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New approach to determine proton-nucleus interactions from experimental bremsstrahlung data
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A new approach is presented to determine the proton-nucleus interactions from the analysis of the
accompanying photon bremsstrahlung. We study the scattering of p +208 Pb at the proton incident energies of
140 and 145 MeV, and the scattering of p +12 C, p +58 Ni, p +107Ag, and p +197Au at the proton incident energy
of 190 MeV. The model determines contributions of the coherent emission (formed by an interaction between
the scattering proton and nucleus as a whole without the internal many-nucleon structure), incoherent emission
(formed by interactions between the scattering proton and nucleus with the internal many-nucleon structure),
and transition between them in dependence on the photon energy. The radius parameter of the proton-nucleus
potential for these reactions is extracted from the experimental bremsstrahlung data analysis. We explain the
hump-shaped plateau in the intermediate- and high-energy regions of the spectra by the essential presence of the
incoherent emission, while at low energies the coherent emission predominates which produces the logarithmic
shape spectrum. We provide our predictions (in absolute scale) for the angular distribution of the bremsstrahlung
photons in order to test our model, results, and analysis in further experiments.
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I. INTRODUCTION

The optical model has a significant impact on many
branches of nuclear reaction physics. In frameworks of such
a model, our understanding about interactions between two
colliding nuclear fragments is based on the agreement between
experimental and calculated cross sections. In particular, all
possible physical aspects are incorporated into the model in
order to fit the experimental data, including the different forms
of interactions between nucleons, many-nucleons aspects,
dynamic approaches, nonlocal quantum properties, etc. The
applied numerical techniques, chosen approximations, and
imposed boundary conditions are important for the resulting
calculations of the cross sections. However, different input pa-
rameters, which correspond to quite different physical pictures,
may lead to similar final results (i.e., cross sections). This in-
dicates uncertainties to determine the parameters of the poten-
tials of the nucleon-nucleus and nucleus-nucleus interactions.

Because of this, it is interesting to find an alternate way to
extract the information about the interacting potentials. Here,
the bremsstrahlung emission of photons accompanying the
scattering of protons off nuclei attracts a lot of attention. The
cross sections of the emitted photons have been measured
for a long time (see Refs. [1–11]), and different theoretical
models and approaches were developed to estimate the emitted
photons (for example, see [12–29]). In particular, the spectra
of the emitted photons are dependent on dynamics of the
scattering of the proton off the nucleus, which is determined
by interactions between the proton and nucleus. However,
until now it has been unclear how information about such
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interactions could be extracted from the bremsstrahlung
spectra analysis.

The problem is that high accuracy in calculations is required
to determine parameters of the interacting proton-nucleus
potentials; however, the convergence of such calculations is
extremely low. Such a problem was noted previously in [30]
where the authors of that paper performed calculations with
realistic interactions between the nucleon and nucleus. The
additional indication is absent of any clear information in the
literature about the determination of parameters of the potential
by this approach, while the history of the bremsstrahlung
research is extremely long. In this paper we develop such an
approach to the problem of the scattering of proton off nucleus.

We start our analysis from the p +208 Pb reaction, which
was intensively studied by different research groups and,
thus, has more evidence [1,6,9]. The authors of [6,9] clearly
observed the hump-shaped plateau in the experimental spec-
trum which is different from the typical exponential shape of
the bremsstrahlung spectra previously measured by Edington
and Rose in [1]. The further careful measurements of the
bremsstrahlung emission in the proton-nucleus scattering were
done by the TAPS collaboration [11] and results confirmed the
clear presence of such a plateau in the spectra. A supposition to
explain such behavior of the spectra is to consider the internal
dynamic motion of nucleons and collisions between them.
Here, Nakayama and Bertsch indicate an important role of the
individual nucleon-nucleon interactions in the proton-nucleus
bremsstrahlung (see Refs. [12–14]). However, measurements
of emission of the bremsstrahlung photons in the α decay show
the absence of such a hump-shaped plateau in the spectra in
the α decay (see [32,33] for details). Co-existence of two
different types of emission of photons requires more careful
consideration of the internuclear processes inside the nucleus
which could form an emission of photons. In order to clarify
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these questions, many-nucleon structure of the nucleus is
included in our model and analysis.

II. MODEL

A. Generalized Pauli equation for many-nucleon system

We shall start from a generalization of the Pauli equation
on the system composed from A + 1 nucleons, describing
scattering of proton off nucleus with A nucleons, where the
Hamiltonian can be constructed as [31]

Ĥ =
A+1∑
i=1

{
1

2 mi

(
pi − zie

c
Ai

)2

− zie�

2mic
σ · rotAi + zie Ai,0

}

+V (r1 . . . rA+1) = Ĥ0 + Ĥγ , (1)

where

Ĥ0 =
A+1∑
i=1

1

2 mi

p2
i + V (r1 . . . rA+1),

Ĥγ =
A+1∑
i=1

{
− zie

mic
pi · Ai + z2

i e
2

2mic2
A2

i

− zie�

2mic
σ · rotAi + zie Ai,0

}
. (2)

Here, mi and zi are the mass and electromagnetic charge of
nucleon with number i, pi = −i� d/dri is the momentum
operator for a nucleon with number i, V (r1 . . . rA+1) is
the general form of the potential of interactions between
nucleons, σ are Pauli matrices, Ai = (Ai ,Ai,0) is the potential
of the electromagnetic field formed by moving a nucleon
with number i. Let us turn to the center-of-mass frame.
Introducing a coordinate of centers of mass for the nucleus
RA = ∑A

j=1 mj rAj/mA, coordinate of centers of mass of the
complete system R = (mARA + mprp)/(mA + mp), relative
coordinates ρAj = rj − RA, and r = rp − RA, we obtain new
independent variables R, r, and ρAj (j = 1 · · · A − 1)

R = 1

mA + mp

⎧⎨
⎩

A∑
j=1

mAj rAj + mp rp

⎫⎬
⎭ ,

r = rp − 1

mA

A∑
j=1

mAj rAj , (3)

ρAj = rAj − 1

mA

A∑
k=1

mAk rAk,

and calculate operators of corresponding momenta

pp = −i�
d

drp
= mp

mA + mp
P + p,

pAj = −i�
d

drAj

= mAj

mA + mp
P − mAj

mA

p + mA − mAj

mA

p̃Aj

− mAj

mA

A−1∑
k=1,k �=j

p̃Ak, (4)

where P = −i� d/dR, p = −i� d/dr, p̃Aj = −i � d/dρAj ,
mp and mA are masses of the scattering proton and nucleus.
We find the kinetic term of the unperturbed Hamiltonian (at an
approximation of

∑A
j=1 mAj = mA):

A+1∑
i=1

1

2 mi

p2
i = 1

2 (mA + mp)
P2 + mA + mp

2 mp mA

p2 + T̂nucl. (5)

The first term on the right-hand side (r.h.s.) represents the
kinetic energy of motion of the full proton-nucleus system, the
second term—kinetic energy of relative motion of the proton
concerning nucleus, and the last term T̂nucl—kinetic energy
of the internal motion of nucleons inside nucleus having the
form:

T̂nucl =
A−1∑
j=1

1

2 mAj

p̃2
Aj − 1

2 mA

{
A−1∑
k=1

p̃Ak

}2

. (6)

Let us study the leading emission operator of the system
composed of the proton and nucleus in the laboratory frame:

Ĥγ = − zp e

mpc
A(rp,t) · p̂p −

A∑
j=1

zj e

mjc
A(rj ,t) · p̂j . (7)

Here, A(rs ,t) describes emission of photon caused by nucleon
with number s (s = p is for proton, s = j for nucleons of
nucleus). Using its presentation in form (5) of [31], for the
emission operator in the center-of-mass frame we obtain

Ĥγ = − e

√
2π�

wph

∑
α=1,2

e(α),∗ e
−ik·[R− mp

M+mp
r]

·
⎧⎨
⎩ 1

M + mp

⎡
⎣e−ik·r zp +

A∑
j=1

zAj e−ik·ρAj

⎤
⎦ P

+
⎡
⎣e−ik·r zp

mp
− 1

M

A∑
j=1

zAj e−ik·ρAj

⎤
⎦ p

+
A−1∑
j=1

zAj

mAj

e−ik·ρAj p̃Aj

− 1

M

⎡
⎣ A∑

j=1

zAj e−ik·ρAj

⎤
⎦ A−1∑

k=1

p̃Ak

⎫⎬
⎭ , (8)

where the star denotes the complex conjugation, e(α) are unit
vectors of the polarization of the photon emitted (e(α),∗ = e(α)),
k is the wave vector of the photon, and wph = k c = |k| c.
Vectors e(α) are perpendicular to k in the Coulomb gauge.
We have two polarizations e(1) and e(2) for the photon with
momentum k (α = 1,2) with properties [31]

[kph × e(1)] = kph e(2),

[kph × e(2)] = − kph e(1), (9)∑
α=1,2

[kph × e(α)] = kph (e(2) − e(1)).
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B. Wave function of the many-nucleon system

The bremsstrahlung of the emitted photons in nuclear
reactions was previously studied, with nuclei described at
the microscopic level [34–41]. However, such a formalism
was mainly oriented on the nuclear systems with smaller
numbers of nucleons. At the same time, we wish to include
heavy nuclei in the analysis, and to use our previous quantum
developments (where our description of existing experimental
data for proton-nucleus scattering was the most accurate in
comparison with other approaches, see [31] for details) so we
have developed a new approach.

Emission of the bremsstrahlung photons is caused by the
relative motion of nucleons of the full nuclear system. How-
ever, we assume that the most intensive emission of photons
is formed by the relative motion of a proton concerning the
nucleus. So, it is sensible to represent the total wave function
via coordinates of relative motion of these complicated objects.
Following such logic, we define the wave function of the full
nuclear system as

�s = �s(R) · �p−nucl,s(r) · ψnucl,s(βA),
(10)

�s(R) = Ns e−i Ks ·R,

where s = i or f (indexes i and f denote the initial state, i.e.,
the state before emission of the photon, and the final state, i.e.,
the state after emission of the photon), Ks is full momentum
of the proton-nucleus system (in the laboratory frame), �s(R)
is the wave function describing the motion of the centers
of mass of the full nuclear system in the laboratory frame,
�p−nucl,s(r) is a function describing the relative motion (with
tunneling for under-barrier energies) of the proton concerning
to nucleus (without a description of internal relative motions
of nucleons inside the nucleus), ψnucl,s(β) is the many-nucleon
function describing internal states of nucleons in the nucleus
(it determines space states on the basis of relative distances
ρ1 . . . ρA of nucleons of the nucleus concerning its center of
mass, and spin-isospin states also), βA is a set of numbers
1 . . . A of nucleons of the nucleus. Ns is a normalized factor
which will be defined later.

