
nuclear rainbow is usually reproduced with help of the simple
physically reasonable model representation for the nuclear part
of the scattering matrix in the space of angular momentum l.
The respective modulus and real nuclear phase, being smooth
monotonic functions of l, correctly account for the gradual
elimination of the partial waves from the incoming wave
and the change of refraction in the nuclear matter (see, e.g.,
Refs. [9–11]). To describe the more complicated scattering
pictures (like prerainbow and ALAS), the mentioned simple
(background) model scattering matrix has to be modified
by the additional corrections (the resonance-like pole terms
[12–14], the small fluctuations of scattering matrix [15], etc.)
that violate the smooth and monotonic behavior of the modulus
and the real nuclear phase in the angular momentum space. The
behavior of the modulus and the real nuclear phase extracted
from various optical nucleus–nucleus potentials that replicate
the mentioned scattering pictures also appears nonmonotonic,
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in particular, due to the presence of nonsmooth structures (see,
e.g., Refs. [8,15–20]).

Thus, there arises the question of whether it is possible to
build the unified description of all the scattering pictures that
exist at the considered energies (from the nuclear rainbow
at sufficiently high energies to the ALAS at the lower
energies) with the use of conventional smooth monotonic
representations for the scattering matrix modulus and nuclear
phase. To answer the question, we apply the evolutionary
model-independent S-matrix approach [21], which has proved
very efficient not only for the analysis of the nuclear rainbow
picture [22] but also for the study of the more complicated
refractive scattering patterns with the prerainbow oscillations
[23]. In the present paper we apply this approach to describe
the evolution of the observed scattering pictures in the system
4He+40Ca at 7–21 MeV/nucleon. Experimental data are from
Refs. [24–26].

II. CALCULATION PROCEDURE

In our approach, the scattering matrix that describes
the 4He-40Ca elastic scattering has the form S (l) =
SN (l) exp [2iσC (l)], where SN (l) = η (l) exp [2iδr (l)] is the
nuclear part, σC (l) is the Coulomb scattering phase taken
to be the quasiclassical phase of the point-charge scattering
by the uniformly charged sphere (see, e.g., Ref. [10]) having
the radius RC = 1.3 × 401/3 [6,15], η (l) = exp [−2δa (l)] is
the scattering matrix modulus, δr (l) is the nuclear refraction
phase (real part of the nuclear phase), and δa (l) is the nuclear
absorption phase (imaginary part of the nuclear phase). The
calculations are made using the expansion of the scattering
amplitude into a series of Legendre polynomials. The elastic
scattering differential cross section equals the squared modulus
of this amplitude. The quality of the fit of the calculated
differential cross section to the experimentally measured one
is assessed by means of the standard χ2 magnitude per
datum. The experimental errors are assumed to be equally
weighted (10% error bars) (e.g., Refs. [15,22]). The necessary
monotonicity and smoothness of the phases δa,r as functions
of l are achieved with help of the restrictions imposed on
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the behavior of the first few derivatives of these phases [21].
Detailed description of the numerical procedure that helps to
extract the functions δa,r (l) from the experimental data is given
in Ref. [27].

Our evolutionary approach gives good quantitative descrip-
tion of the data with the nuclear rainbow and prerainbow
scattering pictures and satisfactorily replicates the data with
ALAS. To improve the quality of fit in the latter case, we
have to soften the restrictions imposed on the behavior of
derivatives of the phases δa,r (l), keeping their monotonicity
and smoothness. If we remove all the mentioned restrictions,
then we obtain better quality of fit but permit the nonmonotonic
structures in η(l) and δr (l) to appear. However, the nonmono-
tonic structures that arise in η (l) and δr (l) in this case appear
quite different from run to run of the fitting procedure and from
the structures obtained within the optical model calculations
[8,16,19] and the other S-matrix approaches (e.g., Ref. [15]).
Obviously, if and only if the same nonmonotonic structures
repeatedly appear in the scattering matrix alongside with the
substantial improvement in the quality of fit, then one should
admit that the existence of these structures is physically moti-
vated and the search for their physical interpretation is justified.

