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Core excitation in three-body nuclear reactions: Improved nucleon-core potential
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Three-body nuclear reactions in two-nucleon plus core systems are described in the framework of exact
scattering equations including the core excitation. A nucleon-core optical potential is constructed that can be
easily adjusted to the reference potential and thereby to the experimental two-body data, if available. This
constitutes an important improvement over the simple deformation of the potential used previously that violated
the original fit to the data. Predictions for elastic, inelastic, and transfer reactions involving '°Be and 2*Mg nuclear
cores are obtained. The new optical potential leads to a moderate increase of cross sections.
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I. INTRODUCTION

Deuteron (d) scattering from a nucleus A, consisting of A
nucleons, microscopically is an A 4+ 2 body problem. While
various A > 3 cases have been considered using approximate
methods [1], a rigorous solution of exact scattering equations
[2-5] has been achieved so far for three- and four-body
systems only [6—12]. In addition, there exist also numerous
approximate treatments for three-body reactions [13—15]. To
apply the available three-body techniques to deuteron-nucleus
scattering, this process is often approximated by a three-body
problem where the nuclear core A is treated as a structureless
particle whose interaction with the proton (p) and the neutron
(n) is given by complex or real potentials. In some cases this
may be a reasonable approach, but in others it is necessary
to go beyond the picture of an inert core A and take into
account its internal degrees of freedom. It has been shown in
several works [16—19] that the excitation of the core may be
an important reaction mechanism and needs to be taken into
account. There are several formulations of rigorous three-body
scattering equations including core excitation (CeX) [19,20];
however, numerical results were obtained only in Ref. [19].
As dynamic input these calculations use nucleon-nucleon
(N N) and nucleon-core (N A) interactions. There are a number
of standard parametrizations for N A optical potentials (OP)
without CeX. The CeX is usually included by deforming these
standard potentials to allow the coupling between ground
(A) and excited (A*) states of the core. However, this way
the additional NA* component in the two-body scattering
equation together with the potential deformation distort the
elastic NA amplitude that deviates from the original elastic
amplitude calculated using standard potential without CeX.
The latter is usually fitted to the A(N, N)A elastic experimental
data; thus, the description of the data gets destroyed when
including the CeX via the simple deformation of the potential.
Furthermore, if the N A-N A* coupling potential was fitted to
the inelastic A(N,N’)A* data using the distorted-wave Born
approximation (DWBA), which is the usual case, the fit to
A(N,N’)A* datais lost as well. Thus, an additional adjustment
of the OP parameters needs to be performed to restore the
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description of N A elastic and inelastic scattering data. This
implies a new fit procedure for each nucleus at each energy,
which may be quite tedious. On the other hand, one may
take the advantage of already existing fits to the experimental
data obtained using DWBA and standard OP. For this a NA
potential with CeX is needed that, when inserted into the exact
two-body multichannel Lippmann-Schwinger equation, yields
the standard OP results for the A(N, N)A elastic scattering and
DWBA results for the A(N,N’)A* reaction. In the present
work I propose a method for achieving this goal; i.e., I
construct a NA potential with CeX that at a given energy
exactly reproduces the standard OP and DWBA amplitudes for
A(N,N)A and A(N,N’)A* scattering processes, respectively.
Thus, the desired consistency with the N A experimental data
is ensured. In case there are no data available, this approach
still allows for a more precise evaluation of the CeX effect, not
affected by the OP mismatch. In three-body systems I aim to
study the changes in observables caused by this improvement
of the OP. I therefore reanalyze the reactions calculated in
Ref. [19] using the simple deformation of the OP as well as
present several new cases.

In Sec. Il I derive the N A potential with CeX, and in Sec. III
I recall the three-body scattering theory. Example results for
d + '"Be, p + ''Be, and d + >*Mg reactions are presented in
Sec. IV, while the summary is given in Sec. V.