The motion of nucleons of the nucleus relative to each other
does not influence the states describing the relative motion
of a proton concerning the nucleus and, therefore, such a
representation of the full wave function can be considered
as an approximation. However, the relative internal motions of
nucleons of the nucleus provide their own contributions to the
full bremsstrahlung spectrum and they can be estimated. We
shall include many-nucleon structure into the wave function
ψnucl,s(βA) of the nucleus while we assume that the wave
function of relative motion ψp−nucl,s(r) is calculated without it
but with maximal orientation of the proton-nucleus potential
well extracted from experimental data of proton-decay and
proton-nucleus scattering (many-nucleon corrections in it can
be taken into account in the next step, perturbatively). Such
a line allows us to keep accurately the wave function of
relative motion which provides the leading contribution to
the bremsstrahlung spectrum, while many-nucleon structure
should be estimated after (such a supposition we made from

good agreement between theory and experiment for α decay
which was obtained without nucleon structure in [42–48]).

The nonrelativistic Hamiltonian of the system composed
from A nucleons with two-nucleon interactions has this form:

Ĥ = T̂ − T̂0 +
A∑

i>j=1

V̂ (ij ) +
Z∑

i>j=1

e2

|ri − rj | , (11)

where T̂ is the operator of kinetic energy of all nucleons in
the laboratory frame, T̂0 is the operator of kinetic energy of
the center of mass of a system composed of all nucleons
in the laboratory frame, the term with the first summation
describes nuclear interactions between two nucleons, the term
with the second summation describees two-nucleon Coulomb
interactions. We shall use the many-nucleon function of the
nuclear system using the basics of the algebraic model of
the resonating group method1 in the form of the Slater
determinant:

ψnucl,s(βA) ≡ ψnucl,s(1 . . . A)

= 1√
A!

∑
p

(−1)εpψλ1 (1)ψλ2 (2) . . . ψλA
(A). (12)

Here a summation is performed over all A! permutations of
coordinates or states of nucleons, εp is the number of permu-
tations in the formalism of the determinant wave functions.
One-nucleon functions ψλs

(s) = ϕns
(rs) | σ (s)τ (s)〉 represent

the multiplication of space and spin-isospin functions, where
ϕns

is a space function of the sth nucleon, ns is the number
of states of the space function of the sth nucleon, | σ (s)τ (s)〉
is the corresponding spin-isospin function. We shall study the
emission of photons as a perturbation of the nuclear system,
defined by the operator of emission Ĥγ . For a description of
the emission of photons we shall calculate the matrix element
written via a combination of one-nucleon wave functions in
the following form:

〈ψnucl,f (1 . . . A) | Ĥγ | ψnucl,i(1 . . . A)〉

= 1

A (A − 1)

A∑
k=1

A∑
m=1,m�=k

{〈ψk(i) ψm(j )| Ĥγ | ψk(i) ψm(j )〉

− 〈ψk(i) ψm(j )| Ĥγ | ψm(i) ψk(j )〉}. (13)

1For example, see [49] for basics of the model of the deformed
oscillating shells, [50–54] for basics of the model for the binary cluster
configurations for light nuclei, [54–57] for its extensions to describe
binary clusters coupled to collective (quadrupole and monopole)
channels, [58–62] for three-cluster configurations considered in the
framework of such a model.
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C. Matrix element of emission

We find the matrix element on the basis of the operator of emission (8) and wave function (10):

〈�f |Ĥγ |�i〉 = −NiNf e

√
2π�

wph

∑
α=1,2

e(α),∗

⎧⎨
⎩〈�f |ei(Ki−Kf −k)·R e

ik·r mp
mA+mp

1

mA + mp

⎡
⎣e−ik·rzp +

A∑
j=1

zAj e−ik·ρAj

⎤
⎦ P |�i〉

+ 〈�f | ei (Ki−Kf −k)·R e
i k·r mp

mA+mp

⎡
⎣e−ik·r zp

mp
−

A∑
j=1

zAj

mA

e−ik·ρAj

⎤
⎦ p | �i〉

+ 〈�f | ei (Ki−Kf −k)·R e
i k·r mp

mA+mp

⎡
⎣A−1∑

j=1

zAj

mAj

e−ik·ρAj p̃Aj

⎤
⎦ | �i〉

− 〈�f | ei (Ki−Kf −k)·R e
i k·r mp

M+mp
1

mA

⎡
⎣ A∑

j=1

zAj e−ik·ρAj

A−1∑
k=1

p̃Ak

⎤
⎦ | �i〉

⎫⎬
⎭ . (14)

The first term describes the emission of the photon caused
by the motion of the full nuclear system in the laboratory
frame and its response on the emission of the photon. We shall
calculate the spectra in the center-of-mass frame, and thus shall
neglect this term. The second term describes the emission of
the photon caused by a proton and each nucleon of the nucleus,
at relative motion of the proton concerning the nucleus. This
term contributes the most strongly to the full bremsstrahlung
spectrum. The third and fourth terms describe the emission of
the photon caused by each nucleon of the nucleus, in relative
motions of nucleons of the nucleus inside its space region (any
nuclear deformations during emission can be connected with
such terms).

We shall start from a consideration of the leading matrix
element on the basis of the second term in Eq. (14) (we shall
denote it by bottom index 1). We integrate over all independent
space variables given in Eq. (3) and obtain

〈�f | Ĥγ |�i〉1 = −NiNf

e

m

√
2π�

wph
(2π )3

∑
α=1,2

e(α),∗

×δ(Kf − Ki − k) · 〈�p−nucl,f (r)|Zeff(k,r)

×e−i k·r p|�p−nucl,i(r)〉, (15)

where we have introduced the effective charge of the proton-
nucleus system as

Zeff(k,r) = e
i k·r mp

mA+mp

{
mA zp

mA + mp
− ei k·r mp ZA(k)

mA + mp

}
(16)

and the charged form-factor of the nucleus as

ZA(k) = 〈ψnucl,f (βA)|
A∑

j=1

zAj e
−ik·ρAj |ψnucl,i(βA)〉. (17)

Here m = mpmA/(mp + mA) is the reduced mass and we
use the integral representation of the δ function. We define
the normalizing factors Ni and Nf as Ni = Nf = (2π )−3/2.
We shall calculate cross sections of the emitted photons not
dependent on momentum Kf (momentum of the full proton-
nucleus system after the emission of a photon in the laboratory

frame). So, we have to integrate the matrix element (15) over
momentum Kf and we obtain

〈�f | Ĥγ | �i〉1 = − e

m

√
2π�

wph

∑
α=1,2

e(α),∗ · 〈 �p−nucl,f (r) |

×Zeff(k,r) e−i k·r p | �p−nucl,i(r) 〉,
Ki = Kf + k. (18)

The effective charge of the system in the first approxima-
tion exp(i k · r) → 1 (called dipole concerning the effective
charge) obtains the form

Z
(dip)
eff (k) = mA zp − mp ZA(k)

mA + mp
. (19)

It is apparent that in such an approximation the effective charge
is independent on the relative distance between the proton and
center of mass of the nucleus.

The simplest matrix element is obtained by neglecting
relative displacements of nucleons of the nucleus inside its
space region (i.e., in the approximation where the nucleus is
considered as point-like and we use e−ik·ρAj → 1 for each
nucleon). The form factor of the nucleus represents the sum-
marized electromagnetic charge of the nucleons of the nucleus,
ZA(k) → ZA, where the dependence on characteristics of the
emitted photon is lost as the functions ψnucl,s are normalized
(see Appendix A for details). At such approximations we
obtain the matrix element [we add the upper index (dip)]:

〈�f |Ĥγ |�i〉(dip)
1 = e

m

√
2π�

wph
p12π δ(wi − wf − w),

Z
(dip,0)
eff = mAzp − mpZA

mA + mp
, (20)

p1 = −Z
(dip,0)
eff

∑
α=1,2

e(α),∗ · 〈ψp−nucl,f (r)|

×e−ik·rp|ψp−nucl,i(r)〉,
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where the wave packets

�p−nucl,s(r,t) =
∫ +∞

0
g(k − ks) ψp−nucl,s(r) e−iw(k)t dk

(21)
are used as the functions ψp−nucl,s(r) (as in the formalism
of [42]). Such a matrix element p1 coincides exactly with
the electrical matrix element pel in Eq. (10) in the dipole
approximation of the effective charge in [31] without the
inclusion of spin states of the scattered proton.

D. Emission formed by displacements of nucleons
inside the nucleus

Now we shall find the correction to the matrix element (20)
taking into account displacements of nucleons of the nucleus
inside its space region (we shall denote such correction by
bottom index 2). Thus, we write the matrix element (18) as

〈�f | Ĥγ | �i〉1 = 〈�f | Ĥγ | �i〉(dip)
1 + 〈�f | Ĥγ | �i〉2 (22)

and find the correction [after use of wave functions �p−nucl, s(r)
as Eq. (21)]:

〈�f |Ĥγ |�i〉2 = e

m

√
2π�

wph
p22πδ(wi − wf − w),

p2 = −
∑

α=1,2

e(α),∗ · 〈ψp−nucl,f (r)|Z(2)
eff (k,r)

×e−i k·rp|ψp−nucl,i(r)〉, (23)

where a new correction for the effective charge is introduced
in the form

Z
(2)
eff (k,r) = (

e
i k·r mp

mA+mp − 1
) mA zp

mA + mp

− mp

mA + mp
{ei k·r mp

mA+mp ei k·r ZA(k) − ZA}. (24)

In the dipole approximation for the effective charge we have
[see Appendix A for calculations of ZA(k)]):

Z
(dip, 2)
eff (k) = − mp

mA + mp
(ZA(k) − ZA). (25)

One can see that such a function gives correction to the
electromagnetic charge of the nucleus. As an exponential
factor in the matrix element (23) has less unity, the correction to
the charge of the nucleus is less than this charge (that explains
it as a correction to the charge). In general, the correction
reduces the total charge of the nucleus (as a result of a not
point-like space consideration of the nucleus). As we consider
nucleons of the nucleus in the bound states, the matrix element
should be calculated without divergencies.

The matrix element constructed on the basis of the dipole
effective charge (25) has a more simple form:

p
(dip)
2 = −Z

(dip, 2)
eff (k)

∑
α=1,2

e(α),∗ · 〈ψp−nucl,f (r) |

×e−i k·r p | ψp−nucl,i(r)〉. (26)

If we wish to include parameters of the emitted photons into
the nuclear form factor, we must calculate the matrix element

outside the dipole approximation. In such a case, one can use
the formula (23) where the more accurate representation of the
effective charge is (see Appendix B, for details)

Z
(2)
eff (k,r) =

+∞∑
l=0

il(2l + 1) Pl(cos β)Z(2)
eff,l(k,r) − Z

(dip,0)
eff ,

(27)

where partial components of the effective charge are intro-
duced as

Z
(2)
eff,l(k,r) = mAzp

mA + mp
jl

(
mp

mA + mp
kr

)

− mpZA(k)

mA + mp
jl

(
mA + 2mp

mA + mp
kr

)
(28)

and β is angle between vectors k and r. From such a formula
one can see that on smaller distances (of variable r) the first
term should be dominated in the integration of the matrix
element, but on far distances the second term (which is
decreased more slowly) has a larger contribution. Such an
effective charge should change the shape of the bremsstrahlung
spectrum as it changes the dependence of the matrix element
on the energy of photon.