Note that we do not explicitly consider the contribution
of the processes that cannot be distinguished from the elastic
scattering (e.g., the elastic α-particle transfer that can influence
the formation of ALAS picture [28,29]) but further suppose
that even if such processes do take place their contribution
is reflected in the behavior of the scattering matrix extracted
from the data.

More detailed analysis of refractive and diffractive features
of the structures inherent in the elastic scattering cross
sections under discussion at midangles and large angles can
be performed with help of the nearside-farside decomposition
[30]. To identify the Airy structures we use both the farside
component and the farside component calculated without
absorption in the scattering matrix [η (l) = 1 for all l] (see,
e.g., Refs. [1,2,18,31]).

III. RESULTS OF CALCULATIONS AND THEIR
DISCUSSION

The scattering matrices for the 4He-40Ca elastic scattering at
E = 29–82 MeV found with help of our approach are shown in
Figs. 1(a) and 1(b). Figure 1(c) presents the quantum deflection
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FIG. 1. (a) Scattering matrix moduli η (l), (b) nuclear phases δr (l), and (c) deflection functions � (l) for the 4He-40Ca elastic scattering at
E = 29.05–82.0 MeV.
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FIG. 2. (a)–(h) Elastic scattering differential cross sections (ratio to Rutherford) for the system 4He+40Ca at E = 29.05–82.0 MeV (solid
curves), their farside (dashed curves) and nearside (dotted curves) components, and farside cross-section components calculated without
absorption in the scattering matrix (dash-dotted curves). A1 and A2 denote the Airy minima of first and second orders. The data are from
Refs. [24–26].

functions � (l) = 2d [δr (l) + σC (l)] /dl. In each case under
investigation, from the nuclear rainbow at sufficiently high
energies to the ALAS at the lower energies, the data in the
whole angular range considered are correctly described by the
differential cross section (Fig. 2) calculated with the obtained
smooth monotonic representations for the scattering matrix
modulus and nuclear phase (Fig. 1). The evolution with energy
of the values of the nuclear transparency η (0), the intensity
of nuclear refraction 2δr (0), the strong absorption angular
momentum ls.a. defined by the correlation 1 − η2 (ls.a.) = 0.5,
the nuclear rainbow angle θR [which corresponds to the
minimum of the deflection function � (l)], the total reaction
cross section σ t

R , and χ2/N (N is the number of experimental
points) for the calculated cross sections is presented in Table I.

The transition from the picture of nuclear rainbow (E =
82.0 MeV) to the picture of ALAS (E = 49.5 MeV) is
accompanied by the decrease of the value of the nuclear
transparency η (0) by more than the order of magnitude.
Then, with further decrease of energy, η (0) increases almost
to 0.02 at E = 29.05 MeV. This contradicts the observation
of Refs. [8,16,20] that in the case of ALAS the nuclear
transparency turns out to be of the order of 0.1. The value
of the nuclear refraction 2δr (0) shows gradual increase with
the decrease of energy. The quantum deflection function � (l)
in the region E = 29–82 MeV is typical of the case of nuclear
rainbow. With the decrease of energy, its form in the vicinity
of a minimum becomes more narrow but remains mostly
symmetric, contrary to the pronounced asymmetry of the form
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TABLE I. Evolution with energy of the values of the nuclear
transparency η (0), the intensity of nuclear refraction 2δr (0), the
strong absorption angular momentum ls.a., the nuclear rainbow angle
θR , the total reaction cross section σ t

R , and the χ 2/N magnitude for
the calculated cross sections.