II. SUBTRACTION METHOD FOR
NUCLEON-CORE POTENTIAL

I employ the extended Hilbert space H, @ H, where the
two sectors correspond to the core being in its ground (g)
or excited (x) state [19]. I aim to construct the N A potential
coupling the two sectors and denote its components by V,,,
Vix,and Vi = VgTX; they are represented graphically in Fig. 1.
The coupled-channel Lippmann-Schwinger equation

Too Ty Voo Vox Veg Vex Ty Ty
(;;g g>:<gg g)+<gg g>G0<gg g> 0

Txg Txx ng Vxx ng Vxx Txg Txx
yields the respective components 7;; of the NA transition
matrix at the available energy E with Gy = (E +i0 — Hy)™!
being the free resolvent. I emphasize that the extended free

Hamiltonian H, besides the kinetic-energy operator contains
also the internal core Hamiltonian whose contribution vanishes
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FIG. 1. Nucleon-core potential in the three-body Hilbert space.
The particles are represented by vertical lines, the core in its excited
state is distinguished by thick lines, and the potential is represented by
horizontal dashed lines. The diagrams (a), (b), (c), and (d) correspond
t0 Vg, Vig, Vex, and V..

for H, but is equal to the core excitation energy (m 4« — my)
for H,.

At energy E = E the component T,, describing the N A
elastic scattering is demanded to reproduce the transition
matrix

tg = vy +v,Got, 2

obtained with the N A potential v, not including CeX, usually
taken from one of the standard parametrizations. There is no
such demand for 7, due to the lack of the experimental data for
the N A* elastic scattering. The respective transition matrix for
the core in its excited state but without coupling to the ground
state

ty = vy + v, Goty 3)

is obtained with the N A* potential v, that is not constrained
by the data but is usually taken from the same standard OP
parametrization as v,.

Furthermore, at E = E; I also require 7, to reproduce the
DWBA amplitude:

ToVPA = (1+ 1,Go)V * (1 + Goty). )

The potential VoVEA coupling the two Hilbert sectors H,, and
‘H. usually is obtained by deforming the central part of v,.
In the rotational model [21] one assumes that the core has
a permanent quadrupole deformation and replaces in v, the
nuclear radius Ry by R = Ry[1 + ,Bngo(é )], where B, is the
quadrupole deformation parameter and & describes the internal
core degrees of freedom in the body-fixed frame. If the central
part of v, is a function of (r — Rp), e.g., the Woods-Saxon
function, VX];WBA is given by Prvg[r — 8> Yoo (€ )P, where P;
are the respective projectors and §; = S, Ry is the deformation
length.
To fulfill the above demands, T, in Eq. (1) is resolved as

Txg =(1- VxxGO)_l ng(l + GOng) ()
and used in this for the Ty, component, leading to
ng = Vgg(l + GOng) + Vg)cGO(1 - VxxG0)71 ng
x (1 4+ GoTyg). 6)
Furthermore, I make use of the identity

(1 —-v.Gy) ' =1+1Gy (7
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FIG. 2. Diagrammatic representation of the contributions at the
two lowest orders subtracted from the nucleon-core potential.

obtained from Eq. (3). By comparing Eqgs. (6) and (5) with
Eqgs. (2) and (4) one observes that the conditions 7,, = t, and
Ty = TXDgWBA are satisfied at £ = E; by choosing

Vgg = Ug — Vgxgé(l + txgg)) vxga (Sa)
Vi = VOVPA, (8b)
Vix = Uy, (8c)

with g = (Es +i0 — Hy)~!. Thus, the essential idea of the
present method is subtracting from the elastic amplitude the
contributions that are explicitly generated in the scattering
equations by the coupling to the core excited state. For this
reason it is called the subtraction method. The subtracted
contributions at the two lowest orders are diagrammatically
represented in Fig. 2. These contributions are nonlocal in
the coordinate space but this has no disadvantage when the
calculations are performed in the momentum space.

Note that a similar subtraction method has been used
in the past to readjust the purely nucleonic part of the
two-nucleon potential with explicit A-isobar excitation [22],
thereby improving the fit of the elastic two-nucleon scattering
data. The present method is more general in the sense that it
also fixes the inelastic amplitude.

III. THREE-PARTICLE SCATTERING EQUATIONS

Exact three-body scattering equations of Faddeev or Alt-
Grassberger-Sandhas (AGS) type including the CeX have
been discussed in Refs. [19,20]; their practical solution was
implemented in Ref. [19]. In the extended Hilbert space they
acquire the standard form of the AGS integral equations for
three-body transition operators

3
Upa =83 G + Y 84y Ty GoUya 9)
y=1

that couple the two sectors H, and H,, much like the two-body
transition operators 7, in Eq. (1). The subscripts o, B,y
label the spectator particles (interacting pairs in the odd-man-
out notation) for operator components, while Sﬁa =1—8gq-
Following the developments of Ref. [19], I solve Eq. (9)
numerically in the momentum-space partial-wave framework,
including the proton-core Coulomb force via the screening and
renormalization method [23-25]. The scattering amplitudes
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are given by the on-shell matrix elements of the transition
operators Upg, calculated between initial and final channel
states.