Now we shall consider the emission of photons determined
by the third matrix element in Eq. (14) (we shall denote
such a matrix element by bottom index add). Performing
an integration over space variable R, momentum K, using
the normalizing factors Ni and Nf and the packets (21) as
functions �p−nucl, s(r), we obtain (see Appendix B for details)

〈�f | Ĥγ | �i〉add = e

m

√
2π�

wph
pf i, add 2π δ(wi − wf − w),

Ki = Kf + k, (29)

where

pf i,add = −μ

+∞∑
l=0

il(2l + 1)Pl(cos β)Ml(k)

×
∑

α=1,2

e(α),∗ · DA(k), (30)

DA(k) = 〈ψnucl,f (βA) |
A−1∑
j=1

zAj

mAj

e−i k·ρAj p̃Aj | ψnucl,i(βA) 〉,

(31)

and we have introduced the nucleon partial matrix elements as

Ml(k) = 〈ψp−nucl,f (r) | jl

(
mp

mA + mp
kr

)
| ψp−nucl,i(r) 〉.

(32)

Taking into account Coulomb gauge and solution (C9) for the
function DA(k) given in Appendix C, we find that the matrix
element (30) equals zero. By the same reason, the last matrix
element in Eq. (14) equals zero also.
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E. Inclusion of spin states of the scattering proton

The operator of emission of photons in spinor formalism of the scattering proton, has the following form [31]:

Ĥγ = Zeff
e

mc

√
2π�c2

wph

∑
α=1,2

e−ikph·r
(

ie(α)∇ − 1

2
σ · [∇ × e(α)] + i

1

2
σ · [kph × e(α)]

)
. (33)

Now the stationary wave function of the scattering proton [i.e., the function ψp−nucl,s(r) above] is in the form of a bilinear
combination of eigenfunctions of orbital and spin subsystems (see also eq. (1.4.2) in [64], p. 42), which were studied in details
in [31]. However, we assume that it is not possible experimentally to fix states for selected M (eigenvalue of momentum operator
Ĵz). So, we shall be interesting in our superposition over all states with different M and define the wave function so

ψp−nucl, j l(r,s) = R (r)
l∑

m=−l

∑
μ=±1/2

C
j,M=m+μ
lm1/2μ Ylm(nr) vμ(s), (34)

where R (r) is radial scalar function (not dependent on different m at the same l), nr = r/r is unit vector directed along r,
Ylm(nr) are spherical functions (we use definition (28,7)–(28,8), p. 119 in [65]), C

jM
lm1/2μ are Clebsch-Gordon coefficients, s

is a variable of spin, M = m + μ, and l = j ± 1/2. For convenience, we introduce the space wave function in the form of
ϕp−nucl, lm(r) = Rl (r) Ylm(nr).

So, after the inclusion of the spin formalism of the scattering proton (see eqs. (10) and (36) in [31]), we obtain the updated
formulas (20), (26) and formula (23) with effective charge (27) as

p1 = Z
(dip,0)
eff

√
π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

mi,mf

∑
μi,μf =±1/2

C
jf Mf =mf +μf , ∗
lf mf 1/2μf

C
jiMi=mi+μi

limi1/2μi

∑
μ=±1

hμ

[
iμp

Mmimf

lphμ
+ p

Emimf

lphμ

]
, (35)

p
(dip)
2 = Z

(dip,2)
eff (k)

√
π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

mi,mf

∑
μi,μf =±1/2

C
jf Mf =mf +μf , ∗
lf mf 1/2μf

C
jiMi=mi+μi

limi1/2μi

∑
μ=±1

hμ

[
iμp

Mmimf

lphμ
+ p

Emimf

lphμ

]
, (36)

p3 =
√

π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

mi,mf

∑
μi, μf =±1/2

C
jf Mf =mf +μf , ∗
lf mf 1/2μf

C
jiMi=mi+μi

limi1/2μi

∑
μ=±1

hμ

[
iμp̆

Mmimf

lphμ
+ p̆

Emimf

lphμ

]
. (37)

The matrix elements p
Mmimf

lphμ
, p

Emimf

lphμ
, p̆

Mmimf

lphμ
, and p̆

Emimf

lphμ
are given in Appendix D.

F. Correction to the emission of photons from relative momenta of nucleons inside the nucleus, caused by
taking spin states of the scattering proton into account

The strongest emission is formed by the first term in the emission operator (34), which we formulated in the sections above.
The next by intensity emission is formed by the second term in Eq. (34) (according to analysis in [31]), which we shall study in
this subsection. The last term in Eq. (34) gives the smallest emission which will be neglected in this paper. The corresponding
matrix element with the included second term of the emission operator, after integration over space variable R and momentum
K, using packets (21) for wave function �p−nucl, s(r) of the scattering proton, is (we shall denote it by bottom index 4)

〈�f | Ĥγ | �i〉4 = e

m

√
2π�

wph
p4 2π δ(wi − wf − w), (38)

where

p4 = m
∑

α=1,2

〈ψp−nucl,f (r) · ψnucl,f (βA)| ei k·r mp
mA+mp

⎧⎨
⎩

A−1∑
j=1

zAj

mAj

e−ik·ρAj
1

2
σ · [p̃Aj × e(α),∗]

⎫⎬
⎭ | ψp−nucl,i(r) · ψnucl,i(βA)〉. (39)

This matrix element can be separated on two integrals. Using solution (C9) for the function DA(k) and summarizing over
polarization states of the emitted photon [using property (9)], we obtain

p4 = � m k

4
ZA(k)〈ψp−nucl,f (r)| ei k·r mp

mA+mp σ | ψp−nucl,i(r)〉 · (e(2),∗ − e(1),∗). (40)

For taking into account spin states of the scattering proton, we use wave function ψp−nucl of this proton in form (34) and obtain
the following form for the matrix element (see Ref. [31], for some details):

p4 = �mk

4
ZA(k)

lf∑
mf =−lf

li∑
mi=−li

∑
μi,μf =±1/2

C
jf ,M=mf +μf , ∗
lf mf 1/2μf

C
ji ,M=mi+μi

limi1/2μi
〈ϕp−nucl,lf mf

(r)|

×e
i k·r mp

mA+mp | ϕp−nucl, limi
(r)〉{−1 + i[δμi,+1/2 − δμi,−1/2]}. (41)
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We apply the multipole expansion for the internal matrix element (components p̃M
lphμ

, p̃E
lphμ

, corresponding radial and angular
integrals are given in Appendix D):

〈ϕp−nucl, lf mf
(r) | ei k·r mp

mA+mp |ϕp−nucl, limi
(r)〉 =

√
π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ=±1

[
μ p̃M

lphμ
− i p̃E

lphμ

]
, (42)

and the total matrix element (41) obtains the form

p4 = � m k

4
ZA(k)

√
π

2

∑
lph=1

(−i)lph
√

2lph + 1
lf∑

mf =−lf

li∑
mi=−li

∑
μi, μf =±1/2

C
jf ,M=mf +μf , ∗
lf mf 1/2μf

C
ji ,M=mi+μi

limi1/2μi

×{−1 + i[δμi,+1/2 − δμi,−1/2]}
∑

μ=±1

[
μ p̃M

lphμ
− i p̃E

lphμ

]
. (43)

Now we find the total matrix element of the emitted photons. After lengthly calculations, we obtain

p1 + p3 + p4 =
√

π

2

∑
lph=1

(−i)lph
√

2lph + 1
∑

μ=±1

∑
mi,mf

∑
μi, μf =±1/2

C
jf ,M=mf +μf , ∗
lf mf 1/2μf

C
ji ,M=mi+μi

limi1/2μi
hμ g, (44)

where

g = i μ
(
Z

(dip,0)
eff p

Mmimf

lphμ
+ p̆

Mmimf

lphμ

) + (
Z

(dip,0)
eff p

Emimf

lphμ
+ p̆

Emimf

lphμ

) + f
� m k

4
ZA(k)

(
i μ p̃M

lphμ
+ p̃E

lphμ

)
. (45)

In order to simply estimate how intensive the emission formed on the basis of the dynamics of the nucleons inside nucleus and
determined by the contribution (43) [caused by the second term in the emission operator (33)] is, on the background of the
full bremsstrahlung emission, we introduce a new factor f . Such an introduction of the unified coefficient allows us to obtain a
clear understanding about such a type of emission, in order to investigate the role of dynamics of nucleons inside the nucleus
in the emission of photons. It turns out that the calculated spectra are sensitive to values of this coefficient. So, comparing the
calculations with the experimental data, this coefficient can be found, and it will characterize the real contribution of the emission
formed by dynamics of nucleons in nucleus.

G. The bremsstrahlung probability and parameters of
the proton-nucleus potential

We define the cross section of the emitted photons on
the basis of the matrix element (14) (where we include
the operator of emission (33) without the last term which
gives the smallest contribution into the total spectrum, see
Ref. [31] for details) in the framework of the formalism
given in Ref. [31]. We calculate the radial wave functions
Rl(r) numerically concerning the chosen potential of the
interaction between the proton and the spherically symmetric
core. For a description of the proton-nucleus interaction we
use the potential as V (r) = vc(r) + vN (r) + vso(r) + vl(r),
where vc(r), vN (r), vso(r), and vl(r) are Coulomb, nu-
clear, spin-orbital, and centrifugal components having the
form [66]

vN (r) = − VR

1 + exp r−RR

aR

, vl(r) = l (l + 1)

2mr2
,

vso(r) = Vso q · l
λ2

π

r

d

dr

[
1 + exp

(
r − Rso

aso

)]−1

,

vc(r) =
{

Ze2

r
, at r � Rc,

Ze2

2Rc

{
3 − r2

R2
c

}
, at r < Rc.

(46)

We use the parametrization proposed by Becchetti and Green-
lees in [66] which has been tested in numerous research

papers:

VR = 54.0 − 0.32 E + 0.4 Z/A1/3 + 24.0 I, Vso = 6.2,

RR = rR A1/3, Rc = rc A1/3, Rso = rso A1/3, (47)

rso = 1.01 fm, aR = 0.75 fm, aso = 0.75 fm.

Here, I = (N − Z)/A, A and Z are the mass and proton
numbers of the daughter nucleus, E is the incident laboratory
energy, VR and Vso are the strength of the nuclear and
spin-orbital components defined in MeV, Rc and RR are
Coulomb and nuclear radii of the nucleus, aR and aso are
diffusion parameters. The criterion function of the theoretical
fit is taken to be

ε = 1

nmax

nmax∑
n=1

|σ (theor)(En) − σ (exp)(En)|, (48)

where σ (theor)(En) and σ (exp)(En) are the theoretical and
experimental values of the bremsstrahlung cross sections
for the chosen nucleus at energy En, and a summation is
performed over all values of experimental data. We shall look
for the value for rR (in the first calculations we shall restrict
ourselves by approximation rc = rR) when this error (48) is
the minimum (for simplicity, we shall call such an approach
the method of minimization). We found a slower sensitivity of
the bremsstrahlung spectra on VR in comparison with rR . So,
in this paper we shall study the influence of the parameter rR

on the spectra at fixed VR given by formula (48).
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FIG. 1. (Color online) (a) The bremsstrahlung cross sections for p +208 Pb calculated on the basis of the first matrix element p1 in Eq. (35)
at the incident proton energy of 140 MeV depending on the parameter rR in comparison with the experimental data of Edington and Rose [1]
at θ = 90◦. One can see a slow sensitivity of the calculated spectra from the parameter rR . In particular, such a sensitivity should be present
after normalization of all calculated spectra on the same experimental point. (b) Estimated errors obtained by a method of minimization given
by formula (48) depending on values of the parameter rR . One can see that there is a visible minimum which indicates the presence of optimal
values for rR , at which agreement between theory and experimental data is the highest.