E (MeV) η (0) 2δr (0) (rad) ls.a. θR (deg) σ t
R (mb) χ 2/N

82.00 2.60 × 10−2 24.88 24.6 93 1556 1.1
61.00 2.19 × 10−2 27.93 19.9 137 1484 2.0
49.50 7.23 × 10−4 31.49 18.4 173 1478 2.6
42.60 8.34 × 10−4 33.76 16.5 201 1359 2.8
39.60 2.44 × 10−3 34.32 16.1 215 1425 2.9
36.98 5.80 × 10−3 35.40 15.6 239 1448 2.9
33.09 6.35 × 10−3 37.40 14.6 277 1441 3.4
29.05 1.76 × 10−2 38.47 13.8 308 1391 2.9

of deflection function typical of the optical model calculations
[17,18].

We have successfully identified the Airy minima of the
first A1 and the second A2 orders in the region E =
33.1–82.0 MeV (Fig. 2). At E = 29.05 MeV the form of
the angular distribution of the cross section becomes so
complicated that the identification of Airy minima becomes
difficult. The angular positions of the identified Airy minima
A1 and A2 obey the law of the reciprocal c.m. energy
dependence (Fig. 3). The discussion of this dependence can be
found in Refs. [31–33]. The nuclear rainbow angle θR obeys
the same energy dependence (Fig. 3). The use of the energy
systematics shown in Fig. 3 gives a possibility of resolving the
Airy ambiguity (rainbow-shift ambiguity [34]) in the analyzed
cases of the 4He-40Ca elastic scattering.

The characteristic structures in the measured cross sections
of the 4He-40Ca elastic scattering, that we have identified as the
Airy minima A1 and A2, are also reproduced by the widely
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FIG. 3. Evolution with energy of the angular position of the Airy
minima of first A1 and second A2 orders in the measured differential
cross sections for the system 4He+40Ca (open circles) and in the
farside cross-section components calculated without absorption in
the scattering matrix (squares), and the same evolution of the nuclear
rainbow angle θR (solid circles). Straight lines show results of fitting
to the data indicated as circles.

used optical model potential from Ref. [6]. However, they
are differently interpreted because of the appearance of the
interference Airy-like structures (see, e.g., Refs. [1,35,36]).

The presence of Airy minima of definite order in the studied
differential cross sections of the 4He-40Ca elastic scattering
and the form of the deflection functions in the considered
energy range stand for the “rainbow” interpretation of the
data, in particular for the appearance of the ALAS picture
as a consequence of the “sliding rainbow” [37] characterized
by the shift of the nuclear rainbow angle beyond −180◦ at
E � 47 MeV (Fig. 3). Unfortunately, we have not achieved
good replication of the existing data at E < 29 MeV [26,38],
keeping the form of the nuclear deflection function typical of
the nuclear rainbow case and the restrictions imposed on the
behavior of the phases δa,r (l) (see Sec. II). Thus, with further
decrease of energy, our systematics and its interpretation could
appear no longer valid, but we leave this problem for separate
detailed investigation.

At E = 29.05–49.50 MeV, for each of the analyzed cross
sections at very large scattering angles, we observe the
moderate growth of the dominating farside cross-section
component (the expression of refractive effects) and the sharp
growth of the nearside component, so that their interference
produces the ALAS pattern (Fig. 2).

IV. ANALYSIS OF ALAS FORMATION

Let us specify the particular partial waves that contribute to
the formation of ALAS. To do that, we manually replace the
original experimental data, in which the enhancement of the
oscillating differential cross section is observed at large angles,
by the artificial data that do not exhibit such enhancement.
Then we proceed with our evolutionary calculations using
the artificial data but starting from the scattering matrix
extracted from the original data. When the minimum of the
χ2 magnitude is achieved we compare the scattering matrix
evolved in such a manner with the one extracted from the
original data. In all the ALAS cases studied, we have found that
the major differences between the scattering matrix that does
produce ALAS in the calculated elastic scattering differential
cross section and the one that does not are concentrated in
the l region around and well below the strong absorption
angular momentum ls.a.. Thus, we further gradually reduce
the region of angular momenta 	l where our evolutionary
approach changes the scattering matrix and then repeat
calculations.