IV. RESULTS

In this section I present results for two-cluster elastic,
inelastic, and transfer reactions initiated by p + '°Be, d +
0Be, p + ""Be, and d + **Mg collisions. For both '’Be and
2*Mg cores the ground (first excited) states have spin and
parity 0T (2%), while the respective excitation energies are
3.368 and 1.369 MeV. The main goal is to evaluate the
changes in the observables due to the use of the improved
nucleon-core potential including the CeX with subtraction. I
present three types of calculations. All of them use a realistic
charge-dependent (CD) Bonn potential [26] for the np pair, but
differ in N A interactions: (i) a single-particle (SP) model for
the core, i.e., neglecting CeX in N A potentials, labeled as SP
in the following; (ii) including CeX via simple deformation
of the SP potential without subtraction and readjustment,
labeled CX(no subtr) in the following; and (iii) including
CeX using improved N A potentials with subtraction and
proper readjustment as described in Sec. II, labeled CX in
the following. Thus, the difference between CX and SP will
yield the the CeX effect, while the difference between CX
and CX(no subtr) will evaluate the importance of the potential
improvement. The calculations SP and CX(no subtr), both
based on the Chapel Hill 89 (CH89) parametrization [27],
are the same as in Ref. [19], but CX(no subtr) was labeled
simply CX in Ref. [19]. I therefore only have to describe the
calculations CX with subtraction. For the n A pair in the partial
waves with (An) bound states I take over the real binding
potentials from Ref. [19] since they are already adjusted
to experimental binding energies and need no subtraction.
Depending on the partial wave, these potentials may support
deeply bound states |by) that are Pauli forbidden and therefore
have to be projected out; this is achieved by adding a separable
term |bo)I"(|bo| with ' > 1 GeV to the local nA potential
and thereby moving the Pauli forbidden state |by) to a large
positive energy [28]. For n A in other partial waves and for p A
in all partial waves I take the potentials including CeX with
subtraction; they are derived from the CH89 parametrization
unless explicitly stated otherwise. The subtraction energy E;
coincides with the energy at which the OP is taken, i.e., half of
the deuteron energy E; for nA but proton energy E, for pA.
However, if the n A potential is complex in all partial waves as
in the case of the present d + 2*Mg calculations, the p + (An)
channel is absent and therefore the pA potential is taken at
E;/2 as well. These choices are the same as in Ref. [19].
The employed quadrupole deformation parameters for N-'°Be
interactions are 8, = 0.67 and §, = 1.664 fm as in Ref. [19],
while for N-24Mg Tuse B, = 0.5 and 8, = 1.69 fm. In a few
selected cases I present CX results derived from Watson et al.
[29] and Koning and Delaroche [30] parametrizations; those
calculations use the 8, values listed above and are labeled as
CX(W) and CX(KD), respectively.

First in Fig. 3 I demonstrate the importance of the proper
potential readjustment by comparing the CX and CX(no subtr)
results in the two-body system. As an example I show the

PHYSICAL REVIEW C 91, 024607 (2015)

o
RS
8: 10 F o0
=) — CX/SP
é‘ --= CX (no subtr)
o
©
°
1R/ 'Be(p.p)'°Be(0") ‘
‘ E, = 39 MeV
= 10 1
(2]
3
3 — CX/DWBA
a --= CX (no subtr)
o
3 1 Q.
1OBe(p,p1)1oBe(2+) ‘ . .\'\
0 30 60 90
Ocpm. (deg)

FIG. 3. (Color online) Differential cross section for °Be
(p,p)'""Be and '°Be(p, p')'°Be* reactions at E, = 39 MeV. Results
including the CeX with and without subtraction, i.e., CX and CX(no
subtr), are given by solid and dash-dotted curves, respectively. CX
predictions coincide with SP results neglecting the CeX for the elastic
scattering and with DWBA results for the inelastic reaction. The
elastic experimental data are from Ref. [31].

differential cross section do/dS2 for elastic and inelastic
p + '""Be scattering at E, =39 MeV proton energy as a
function of the center-of-mass (c.m.) scattering angle O, .
Here and in the following the elastic differential cross section
is given as aratio to the Rutherford cross section dog /d 2. The
differences between the CX and CX(no subtr) calculations
are of moderate size for elastic scattering but become more
significant for the '°Be(p, p’)!°Be* reaction, reaching nearly
40% at forward angles. I remind the reader that by construction
the CX and SP results coincide for the elastic scattering while
the CX and DWBA results coincide for the inelastic scattering.