III. ANALYSIS

Our analysis begins with the p +208Pb reaction, which
has been intensively studied by different experimental groups
and, so, has proper experimental material [1,6,9]. However,
the authors of [1,9] observed a difference in experimental
data from the typical exponential shape of the bremsstrahlung
spectrum previously measured by Edington and Rose in [1].
This point was under active discussion and could be informed
by a possible explanation supported by calculations. We
emphasize that our new approach is applicable for analysis
(i.e., this approach should be able to extract information about
radius parameter rR of the proton-nucleus potential) of even
conflicting experimental data. So, we chose two experimental
data sets [1] and [6,9] at the corresponding incident proton
energies of 140 MeV and 145 MeV, and for the chosen angle

between directions of the emitted photons and the incident
protons which equals 90◦.

We shall clarify if the calculated spectrum is changed
depending on the variation of the parameter rR (we use
the approximation of rC = rR). We start our analysis from
calculations of cross sections on the basis of the first matrix
element p1 given in Eq. (35). Results of such calculations
at 140 MeV of the proton energy in comparison with
experimental data [1] are presented in Fig. 1(a). One can
see that the spectra are slowly decreased with a decrease
of this parameter. In order to obtain the accurate parameter,
we compare the calculated spectrum with experimental data
and calculate the error by formula (48). We normalize each
calculated curve on the same experimental point (we chose
experimental data of 643 nb/(sr MeV) at energy 45 MeV and
an angle of 90◦ taken from table 8 in [1], see p. 544). In next

FIG. 2. (Color online) (a) The bremsstrahlung cross sections for p +208 Pb calculated on the basis of the first matrix element p1 in Eq. (35)
at the incident proton energy of 145 MeV depending on the parameter rR in comparison with experimental data of Clayton et al. [6,9] at
θ = 90◦. Once again we obtain a slow sensitivity of the spectra on the parameter rR . One can see a clear difference between the logarithmic
form of the calculated spectra and hump-shaped behavior in experimental data. (b) Estimated errors obtained by a method of minimization
depending on values of the parameter rR . One can see that there is a visible minimum which indicates the presence of optimal values for rR , at
which agreement between theory and experimental data is the highest.
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FIG. 3. (Color online) (a) The calculated bremsstrahlung cross sections for p +208 Pb at 140 MeV on the basis of the second matrix element
p2 in Eq. (36) at different values of the parameter rR in comparison with experimental data of Edington and Rose [1] at θ = 90◦. (b) The
estimated errors obtained by a method of minimization depending on values of the parameter rR .

Fig. 1(b) one can see the presence of a visible minimum in
the tendency of the errors. This clearly confirms the stability
in obtaining the minimal value for error by this method, and
we find parameter rR , for which an agreement between theory
and experiment should be the most appropriate.

Results for analysis of the bremsstrahlung in p +208Pb
at the incident proton energy 145 MeV compared with
experimental data of [6,9] are presented in Fig. 2. We observe
the sensitivity of the calculated spectra on the parameter rR

[see Fig. 2(a)], and find the clear minimum in dependence
of function ε given by Eq. (48) on rR [see Fig. 2(b)]. After
a comparison of the calculations with experimental data, we
observe a difference between their shapes. In particular, in the
calculated spectra we obtain the shape of logarithmic type,
which is typical for the bremsstrahlung emission in the α
decay and fission (and here we obtained the most accurate
agreement between calculations and the existed experimental
data, see [43–45] and [63] for details). At the same time,
experimental data [1,6,9] have some different behavior with
a little visible hump-shaped form inside 60–100 MeV [this

is more clearly visible in Fig. 2(a)]. From here, we conclude
that even experimental data for the proton-nucleus scattering
and for the αdecay and fission have a different behavior, that
should be connected with some unclear physical reasons.

Our calculations of the bremsstrahlung spectra for
p +208Pb at 140 MeV on the basis of the second matrix
element p

(dip)
2 in Eq. (36) and the third matrix element p3

in Eq. (37) give similar results (see Figs. 3 and 4). We obtain
the similar shapes of the logarithmic type for all calculated
spectra. The same results were obtained in calculations of
the spectra at an energy of 145 MeV. It is clear that all
such calculated curves do not describe (and do not explain)
the slowly visible hump-shaped plateau in the experimental
data [1,9] (see Fig. 2). Errors for all new calculations are a little
larger than for the calculations on the basis of the first matrix
element p1. However, the difference between the parameters
rR for each case obtained by the minimization is sufficiently
small (see Table I).

The inclusion of the last matrix element p4 from Eq. (43)
to calculations changes the bremsstrahlung spectrum. In

FIG. 4. (Color online) (a) The calculated bremsstrahlung cross sections for p +208 Pb at 140 MeV on the basis of the third matrix element
p3 in Eq. (37) at different values of the parameter rR in comparison with experimental data of Edington and Rose [1] at θ = 90◦. (b) The
estimated errors obtained by a method of minimization depending on values of the parameter rR .
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TABLE I. The values for parameter pR obtained by minimization and the corresponding errors.

Matrix element pi used in Analysis of data [1] Analysis of data [6,9]

calculations of cross sections parameter pR , fm error ε parameter pR , fm error ε

Matrix element p1 0.97 134 1.15 74.5
Matrix element p

(dip)
2 0.93 261 1.16 95.5

Matrix element p3 0.90 223 1.17 83.5

particular, the main part of the spectrum is transformed from
the logarithmic type on the hump-shape. Such an interesting
picture is observed more clearly in the experimental data [6,9].
However, a general tendency of the calculated spectrum and
its slope are sensitive to the relative contribution of the term p3

in Eq. (37) into a full matrix element p4 [which we determine
via factor f , see Eq. (45)]. Such a contribution is determined
by weight amplitudes of the proton-nucleus wave function
in different states with different quantum numbers and their
interference (see [31] for details and formalism). Thus, it
could be interesting to analyze how the spectrum is changed
depending on such a contribution. Results of such calculations
in comparison with experimental data [6] are presented in
Fig. 5. From here we find a nice agreement between our
calculations and experimental data at f = 0.00018 which
is observed practically inside the whole energy region of
the emitted photons where experimental data are available
(with a minor exception of the first data point and third to
last one). This improves our previous results describing the
emitted photons in the p +208 Pb reaction given in [31] after
the inclusion of the consideration of the nucleus as a system
of many nucleons and their dynamic properties.

From here we conclude that the role of the dynamics of
nucleons inside the nucleus and their connection with spin
properties of the incident proton is essential (for lower and
middle energy of the emitted photons). Now it becomes clear

FIG. 5. (Color online) The bremsstrahlung cross sections for
p +208 Pb at 145 MeV of the proton energy calculated on the basis
of the last matrix element p4 in Eq. (44) depending on the parameter
f in comparison with the experimental data of Clayton et al. [6] at
θ = 90◦. The best agreement between theory and experimental data
is obtained for the factor f = 0.00018 (used parameters of potential:
rR = rC = 1.17 fm).

that in the study of the bremsstrahlung emission in the α decay
we did not have such humped-shaped spectra, because the α
particle has zero spin and, so, the corresponding contribution is
zero also. So, the difference between the experimental spectra
for the proton-nucleus scattering and the αdecay is explained
on the physical basis.

Detailed consideration of the resulting spectrum shows
the presence of a slowly decreasing hump-shaped plateau
from 40 up to 120 MeV of energies of the emitted photons.
However, the lowest energy region in the spectrum (below
40 MeV) has the logarithmic shape. Such a separation can
be explained by photons at lower energies being emitted in
results of coherent processes (i.e., such photons are formed
as a result of interactions between the scattering proton and
nucleus as a whole object, without internal consideration of
the many-nucleon structure of the nucleus). For higher photon
energies, we obtain the hump-shaped spectrum which can be
explained by the essential role in the emission of interactions
between the scattering proton and momenta of nucleons of the
nucleus (i.e., noncoherent processes).

The careful measurements of the bremsstrahlung emission
in the proton nucleus scattering were done by the TAPS
collaboration [11] and we must include them in our analysis.
In Fig. 6 we present the results of our calculations of the
bremsstrahlung spectra for p +12C (a) and p +197Au (b) at
Ep = 190 MeV in comparison with these experimental data
(see Figs. 2 and 3 in [11]). In Fig. 7 we add our calculations of
the bremsstrahlung spectra for p +58Ni (a) and p +107Ag (b)
at Ep = 190 MeV in comparison with experimental data [11]
which are normalized on the geometrical cross section σr =
1.44 πA2/3 fm2 with A the target mass number (see Fig. 1
in [11] for the data and text in that paper for details). It
can be seen that the inclusion of the contribution caused by
the dynamics of nucleons of the nucleus into the model and
calculations allows to describe these experimental data enough
well inside practically the whole energy region of the emitted
photons (with the possible exception of the first data point for
some reactions).

Agreement between our model and experimental data for all
considered nuclei shows that the contribution of the emission
of photons into the full spectrum, caused by a connection
between the internal momenta of nucleons inside the nucleus
and the spin properties of the scattering proton, is essential,
and its presence is confirmed (proven) by the experimental
data. On such a basis we can consider such an emission of
the bremsstrahlung photons as some new type of emission,
which can be named the bremsstrahlung emission on the basis
of spin–internal nucleons momenta interactions. Introduction
of such a type of emission allows us for the first time to
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FIG. 6. (Color online) The bremsstrahlung cross sections for p +12 C (a) and p +197Au (b) at 190 MeV of the proton energy calculated on
the basis of the last matrix element p4 in Eq. (44) depending on the parameter f in comparison with the experimental data of van Goethem
et al. [11] at the angle of θ = 75◦ (all calculated spectra are normalized on the second point of experimental data, used parameters of potential
are rR = rC = 0.95 fm). Once again, we obtain a visible sensitivity of the spectra on the parameter f characterized contribution of the emission
caused by the dynamics of the nucleons of the nucleus. The best agreement between theory and experimental data is observed for p +12 C at
the factor f = 0.01 [see purple solid line 5 in (a)] and p +197Au at the factor f = 0.0007 [see blue solid line 5 in (b)]. This result demonstrates
that the inclusion of the dynamics of nucleons and its connection with spin properties of the scattering proton into the model allows us to
describe (and, so, to explain) the existing plateau in the spectra of the bremsstrahlung photons.

explain the origin (presence) of the hump-shaped plateau in the
bremsstrahlung spectra for the proton-nucleus scattering, and,
at the same time, the absence of such a plateau in the spectra
for the α decay (see data from [32,33] and [43–45]). Also
we find that the optical model of the scattering of protons off
nuclei does not include such a term of interactions. Therefore,
our results on the study of the bremsstrahlung photons in
the proton-nucleus scattering indicate the recommendation to
generalize the optical model with the involution of such a
spin-momenta term.