Figure 4 and Table II present some of our results obtained
in such a way. Figures 4(a)–4(c) show the differencies 	η (l)
[	δr (l)] between the scattering matrix modulus (the nuclear
phase) extracted from the original data (same as in Fig. 1)
and the results of its evolution caused by the artificial data.
The dashed, dotted, and dash-dotted curves are obtained for
	l = 	l1, 	l2, and 	l3, respectively (Table II). We emphasize
that, in spite of the nonsmooth behavior of 	η (l) and 	δr (l),
the evolved S-matrix moduli and nuclear phases are smooth
monotonic functions of l, as specified in Sec. II. Figures 4(d)–
4(f) show the differential cross sections calculated with the
evolved scattering matrices. The solid curves are the same
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FIG. 4. Analysis of ALAS formation in the system 4He+40Ca at E = 42.6, 36.98, and 29.05 MeV. (a)–(c) Differencies 	η (l) [	δr (l)]
between the scattering matrix modulus (the nuclear phase) extracted from the original data (same as in Fig. 1) and the results of its evolution
caused by the artificial data that do not contain ALAS. The regions of angular momenta 	l where our evolutionary approach has changed
the scattering matrix are 	l1 for dashed curves, 	l2 for dotted curves, and 	l3 for dash-dotted curves (Table II). (d)–(f) Elastic scattering
differential cross sections (ratio to Rutherford). Solid curves are the same as in Fig. 2. Dashed, dotted, and dash-dotted curves are calculated
with the scattering matrices depicted (in the form of differences) in Figs. 4(a)–4(c) (types of curves correspond).

as in Fig. 2. The dashed, dotted, and dash-dotted curves are
calculated with the scattering matrices depicted (in the form
of differences) in Figs. 4(a)–4(c) (types of curves correspond).
This analysis reveals the special role of the surface partial
waves in the formation of ALAS, which was pointed out
earlier, e.g., in Refs. [19,39–42]. Note that this conclusion
is a common feature of various theoretical interpretations of

ALAS. In case of the use of the barrier-wave–internal-wave de-
composition of the elastic scattering amplitude [43], performed
within the optical model calculations, the ALAS is dominated
by the internal-wave component (see, e.g., Refs. [8,20,44,45]).
But the decomposition of the latter into partial amplitudes
shows that ALAS appears exactly due to the contribution of
several surface partial waves (e.g., Refs. [41,46]).

024619-5



KORDA, MOLEV, KLEPIKOV, AND KORDA PHYSICAL REVIEW C 91, 024619 (2015)

TABLE II. Regions of angular momenta 	l where our evolution-
ary approach has changed the scattering matrix.

E (MeV) 	l1 	l2 	l3

42.60 12–18 13–16 14
36.98 10–17 12–15 12–13
29.05 9–16 11–14 11–12

V. CONCLUSION

Using the evolutionary model-independent S-matrix ap-
proach, we have shown that a simultaneous correct description
of the pictures of nuclear rainbow, prerainbow, and ALAS in
the 4He-40Ca elastic scattering can be achieved with help of the
S-matrix moduli and the real nuclear phases exhibiting smooth
monotonic dependencies on angular momentum. The quantum
deflection functions have a form characteristic of the nuclear
rainbow case and are mostly symmetric in the vicinity of a

minimum. The scattering matrix and the quantum deflection
function for the system 4He+40Ca at E = 29.05–82.0 MeV
show smooth physically motivated variations with the collision
energy.

The Airy minima of first and second orders have been
successfully identified in the differential cross sections of the
4He-40Ca elastic scattering. Their angular positions obey the
law of the reciprocal c.m. energy dependence, which is in
conformity with the rainbow interpretation of the data. The
use of this energy systematics has allowed us to get rid of the
rainbow-shift ambiguity and, thus, to determine the nuclear
part of the scattering matrix more reliably.

We have revealed the special role of the surface partial
waves in the formation of ALAS picture.

The joint study of the features of the rainbow and prerain-
bow scattering, and the ALAS effect in the system 4He+40Ca,
with help of the unified model-independent S-matrix approach,
has enabled us to obtain more detailed reliable information
about the interaction of colliding nuclei.
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