Observables for p + ©Be and p + ''Be elastic scat-
tering are quite strongly correlated. Consistent with this
fact, the SP and CX models, yielding identical results for
19Be(p, p)'°Be, agree quite well also for !'Be(p,p)''Be at
E, =353 MeV as shown in Fig. 4, indicating that the
CeX effect on the p + ''Be elastic cross section is very
small. However, the p-'°Be potential, that does not properly
describe elastic two-body data as in the case of CX(no subtr),
overestimates the CeX effect.

Next I show in Fig. 5 the differential cross sections
for the 10Be(d,p)“Be transfer reactions at E; = 21.4-MeV
deuteron energy. Quite surprisingly, the improvement of the
N-'"Be potentials has a very small effect on the transfer
to the ''Be ground state %Jr. For the transfer to the !'Be
excited state %_ the effect is of moderate size but not
beneficial. Thus, the '"Be(d, p)''Be* reaction still remains

an unresolved problem and calls for a more sophisticated
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FIG. 4. (Color online) Differential cross section for p + ''Be
elastic scattering at E, = 35.3 MeV. Results of SP, CX, and CX(no
subtr) potential models are given by dotted, solid, and dash-dotted
curves, respectively. The experimental data are from Ref. [31].

model. In Fig. 6 I present results for ''Be(p,d)'Be transfer
reactions at £, = 35.3 MeV; it corresponds to '°Be(d, p)!'Be
at E; = 40.3 MeV. At this higher energy the importance of
the proper potential adjustment is more visible, especially
for the reaction leading to the 2* excited state of the '°Be
core. The latter finding is not unexpected given the results
for p + '9Be inelastic scattering in Fig. 3. For both ground
and excited 'Be states the description of the experimental
data is improved, although some discrepancies still remain.
In fact, these predictions are quite sensitive to the choice of
the optical potential from which the CX model is derived. I
illustrate this finding in Fig. 7 by comparing the CX results for
the ''Be( p,d)lOBe differential cross sections based on CH89,
Watson, and Koning-Delaroche OP parametrizations. I admit
that no one of them reproduces the experimental data for both
reactions simultaneously: transfer to the '°Be ground state 0*
is best described by CX(KD), while transfer to the excited state
27 is best described by CX(W).

In Ref. [19] it was demonstrated that the CeX effect in
transfer reactions is, in general, much more complicated than

198e(d,p) 'Be(1/2%) o]

RN

~ --- CX(nosubtr) "~

0 10 20 30 0 10 20 30
Oc . (deg) Oc . (deg)

FIG. 5. (Color online) Differential cross section for transfer re-
actions '"Be(d,p)''Be at E; = 21.4 MeV leading to the ground
(%Jr) and excited (1) states of ''Be. Curves are as in Fig. 4 and
experimental data are from Ref. [32].
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FIG. 6. (Color online) Differential cross section for !'Be
(p,d)'°Be transfer reactions at £, = 35.3 MeV leading to the ground
(0%) and excited (2%) states of '°Be. Curves are as in Fig. 4 and
experimental data are from Ref. [33].
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FIG. 7. (Color online) Differential cross section for ''Be(p,d)
10Be transfer reactions at E, = 35.3 MeV leading to the ground (0")
and excited (27) states of '’Be. CX predictions based on CH89 (solid
curves), Koning-Delaroche (double-dot-dashed curves), and Watson
(dashed curves) potentials are compared with the experimental data
from Ref. [33].
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FIG. 8. (Color online) Differential cross-section ratios R, for
9Be(d, p)!' Be transfer reactions leading to ground (thick curves) and
excited (thin curves) states of ''Be. CX and CX(no subtr) predictions
are given by solid and dash-dotted curves, respectively.

just a simple rescaling of the SP differential cross section by
the respective spectroscopic factor (SF). This is in contrast
with naive assumptions often used for the SF extraction
by comparing DWBA-type SP calculations and experimental
data. In Fig. 8 I confirm these findings of Ref. [19] also when
using an improved potential with CeX. For x being either CX
or CX(no subtr) I show the ratios R, = (do/dQ), /(do/d2)sp
in Be(d, p)!'Be reactions at ®.,, = 0° as functions of
the deuteron energy E,. The deviation of R, from the SF,
which equals to 0.855 (0.786) for the ''Be ground (excited)
state, becomes most evident for the transfer to the !'Be
ground state at higher E;. Both CX and CX(no subtr) models
show qualitatively the same behavior. The difference between
them increases with increasing E; and thereby indicates the
importance of the proper fit to the two-body data, but does not
alter the general conclusion.