One can estimate how much the incoherent emission
(formed by interactions between the scattering proton and
internal momenta of nucleons of the nucleus) is changed

concerning coherent emission (formed by the interaction
between the scattering proton and nucleus as a whole without
the consideration of its internal many-nucleon structure). Such
characteristics can be determined via the ratio between squares
of the corresponding matrix elements, i.e., as |f · p4|2/ |p1|2.
Such calculations for the reaction p +197Au are given in
Fig. 8(a). From such results one can see that in the photon
energy region up to 30 MeV the coherent emission is more
intensive [ratio is less than unity in Fig. 8(a)]. However, at
higher photon energies the intensity of the incoherent emission
is increased and becomes essential at high energies. A similar
situation is present for the other studied reactions above. In
Fig. 8(b) we add our calculations for the angular distribution

FIG. 7. (Color online) The bremsstrahlung cross sections for p +58 Ni (a) and p +107Ag (b) at 190 MeV of the proton energy calculated on
the basis of the last matrix element p4 in Eq. (44) depending on the parameter f in comparison with the experimental data of van Goethem
et al. [11] at the angle of θ = 75◦ (the experimental data are normalized on the geometrical cross section, all calculated spectra are normalized
on the second point of experimental data, used parameters of potential are rR = rC = 0.95 fm, in all figures we use the renormalized factor
h = f × 104). The best agreement between theory and experimental data is observed for p +58 Ni at the factor f = 0.002 [see purple solid
line 5 in (a)] and p +107Ag at the factor f = 0.0012 [see purple solid line 7 in (b)].

024605-11



SERGEI P. MAYDANYUK AND PENG-MING ZHANG PHYSICAL REVIEW C 91, 024605 (2015)

FIG. 8. (Color online) (a) The ratio between the incoherent emission (formed by interactions between the scattering proton and internal
momenta of nucleons of nucleus, denoted as dσ1/dEγ ) and the coherent emission (formed by interaction between the scattering proton and
nucleus as whole without its internal many-nucleon structure, denoted as dσ2/dEγ ) depending on the energy of emitted photons for p +197Au
at Ep = 190 MeV and the angle of θ = 75◦ [used parameters of potential are rR = rC = 0.95 fm, f = 0.0007 according to results in Fig. 6(b)].
(b) The angular distribution of the emitted photons for p +197Au at Ep = 190 MeV in comparison with the experimental data of van Goethem
et al. [11] measured at the angle of θ = 75◦ [f = 0.0007 according to results in Fig. 6(b)].

of the emitted photons for p +197Au at Ep = 190 MeV. As
differences between the calculated spectra are larger than
experimental errors for the angle of θ = 75◦ given by van
Goethem et al. [11], we suppose such results could be used
by experimentalists as a possible future test of our model,
the obtained spectra and analysis of peculiarities of the
bremsstrahlung photons.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we presented new developments of our
model of the bremsstrahlung emission (presented previously
in [28,31,42–48,63]) which accompanies the scattering of
protons off nuclei at low and intermediate energies of the
emitted photons. In the analysis we studied the scattering of
p +208Pb at the proton incident energies of Ep = 140 and
145 MeV, the scattering of p +12 C, p +58 Ni, p +107Ag, and
p +197Au at the proton incident energy of Ep = 190 MeV.
We emphasized the extraction of new information about
proton-nucleus interactions from the analysis of existing
bremsstrahlung experimental data [1,6,9,11]. Note the follow-
ing:

(i) The calculated cross sections on the basis of the first,
second, and third matrix elements p1, p

(dip)
2 and p3,

given in Eqs. (35), (36), and (37), have similar shapes
of the logarithmic type. Such calculations are found
to be in some agreement with experimental data [1]
for p +208 Pb at Ep = 140 MeV. However, they
disagree with experimental data [6,9] for p +208 Pb
at Ep = 145 MeV and [11] for p +12C, p +58Ni,
p +107Ag, and p +197Au at Ep = 190 MeV.

(ii) Inclusion of the last matrix element p4 in Eq. (43)
into the calculations changes the bremsstrahlung
spectrum. The full spectrum has the hump-shaped
plateau inside the middle energy region and then it

decreases to the kinematic limit of the photons ener-
gies. The lowest energy region in the spectrum has
a logarithmic shape. Such a separation is explained
by the fact that at lower energies photons are emitted
from the results of coherent processes (i.e., inter-
actions between the scattering proton and nucleus
as a whole object, without internal consideration of
many-nucleon structure of the nucleus), while for
higher photons the role the energiesof noncoherent
processes (interactions between the scattering pro-
ton and momenta of nucleons of the nucleus) is
essential in emission. In such a way, we obtain a
nice agreement inside practically the whole energy
region of the emitted photons (with the possible
exception of the first data point) with experimental
data [6,9] for p +208 Pb at Ep = 145 MeV and [11]
for p +12C, p +58Ni, p +107Ag, and p +197Au at
Ep = 190 MeV. This result improves our previous
calculations in the description of the emitted photons
in the p +208 Pb reaction given in [31] after the inclu-
sion of the nucleus as a system of many nucleons and
their dynamical properties taken into consideration
and included in the model. From here we conclude
that the role of the dynamics of nucleons inside the
nucleus and its connection with spin properties of
the incident proton is really essential. This shows a
perspective to further study the dynamics of nucleons
inside the nucleus experimentally.

(iii) By using this approach we explain the difference
between the bremsstrahlung spectra in the proton-
nucleus scattering and the bremsstrahlung spectra in
the α decay and heavy-ion reactions. Note that in
calculations of the bremsstrahlung emission in the
α decay we obtained the shape of the logarithmic
type without such a humped-shaped form (here we
achieved the most accurate agreement between our
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calculations [43–45] and the existing experimental
data [32,33,44,45], a similar situation is observed
also for fission [31]). Now it becomes clear that
the absence of such humped-shaped spectra for
the α decay is explained by zero spin of the α
particle, and the resulting zero matrix elements in
Eqs. (30) and (36). So, a difference between ten-
dencies of the experimental bremsstrahlung spectra
for the proton-nucleus scattering [6,9] and the α
decay [32,33,44,45] is explained on the physical
basis. However, at higher energies of photons (in
comparison with energies for the α decay), in
interactions between the α particles and nuclei (as
in the α-particle–nucleus scattering) the internal
structure of the α particle seems to play a more
important role, that would produce some nonminor
incoherent contribution to the full bremsstrahlung
spectrum.

(iv) We observe a slow dependence of the calculated
bremsstrahlung spectra on the radius parameter rR

used in the definition of the proton-nucleus potential
in Eqs. (46)–(47) (we use rC = rR). Analysis shows
the following:
(a) The spectra are slowly decreased with a decrease

of this parameter.
(b) In order to get the proper radius parameter, we

compare each calculated spectrum with experi-
mental data and calculate the function of errors
ε by formula (48). We normalize each calculated
curve on the same experimental point. The
resulting dependence of the function of errors on
the radius parameter has a clear visible minimum
[for example, see Figs. 1(b), 2(b)]. This confirms
the stability in obtaining the minimal value for
the function of errors. We find rR = 0.90 fm in
the analysis of [1] at Ep = 140 MeV and rR =
1.17 fm in the analysis of [6,9] at Ep = 145 MeV.
Taking into account the best agreement between
calculations and experimental data [6,9] (see
Fig. 5) after the inclusion of the matrix element
p4, we choose the case of rR = 1.17 fm (this
result is in agreement with results [66] obtained
from the fitting procedure in scattering, which is
rR = 1.17 fm and rc = 1.22 fm). Analyzing the
experimental data [11] at Ep = 190 MeV, we
obtain rR = 1.09 fm for p +12C, rR = 1.11 fm
for p +58Ni, rR = 1.12 fm for p +107Ag, and
rR = 1.08 fm for p +197Au.

(v) We have estimated how much the incoherent emis-
sion (formed by interactions between the scattering
proton and internal momenta of nucleons of the
nucleus) is changed by coherent emission (formed
by an interaction between the scattering proton and
nucleus as a whole without consideration of its
internal many-nucleon structure). According to an
analysis for the reaction p +197Au at Ep = 190 MeV
and the angle of θ = 75◦, in the photon energy region
up to 30 MeV the coherent emission is more intensive
[ratio is less than unity in Fig. 8(a)]. However, at

higher photon energies the intensity of the incoherent
emission is increased [ratio is larger than unity in
Fig. 8(a)] and becomes essential at high energies
[ratio is close to 336 in Fig. 8(a)]. A similar situation
is present for the other studied reactions in this
paper. From such results it follows that the role of
the internal dynamics of nucleons in the nucleus is
essential in the high-energy bremsstrahlung emission
in the scattering of the particles with nonzero spin,
and it only increases with increasing photon energy.
Also we see that our approach in the inclusion of the
incoherent component of emission has some similar
logic as the method provided by Nakayama and
Bertsch (for example, see Ref. [14]).

(vi) We add our predictions for the angular distribution of
the emitted photons for p +197Au at Ep = 190 MeV
[see Fig. 8(b)]. As differences between the spectra
calculated at the different angles are larger than
experimental errors for the angle of θ = 75◦ given
by van Goethem et al. [11], we suppose such results
could be used by experimentalists to test our model,
the obtained spectra, and analysis of peculiarities of
the bremsstrahlung photons. Such new experiments
will allow us to confirm our information about the
role of the internal dynamics of nucleons in the full
bremsstrahlung emission. In particular, we propose
such possible angular experimental measurements
could be performed on the PROTEUS C-235 proton
cyclotron (which produces a proton beam with ener-
gies 70–230 MeV) at the Henryk Niewodniczanski
Institute of Nuclear Physics in Krakow with the use
of the HECTOR array for the angular registering of
the bremsstrahlung photons (see Ref. [67] for details,
also see research [68–75] where such a facility was
used).

(vii) Results presented above answer the question in [30]
as to whether there is a sense to put forces and
develop potential models (taking into account many
nucleons and collective effects) for a description
of bremsstrahlung in proton-nucleus scattering and
nucleus-nucleus collisions. The new method, with
its improvements in accuracy and stability, provides
an effective tool to investigate the new detailed
information about proton-nucleus interactions and
mechanisms of photon emission.

(viii) After achieving an agreement between experimental
data and calculations, we can now observe (for the
first time) the presence of very tiny oscillations in the
bremsstrahlung experimental data. One can suppose
that it can be connected with some less visible
physical effects or peculiarities of the proton-nucleus
scattering process. Here, we can recall the hypothesis
presented by Eremin, Olkhovsky, and Giardina [76–
83] many years before about the possible connection
of such oscillations in the bremsstrahlung spectra
and tunneling time through the barrier. Adding
our research in the α-decay problem, we can now
conclude that such a phenomenon is general enough
for the nuclear reactions.
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APPENDIX A: THE FORM FACTOR OF THE NUCLEUS

1. Form factor of the system composed from many nucleons

Let us consider the electromagnetic form factor of the
nuclear system composed from nucleons with number A (in
this Appendix we shall omit the bottom index A for all
variables, indicating belonging of nucleons to the nucleus):

ZA(k)=〈ψnucl,f (1 . . . A)|
A∑

s=1

Zs

mp

ms

e−ik·ρ s |ψnucl,i(1 . . . A)〉.

(A1)

For a calculation of such a characteristic we need to know
the full wave functions before and after the emission of a
photon (which correspond to the unperturbed Hamiltonian).
As such a function we shall use general formula (12), where
we represent one-nucleon wave functions in the form of the
multiplication of space and spin-isospin functions as ψλs

(s) =
ϕλs

(ρs) | σ (s)τ (s)〉, where λs denotes the number of the state
of a nucleon with number s. We shall assume that the space
function of the nucleon in each state is normalized by the
condition ∫

|ϕλ(ρs)|2 dρs = 1. (A2)

Now we calculate the matrix element (A1):

ZA(k) = 1

A (A − 1)

A∑
i=1

A∑
k=1

A∑
m=1,m�=k

{
〈ψk(i) | Zi mp

mi

×e−ik·ρ i | ψk(i) 〉 〈ψm(j ) | ψm(j ) 〉

− 〈ψk(i) | Zi mp

mi

e−ik·ρ i | ψm(i) 〉〈ψm(j ) | ψk(j ) 〉
}
.

(A3)

Taking into account the orthogonality between wave functions
〈ψk(j ) | ψm(j ) 〉 = δmk , we obtain

ZA(k) = 1

A

A∑
i=1

A∑
k=1

〈ψk(i) | Zk mp

mk

e−ik·ρ i | ψk(i) 〉. (A4)

Taking into account zero charge of neutron, we sum Eq. (A4)
over spin-isospin states. For even-even nuclei we obtain

ZA(k) = 2

A

A∑
i=1

B∑
k=1

〈ϕk(ρi) | e−ik·ρ i | ϕk(ρi) 〉, (A5)

where B is the number of states of the space wave function of
the nucleon. Taking into account spin-isospin states, we obtain
B = A/4.

We define the space wave function of one nucleon in the
gaussian form as

ϕi(r) = Nx Ny Nz exp

[
− 1

2

(
x2

a2
+ y2

b2
+ z2

c2

)]

×Hnx

(
x

a

)
Hny

(
y

b

)
Hnz

(
z

c

)
, (A6)

where Hnx
, Hny

, and Hnz
are the Hermitian polynomials,

Nx , Ny , Nz are the normalized coefficients. The unknown
normalized coefficients are calculated from the normalization
condition:∫ ∣∣∣∣Ns exp

[
− s2

2a2
s

]
Hns

(
s

as

) ∣∣∣∣
2

ds = 1, (A7)

where s = x,y,z. Taking the properties of the Hermitian
polynomials into account (see [65], p. 749), we obtain

Nx = 1

π1/4
√

a 2nx nx!
, Ny = 1

π1/4
√

b 2ny ny!
,

Nz = 1

π1/4
√

c 2nz nz!
. (A8)

2. Calculations of the form factor of the nucleus

Substituting the one-nucleon space wave function (A6) into
Eq. (A5), we find the form-factor for the nucleus:

ZA(k) = 2

A

A∑
i=1

B∑
nx,ny ,nz

Ix(nx)Iy(ny) Iz(nz), (A9)

where

Ix = N2
x exp

[−a2k2
x/4

] ∫
exp

[
− (xi + ia2kx/2)2

a2

]

×H 2
nx

(
xi

a

)
dxi (A10)

and solutions for Iy(ny) and Iz(nz) are obtained after a change
of indexes x → y and x → z. Let us consider a case of the
ground state (nx = ny = nz = 0, for example that is for the α
particle), where we have Hnx=0 = 1, Hny=0 = 1, Hnz=0 = 1.
In approximation, the integral in Eq. (A10) over a complex
variable x̃ = xi + i a2kx/2 has the solution∫

exp

[
− (xi + ia2kx/2)2

a2

]
dxi =

∫
exp

[
− x2

i

a2

]
dxi

= N−2
x , (A11)

and we obtain

Ix(nx = 0) = exp
[ − a2k2

x/4
]
. (A12)
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In determination of the form factor of the nucleus we have
to take into account nonzero states of the one-nucleon space
wave function. We shall find the integral Ix(nx �= 0). We have∫ +∞

−∞
e−(x−y)2

H 2
n (x) dx = 2n

√
π n! Ln(−2y2), (A13)

where Ln is the Rodrigues polynomial. For computer calcula-
tions the following recurrent formula is useful:

Lk+1(x) = 1

k + 1
[(2k+1−x) Lk(x) − k Lk−1(x)] at k � 1,

L0(x) = 1, L1(x) = 1 − x. (A14)

Using formulas (A13) and (A14), the normalized solution (A8)
for factor Nx , we find integral (A10)

Ix = Lnx

[
a2k2

x/2
]

exp
[− a2k2

x/4
]

(A15)

and calculate the form factor

ZA(k) = 2 e− (a2k2
x+b2k2

y+c2k2
z ) /4 f1 (k,n1 . . . nA), (A16)

where

f1 (k,n1 . . . nA) =
nx+ny+nz�N∑
nx,ny ,nz=0

Lnx

[
a2k2

x/2
]
Lny

[
b2k2

y/2
]

×Lnz

[
c2k2

z /2
]
. (A17)

Here, function f1 is a summation over all states of the one-
nucleon space wave function. Also we use a condition that the
form factor tends to the electromagnetic charge of the nucleus
at tending energy of photon to zero:

ZA(k) → ZA at k → 0. (A18)

APPENDIX B: EMISSION FORMED BY RELATIVE
DISPLACEMENTS AND MOTIONS OF NUCLEONS

INSIDE NUCLEUS

We shall find a more accurate approximation of the effective
charge (24) than Eq. (25). Here, we would like to include
parameters of the emitted photons into the nuclear form factor.
Rewrite the effective charge (24) as

Z
(2)
eff (k,r) = mA Z̃p(k,r) − mpZ̃A(k,r)

mA + mp
, (B1)

where we introduce extended form factors of the proton and
nucleus as

Z̃p(k,r) = zp
(
e
i k·r mp

mA+mp − 1
)
,

Z̃A(k,r) = e
i k·r mA+2 mp

mA+mp ZA(k) − ZA. (B2)

In further calculation of the matrix element (23) one can join
two exponents from the form factors Z̃p(k,r) and Z̃A(k,r)
with an exponent factor exp (−i k · r) from the vector potential
of the electromagnetic field and then to expand them over
multipolar terms. However, such a way requires a calculation
of a larger number of the radial integrals than, for example,
the matrix elements (26) have. Thus, we shall introduce an

approximation related to the effective charge. Let us apply the
expansion over the spherical Bessel functions jl(kr), we obtain

Z
(2)
eff (k,r) =

+∞∑
l=0

il (2l + 1) Pl(cos β) Z
(2)
eff, l(k,r) − Z

(dip,0)
eff ,

(B3)
where the partial components of the effective charge are
introduced as

Z
(2)
eff, l(k,r) = mA zp

mA + mp
jl

(
mp

mA + mp
kr

)

− mp ZA(k)

mA + mp
jl

(
mA + 2 mp

mA + mp
kr

)
(B4)

and β is angle between vectors k and r. From such a formula
one can see that on smaller distances (of variable r) the first
term should be dominated in the integration of the matrix
element, but on far distances the second term (which is
decreased more slowly) has a larger contribution. Such an
effective charge should change the shape of the bremsstrahlung
spectrum as it changes the dependence of the matrix element
on the energy of the photon.

Now we shall consider the emission of photons determined
by the third matrix element in Eq. (14). Performing integration
over space variable R, momentum K, we obtain

〈�f | Ĥγ | �i〉3 = − e

√
2π�

wph

∑
α=1,2

e(α),∗ · 〈�̄f | ei k·r mp
mA+mp

×
⎡
⎣A−1∑

j=1

zAj

mAj

e−ik·ρAj p̃Aj

⎤
⎦ | �̄i〉,

Ki = Kf + k. (B5)

Using as functions �p−nucl, s(r) the packets (21), we obtain

〈�f | Ĥγ | �i〉3 = e

m

√
2π�

wph
pf i, 3 2π δ(wi − wf − w),

pf i, 3 = −m
∑

α=1,2

e(α),∗ 〈ψp−nucl,f (r) |

×e
i k·r mp

mA+mp | ψp−nucl,i(r) 〉 · DA(k), (B6)

where

DA(k) = 〈ψnucl,f (βA) |
A−1∑
j=1

zAj

mAj

×e−ik·ρAj p̃Aj | ψnucl,i(βA) 〉. (B7)

Using the expansion

e
i k·r mp

mA+mp = e
i kr cos β

mp
mA+mp

=
+∞∑
l=0

il(2l + 1) Pl(cos β) jl

(
mp

mA + mp
kr

)
,

(B8)
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we rewrite the matrix element as

pf i, 3 = −μ

+∞∑
l=0

il (2l + 1) Pl(cos β)Ml(k)
∑

α=1,2

e(α),∗ · DA(k), (B9)

where we introduced the nucleon partial matrix elements as

Ml(k) = 〈ψp−nucl,f (r) | jl

(
mp

mA + mp
kr

) ∣∣∣∣ ψp−nucl,i(r)

〉
. (B10)

Taking into account the Coulomb gauge and solution (C9) for the function DA(k) given in Appendix C, we conclude that the
matrix element (B9) and the last matrix element in Eq. (14) equal zero.

APPENDIX C: MATRIX ELEMENT OVER MOMENTA OF NUCLEONS OF THE NUCLEUS

In this Appendix we shall calculate the matrix element (31) defined on the basis of the included operators of momenta of
nucleons of the nucleus:

DA(k) = 〈ψnucl,f (βA) |
A−1∑
j=1

zAj

mAj

e−ik·ρAj p̃Aj | ψnucl,i(βA) 〉. (C1)

Substituting many-nucleon wave function (12), we calculate it as calculations (A3)–(A5) and obtain

DA(k) = 1

A

A∑
i=1

A∑
k=1

〈ψk(i) | Zk mp

mk

e−ik·ρ i p̃Aj | ψk(i) 〉. (C2)

We sum this expression over spin-isospin states. In particular, for even-even nuclei we have

DA(k) = 2

A

A∑
i=1

B∑
k=1

〈ϕk(ρi) | e−ik·ρ i p̃Aj | ϕk(ρi) 〉. (C3)

We substitute the one-nucleon space wave function (A6) into the matrix element and find

DA(k) = 2

A

A∑
i=1

B∑
nx,ny ,nz

(ex Jx(nx) + ey Jy(ny) + ez Jz(nz)), (C4)

where orthogonal unit vectors ex, ey, ez are used and ex = e(1), ey = e(2). Here we introduce a separation on coordinating
components Jx(nx), Jy(ny), Jz(nz). Let us consider the first integral:

Jx(nx) = −i � N2
x

∫
exp

[
− (xi)2

2a2

]
Hnx

(
xi

a

)
e−ikxxi

(
ex

d

dxAi

) {
exp

[
− (xi)2

2a2

]
Hnx

(
xi

a

)}
dxi

×N2
y

∫
exp

[
− (yi)2

b2

]
H 2

ny

(
yi

b

)
e−ikyyi dyi N2

z

∫
exp

[
− (zi)2

c2

]
H 2

nz

(
zi

c

)
e−ikzzi dzi . (C5)