10 f :

g
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2
a1 H
3 \
[o) , il
2 --- CX(no subt?)‘
**Mg(d,d)**Mg(0") **Mg(d.d)*Mg(2")
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B¢ m. (deg) Oc m. (deg)

FIG. 9. (Color online) Differential cross section for d + **Mg
elastic (left) and inelastic (right) scattering at £, = 70 MeV. Results
of SP, CX, and CX(no subtr) models based on the CH89 potential
are given by dotted, solid, and dash-dotted curves, respectively, while
CX results based on the Koning-Delaroche potential are given by
double-dot-dashed curves. The experimental data are from Ref. [34].
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Finally I consider the d + >*Mg scattering. The quadrupole
deformation g, for >*Mg determined in different experiments
varies between 0.4 and 0.6 (see Ref. [34] for overview).
In Ref. [19] the CX(no subtr) calculations were performed
with B, = 0.4 and 0.6, with the lower value favored by
the 2*Mg(d,d)**Mg data and the upper value favored by
the 2*Mg(d,d')**Mg* data, but no one of them was able to
reproduce the data for both reactions simultaneously. Here
I present in Fig. 9 the results for d + ?*Mg elastic and
inelastic differential cross sections at E; = 70 MeV obtained
with B, = 0.5. The CX model yields the best description of
the experimental data and fits reasonably well both elastic
and inelastic cross sections, while the CX(no subtr) model
overestimates the CeX effect for the **Mg(d,d)**Mg but
underestimates it for the >*Mg(d,d’)**Mg* reaction. Changing
the starting potential from CH89 to Koning-Delaroche has
only a small effect as demonstrated by the CX(KD) results.

V. SUMMARY

I considered elastic, inelastic, and transfer reactions in
three-body nuclear systems consisting of a neutron, a proton,
and a core. I explicitly included the core excitation in the exact
scattering equations and solved them in the momentum-space
framework. The calculational technique was taken over from
Ref. [19] but the dynamic input was significantly improved.

The technical objective of this work was to develop a
method for constructing the nucleon-core potential that cou-
ples ground and excited states of the core and in the coupled-
channel two-body Lippmann-Schwinger equation reproduces
the predictions of the given standard optical potential for the
elastic scattering as well as the DWBA predictions for the
inelastic reaction. The essence of the method is subtracting
from the original single-channel potential the explicit core
excitation contributions, thereby avoiding the double counting.
In the usual case where a coupled-channel potential properly
fitted to the experimental data is not available but the
nucleus deformation parameters are determined in the DWBA,
the proposed method yields the coupled-channel potential
including the core excitation and consistent with the data
for both elastic and inelastic scattering. This is an important
improvement over the simple deformation of the potential
used previously [19] that destroys the fit to the experimental
data. For the p + '"Be example it is demonstrated that this
deviation may be significant, especially for the inelastic (p, p’)
reaction.

The physics objective of the present work was the evaluation
of changes in three-body observables due to the improvement
of employed optical potentials. In three-body reactions involv-
ing 'Be and ?*Mg cores the most important changes were
found in elastic (p, p) and (d,d), inelastic (d,d"), and transfer
(p,d) reactions leading to the core in its excited state. Transfer
reactions (d, p) were affected less, at least at lower energies.
In p + "'Be elastic scattering the core excitation effect turns
out to be very small. Compared to results of Ref. [19],
the improved nucleon-core potential leads to larger cross
sections in most cases. This increases slightly the discrepancy
between predictions and data for the '°Be(d, p)!'Be* transfer
reaction but improves the agreement for the 'Be(p,d)'°Be*
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reaction. In the latter case I also found a significant sensitivity
to the parametrization of the standard optical potential that
serves as a starting point in the calculations. Concerning the
d + Mg scattering, the improved calculations are able to
describe elastic and inelastic cross sections simultaneously

PHYSICAL REVIEW C 91, 024607 (2015)

with the same value of the deformation parameter 8, = 0.5,
in contrast to Ref. [19]. Finally, I qualitatively confirmed the
findings of Ref. [19] that the effect of the core excitation in
transfer reactions cannot be simply related to the respective
spectroscopic factor.
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