Here the last two integrals represent the found functions Iy(ny,b) and Iz(nz,c). We integrate over variable x:

Jx(nx) = ex i � N2
x

∫
d

dxAi

{
exp

[
− (xi)2

2a2

]
Hnx

(
xi

a

)}
e−i kxxi exp

[
− (xi)2

2a2

]
Hnx

(
xi

a

)
dxi Iy(ny,b) Iz(nz,c)

+ ex (−i kx) i � N2
x

∫
exp

[
− (xi)2

a2

]
e−i kxxi H 2

nx

(
xi

a

)
dxi Iy(ny,b) Iz(nz,c). (C6)

One can see that the integral over x in the first term is connected withthe definition for Jx(nx), and the integral over x in the
second term to Ix(nx,a):

Jx(nx) = − Jx(nx) + ex � kx Ix(nx,a) Iy(ny,b) Iz(nz,c) (C7)

and we obtain

Jx(nx) = ex

� kx

2
Ix(nx,a) Iy (ny,b) Iz(nz,c). (C8)

Now we calculate the function DA(k) and obtain

DA(k) = �

2
k ZA(k). (C9)

At the tending energy of the photon to zero (at k → 0), the matrix element DA tends to zero.
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APPENDIX D: RADIAL AND ANGULAR INTEGRALS FOR MATRIX ELEMENTS

In this Appendix we add results of calculations of the radial and angular integrals for the matrix elements (35)–(37) and (42).
For the first matrix elements (35)–(37) we obtain

p
Mmimf

lph,μ
=

√
li

2li + 1
I

(mi mf )
M (li ,lf ,lph,li − 1,μ) {J1(li ,lf ,lph) + (li + 1) J2(li ,lf ,lph)}

−
√

li + 1

2li + 1
I

(mi mf )
M (li ,lf ,lph,li + 1,μ){J1(li ,lf ,lph) − li J2(li ,lf ,lph)}, (D1)

p
Emimf

lph,μ
=

√
li (lph + 1)

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li − 1,lph − 1,μ) {J1(li ,lf ,lph − 1) + (li + 1) J2(li ,lf ,lph − 1)}

−
√

li lph

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li − 1,lph + 1,μ) {J1(li ,lf ,lph + 1) + (li + 1) J2(li ,lf ,lph + 1)}

+
√

(li + 1)(lph + 1)

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li + 1,lph − 1,μ) {J1(li ,lf ,lph − 1) − li J2(li ,lf ,lph − 1)}

−
√

(li + 1) lph

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li + 1,lph + 1,μ) {J1(li ,lf ,lph + 1) − li J2(li ,lf ,lph + 1)}, (D2)

p̆
Mmimf

lph,μ
=

√
li

2li + 1
I

(mi mf )
M (li ,lf ,lph,li − 1,μ) {J3(li ,lf ,lph) + (li + 1) J4(li ,lf ,lph)}

−
√

li + 1

2li + 1
I

(mi mf )
M (li ,lf ,lph,li + 1,μ) {J3(li ,lf ,lph) − li J4(li ,lf ,lph)}, (D3)

p̆
Emimf

lph,μ
=

√
li (lph + 1)

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li − 1,lph − 1,μ) {J3(li ,lf ,lph − 1) + (li + 1) J4(li ,lf ,lph − 1)}

−
√

li lph

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li − 1,lph + 1,μ) {J3(li ,lf ,lph + 1) + (li + 1) J4(li ,lf ,lph + 1)}

+
√

(li + 1)(lph + 1)

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li + 1,lph − 1,μ) {J3(li ,lf ,lph − 1) − li J4(li ,lf ,lph − 1)}

−
√

(li + 1) lph

(2li + 1)(2lph + 1)
I

(mi mf )
E (li ,lf ,lph,li + 1,lph + 1,μ) {J3(li ,lf ,lph + 1) − li J4(li ,lf ,lph + 1)}, (D4)

and

J1(li ,lf ,n) =
∫ +∞

0

dRi(r,li)

dr
R∗

f (lf ,r) jn(kphr) r2dr,

J2(li ,lf ,n) =
∫ +∞

0
Ri(r,li) R∗

f (lf ,r) jn(kphr) r dr,

J3(li ,lf ,n) =
∫ +∞

0

dRi(r,li)

dr
R∗

f (lf ,r) jn(kphr) Z
(2)
eff (k,r) r2dr,

J4(li ,lf ,n) =
∫ +∞

0
Ri(r,li) R∗

f (lf ,r) jn(kphr) Z
(2)
eff (k,r) r dr, (D5)

I
(mi mf )
M (li ,lf ,lph,l1,μ) =

∫
Y ∗

lf mf
(nr) Tli l1, mi

(nr) · T∗
lph lph, μ

(nr) d�,

I
(mi mf )
E (li ,lf ,lph,l1,l2,μ) =

∫
Y ∗

lf mf
(nr) Tli l1, mi

(nr) · T∗
lphl2, μ

(nr) d�. (D6)
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The radial integrals J1, J2 and angular integrals are calculated in [31] (see Appendix B in that paper). For the matrix element (42)
we obtain the following internal matrix components (see Eqs. (29), (31), (40), and (41) in Ref. [31]):

p̃M
lphμ

= Ĩ (li ,lf ,lph,lph,μ) J̃ (li ,lf ,lph),

p̃E
lphμ

=
√

lph + 1

2lph + 1
Ĩ (li ,lf ,lph,lph − 1,μ) J̃ (li ,lf ,lph − 1) −

√
lph

2lph + 1
Ĩ (li ,lf ,lph,lph + 1,μ) J̃ (li ,lf ,lph + 1), (D7)

and the corresponding radial and angular integrals (further calculations of the angular integrals are given in Appendix B in
Ref. [31])

J̃ (li ,lf ,n) =
∫ +∞

0
Ri(r) R∗

f (l,r) jn

(
kr

mp

mA + mp

)
r2dr,

Ĩ (li ,lf ,lph,n,μ) = ξμ ·
∫

Ylimi
(ni

r) Y ∗
lf mf

(nf
r ) T∗

lphn,μ(nph) d�. (D8)
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D. A. Smirnov, and C. Saccá, Bremsstrahlung emission during
α-decay of 226Ra, Mod. Phys. Lett. A 23, 2651 (2008).

[46] S. P. Maydanyuk, Multipolar approach for description of
bremsstrahlung during α-decay and unified formula of the
bremsstrahlung probability, Open Nucl. Part. Phys. J. 2, 17
(2009) [open access].

[47] S. P. Maydanyuk, Multipolar approach for description of
bremsstrahlung during α-decay, J. Phys. Stud. 13, 3201
(2009).

[48] S. P. Maydanyuk, V. S. Olkhovsky, G. Giardina, G. Fazio,
G. Mandaglio, and M. Manganaro, Bremsstrahlung emission
accompanying α-decay of deformed nuclei, Nucl. Phys. A 823,
38 (2009).

[49] A. I. Steshenko and G. F. Filippov, Size and shape of neutron-
excess nuclei, Yad. Fiz. 14, 715 (1971) [,Sov. J. Nucl. Phys. 14,
403 (1972)].

[50] G. F. Filippov and I. P. Okhrimenko, Generating functions for
the minimum-approximation basis in the method of generalized
hyperspherical functions. Calculation of the 8Be spectrum, Yad.
Fiz. 32, 70 (1980) [,Sov. J. Nucl. Phys. 32, 37 (1980)].

[51] G. F. Filippov, Ground states of light even-even nuclei, Fiz.
Elem. Chastits At. Yadra 2, 315 (1971) [,Sov. J. Particles Nucl.
2, 19 (1973)].

[52] V. S. Vasilevsky, and I. Yu. Rybkin, On the astrophysical S-factor
of the t(t,2n)α and 3He(3He,2p)α reactions, Yad. Fiz. 50, 662
(1989) [,Sov. J. Nucl. Phys. 50, 411 (1989)].

[53] V. S. Vasilevsky, I. Yu. Rybkin, and G. F. Filippov, Theoretical
analysis of the mirror reactions d(d,n)3He and d(d,p)3H and of
resonance states of the 4He nucleus, Yad. Fiz. 51, 112 (1990)
[,Sov. J. Nucl. Phys. 51, 71 (1990)].

[54] G. F. Filippov, V. S. Vasilevsky, and L. L. Chopovsky, The
solution of the nucleus microscopic theory problems based on
the generalized coherent states technique, Phys. El. Part. At.
Nucl. 16, 349 (1985)

[55] G. F. Filippov, V. S. Vasilevsky, S. P. Kruchinin, and L. L.
Chopovsky, On the nature of resonances observed in photonu-
clear reactions, Yad. Fiz. 43, 843 (1986) [G. F. Filippov, S. P.
Kruchinin, V. S. Vasilevsky, and L. L. Chopovsky, Sov. J. Nucl.
Phys. 43, 536 (1986)].

[56] G. F. Filippov, V. S. Vasilevsky, and A. V. Nesterov, Excitation
of 8Be monopole resonances under αα scattering, Nucl. Phys.
A 426, 327 (1984).

[57] G. F. Filippov, V. S. Vasilevsky, and A. V. Nesterov, On the
structure of monopole resonances in light atomic nuclei, Yad.
Fiz. 40, 1418 (1984) [,Sov. J. Nucl. Phys. 40, 901 (1984)].

[58] F. Arickx, P. Van Leuven, V. S. Vasilevsky, and A. V. Nesterov,
in New Perspectives in Nuclear Structure, Proceedings of the
5th International Spring Seminar in Nuclear Physics, Ravello,
Italy, 1995, edited by A. Covello (World Scientific, Singapore,
1996), p. 111.

[59] V. S. Vasilevsky, A. V. Nesterov, F. Arickx, and P. Van Leuven,
Three-cluster model of six-nucleon systems, Yad. Fiz. 60, 413
(1997) [,Phys. At. Nucl. 60, 343 (1997)].

[60] G. F. Filippov, A. V. Nesterov, I. Yu. Rybkin, and S. V. Korennov,
The realization of the Resonating Group Method algebraic
version for three-cluster systems physics of elementary particles
and atomic nuclei, Phys. El. Part. At. Nucl. 25, 1347 (1994).

[61] V. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove,
Algebraic model for scattering in three-s-cluster systems. I.
Theoretical background, Phys. Rev. C 63, 034606 (2001).

[62] V. Vasilevsky, F. Arickx, W. Vanroose, and J. Broeckhove,
Microscopic cluster description of 12C, Phys. Rev. C 85, 034318
(2012).

024605-19

http://dx.doi.org/10.1103/PhysRevC.73.034006
http://dx.doi.org/10.1103/PhysRevC.73.034006
http://dx.doi.org/10.1103/PhysRevC.73.034006
http://dx.doi.org/10.1103/PhysRevC.73.034006
http://dx.doi.org/10.1103/PhysRevC.84.034007
http://dx.doi.org/10.1103/PhysRevC.84.034007
http://dx.doi.org/10.1103/PhysRevC.84.034007
http://dx.doi.org/10.1103/PhysRevC.84.034007
http://dx.doi.org/10.1088/0954-3899/38/8/085106
http://dx.doi.org/10.1088/0954-3899/38/8/085106
http://dx.doi.org/10.1088/0954-3899/38/8/085106
http://dx.doi.org/10.1088/0954-3899/38/8/085106
http://dx.doi.org/10.1103/PhysRevC.86.014618
http://dx.doi.org/10.1103/PhysRevC.86.014618
http://dx.doi.org/10.1103/PhysRevC.86.014618
http://dx.doi.org/10.1103/PhysRevC.86.014618
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1103/PhysRevLett.99.022505
http://dx.doi.org/10.1016/0375-9474(85)90265-9
http://dx.doi.org/10.1016/0375-9474(85)90265-9
http://dx.doi.org/10.1016/0375-9474(85)90265-9
http://dx.doi.org/10.1016/0375-9474(85)90265-9
http://dx.doi.org/10.1016/0375-9474(91)90581-P
http://dx.doi.org/10.1016/0375-9474(91)90581-P
http://dx.doi.org/10.1016/0375-9474(91)90581-P
http://dx.doi.org/10.1016/0375-9474(91)90581-P
http://dx.doi.org/10.1103/PhysRevC.42.1895
http://dx.doi.org/10.1103/PhysRevC.42.1895
http://dx.doi.org/10.1103/PhysRevC.42.1895
http://dx.doi.org/10.1103/PhysRevC.42.1895
http://dx.doi.org/10.1103/PhysRevC.84.014604
http://dx.doi.org/10.1103/PhysRevC.84.014604
http://dx.doi.org/10.1103/PhysRevC.84.014604
http://dx.doi.org/10.1103/PhysRevC.84.014604
http://dx.doi.org/10.1088/1742-6596/321/1/012045
http://dx.doi.org/10.1088/1742-6596/321/1/012045
http://dx.doi.org/10.1088/1742-6596/321/1/012045
http://dx.doi.org/10.1088/1742-6596/321/1/012045
http://dx.doi.org/10.1088/1742-6596/436/1/012030
http://dx.doi.org/10.1088/1742-6596/436/1/012030
http://dx.doi.org/10.1088/1742-6596/436/1/012030
http://dx.doi.org/10.1088/1742-6596/436/1/012030
http://dx.doi.org/10.1103/PhysRevC.88.024602
http://dx.doi.org/10.1103/PhysRevC.88.024602
http://dx.doi.org/10.1103/PhysRevC.88.024602
http://dx.doi.org/10.1103/PhysRevC.88.024602
http://dx.doi.org/10.1143/PTP.109.203
http://dx.doi.org/10.1143/PTP.109.203
http://dx.doi.org/10.1143/PTP.109.203
http://dx.doi.org/10.1143/PTP.109.203
http://dx.doi.org/10.1140/epja/i2006-10037-5
http://dx.doi.org/10.1140/epja/i2006-10037-5
http://dx.doi.org/10.1140/epja/i2006-10037-5
http://dx.doi.org/10.1140/epja/i2006-10037-5
http://dx.doi.org/10.1140/epja/i2007-10548-5
http://dx.doi.org/10.1140/epja/i2007-10548-5
http://dx.doi.org/10.1140/epja/i2007-10548-5
http://dx.doi.org/10.1140/epja/i2007-10548-5
http://dx.doi.org/10.1142/S0217732308027369
http://dx.doi.org/10.1142/S0217732308027369
http://dx.doi.org/10.1142/S0217732308027369
http://dx.doi.org/10.1142/S0217732308027369
http://dx.doi.org/10.2174/1874415X00902010017
http://dx.doi.org/10.2174/1874415X00902010017
http://dx.doi.org/10.2174/1874415X00902010017
http://dx.doi.org/10.2174/1874415X00902010017
http://dx.doi.org/10.1016/j.nuclphysa.2009.03.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.03.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.03.007
http://dx.doi.org/10.1016/j.nuclphysa.2009.03.007
http://dx.doi.org/10.1016/0375-9474(84)90111-8
http://dx.doi.org/10.1016/0375-9474(84)90111-8
http://dx.doi.org/10.1016/0375-9474(84)90111-8
http://dx.doi.org/10.1016/0375-9474(84)90111-8
http://dx.doi.org/10.1103/PhysRevC.63.034606
http://dx.doi.org/10.1103/PhysRevC.63.034606
http://dx.doi.org/10.1103/PhysRevC.63.034606
http://dx.doi.org/10.1103/PhysRevC.63.034606
http://dx.doi.org/10.1103/PhysRevC.85.034318
http://dx.doi.org/10.1103/PhysRevC.85.034318
http://dx.doi.org/10.1103/PhysRevC.85.034318
http://dx.doi.org/10.1103/PhysRevC.85.034318


SERGEI P. MAYDANYUK AND PENG-MING ZHANG PHYSICAL REVIEW C 91, 024605 (2015)

[63] S. P. Maydanyuk, V. S. Olkhovsky, G. Mandaglio, M. Manga-
naro, G. Fazio, and G. Giardina, Bremsstrahlung emission of
high energy accompanying spontaneous of 252Cf, Phys. Rev. C
82, 014602 (2010).

[64] A. I. Ahiezer and V. B. Berestetskii, Kvantovaya Elektrodi-
namika (Nauka, Mockva, 1981), p. 432 [in Russian].

[65] L. D. Landau and E. M. Lifshitz, Kvantovaya Mehanika,
kurs Teoreticheskoi Fiziki (Quantum Mechanics, Course of
Theoretical Physics) (Nauka, Moscow, 1989), Vol. 3, p. 768
[in Russian; English variant (Pergamon, Oxford, 1982)].

[66] F. D. Becchetti, Jr. and G. W. Greenlees, Nucleon-nucleus
optical-model parameters, A > 40,E < 50 MeV, Phys. Rev.
182, 1190 (1969).

[67] A. Maj, J. J. Gaardhøje, A. Ataç, S. Mitarai, J. Nyberg, A.
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M. Kicińska-Habior, N. Dubray, J. Dudek, and N. Schunck,
Probing nuclear shapes close to the fission limit with the giant
dipole resonance in Rn216, Phys. Rev. C 70, 064317 (2004).

[75] O. Wieland et al., Search for the Pygmy dipole resonance
in Ni68 at 600 MeV/nucleon, Phys. Rev. Lett. 102, 092502
(2009).

[76] V. S. Olkhovsky and E. Recami, Space-time shifts and cross-
sections in collisions between relativistic wave packets, Nuovo
Cim. A 53, 610 (1968).

[77] V. S. Olkhovsky and E. Recami, About collision-process
lifetimes and causality, Nuovo Cim. A 63, 814 (1969).

[78] V. S. Olkhovsky and E. Recami, About a space-time operator in
collision descriptions, Lettere Al Nuovo Cimento (First Series)
4, 1165 (1970).

[79] V. S. Olkhovsky, E. Recami, and A. Gerasimchuk, Time operator
in quantum mechanicsI: Nonrelativistic case, Nuovo Cim. A 22,
263 (1974).

[80] V. S. Olkhovsky and E. Recami, Recent developments in the time
analysis of tunneling processes, Phys. Rep. 214, 339 (1992).

[81] V. S. Olkhovsky, E. Recami, and J. Jakiel, Unified time analysis
of photon and particle tunnelling, Phys. Rep. 398, 133 (2004).

[82] V. S. Olkhovsky, S. P. Maydanyuk, and E. Recami, Non-self-
adjoint operators as observables in quantum theory and nuclear
physics, Phys. El. Part. At. Nucl. 41, 508 (2010).

[83] S. P. Maydanyuk, Time analysis of tunneling processes in
nuclear collisions and decays, Ph.D. thesis, Institute for Nuclear
Research of NASU, Kiev, 2003.

024605-20

http://dx.doi.org/10.1103/PhysRevC.82.014602
http://dx.doi.org/10.1103/PhysRevC.82.014602
http://dx.doi.org/10.1103/PhysRevC.82.014602
http://dx.doi.org/10.1103/PhysRevC.82.014602
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1016/0375-9474(94)90347-6
http://dx.doi.org/10.1016/0375-9474(94)90347-6
http://dx.doi.org/10.1016/0375-9474(94)90347-6
http://dx.doi.org/10.1016/0375-9474(94)90347-6
http://dx.doi.org/10.1016/0370-2693(92)91392-M
http://dx.doi.org/10.1016/0370-2693(92)91392-M
http://dx.doi.org/10.1016/0370-2693(92)91392-M
http://dx.doi.org/10.1016/0370-2693(92)91392-M
http://dx.doi.org/10.1103/PhysRevLett.74.3748
http://dx.doi.org/10.1103/PhysRevLett.74.3748
http://dx.doi.org/10.1103/PhysRevLett.74.3748
http://dx.doi.org/10.1103/PhysRevLett.74.3748
http://dx.doi.org/10.1103/PhysRevC.60.014306
http://dx.doi.org/10.1103/PhysRevC.60.014306
http://dx.doi.org/10.1103/PhysRevC.60.014306
http://dx.doi.org/10.1103/PhysRevC.60.014306
http://dx.doi.org/10.1103/PhysRevLett.76.1035
http://dx.doi.org/10.1103/PhysRevLett.76.1035
http://dx.doi.org/10.1103/PhysRevLett.76.1035
http://dx.doi.org/10.1103/PhysRevLett.76.1035
http://dx.doi.org/10.1016/S0370-2693(02)02175-5
http://dx.doi.org/10.1016/S0370-2693(02)02175-5
http://dx.doi.org/10.1016/S0370-2693(02)02175-5
http://dx.doi.org/10.1016/S0370-2693(02)02175-5
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.043
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.043
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.043
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.043
http://dx.doi.org/10.1103/PhysRevC.70.064317
http://dx.doi.org/10.1103/PhysRevC.70.064317
http://dx.doi.org/10.1103/PhysRevC.70.064317
http://dx.doi.org/10.1103/PhysRevC.70.064317
http://dx.doi.org/10.1103/PhysRevLett.102.092502
http://dx.doi.org/10.1103/PhysRevLett.102.092502
http://dx.doi.org/10.1103/PhysRevLett.102.092502
http://dx.doi.org/10.1103/PhysRevLett.102.092502
http://dx.doi.org/10.1007/BF02721712
http://dx.doi.org/10.1007/BF02721712
http://dx.doi.org/10.1007/BF02721712
http://dx.doi.org/10.1007/BF02721712
http://dx.doi.org/10.1007/BF02760741
http://dx.doi.org/10.1007/BF02760741
http://dx.doi.org/10.1007/BF02760741
http://dx.doi.org/10.1007/BF02760741
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1007/BF02753666
http://dx.doi.org/10.1007/BF02813438
http://dx.doi.org/10.1007/BF02813438
http://dx.doi.org/10.1007/BF02813438
http://dx.doi.org/10.1007/BF02813438
http://dx.doi.org/10.1016/0370-1573(92)90015-R
http://dx.doi.org/10.1016/0370-1573(92)90015-R
http://dx.doi.org/10.1016/0370-1573(92)90015-R
http://dx.doi.org/10.1016/0370-1573(92)90015-R
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1134/S1063779610040027
http://dx.doi.org/10.1134/S1063779610040027
http://dx.doi.org/10.1134/S1063779610040027
http://dx.doi.org/10.1134/S1063779610040027



