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Nucleus-nucleus potential with shell-correction contribution
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The full relaxed-density potential between spherical nuclei is considered as a sum of the macroscopic and
shell-correction contributions. The macroscopic part of the potential is related to a nucleus-nucleus potential
obtained in the framework of the extended Thomas-Fermi approach with the Skyrme and Coulomb forces
and the relaxed-density ansatz for evaluation of proton and neutron densities of interacting nuclei. A simple
prescription for the shell-correction part of the total potential is discussed. The parameters of the shell-correction
and macroscopic parts of the relaxed-density potential are found by fitting the empirical barrier heights of the
89 nucleus-nucleus systems as well as macroscopic potentials evaluated for 1485 nucleus-nucleus systems at
12 distances around touching points.
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I. INTRODUCTION

Knowledge of the nucleus-nucleus potential around the
barrier is necessary for the analysis of heavy-ion fusion
and other nuclear reactions [1–10]. Heavy-ion fusion at low
energies is very important in the physics of stars [8,11,12].
As a result, the nucleus-nucleus interaction potential is a key
ingredient for the description of various nuclear reactions in
the nature.

The microscopic evaluation of a potential between nu-
clei is based on both the effective nucleon-nucleon force
and the nucleon density distributions of interacting nuclei;
see Refs. [2–4,6–9,13–26] and papers cited therein. There
are also simple phenomenological parametrizations of the
nucleus-nucleus potential [1,3,4,10,27–36], which are often
used for the description of various heavy-ion reactions. The
parameters of phenomenological potentials depend smoothly
on the numbers of nucleons of interacting nuclei. When
the nuclei approach each other, the energies of the nucleon
single-particle levels of each nucleus are shifted and split due
to the interaction of nucleons belonging to different nuclei.
Therefore, the shell structures of both nuclei are changed at
small distances between the nuclei.

The nucleon single-particle motion and shell effects are
studied in the framework of detailed microscopic theories,
which take into account the time-dependent transformation
of the two-center field into a single-center one [7–9,23–25]
and the dissipation of the collective motion. Such microscopic
approaches are related to the complex numerical calculations.
The goal of this study is to find a simple and easy-to-use
approximation for the nucleus-nucleus potential, which takes
into account the bulk and shell effects.

The full energy of a nucleus consists of the sum of
macroscopic and microscopic contributions according to the
shell-correction method proposed by Strutinsky [37]. The
shell effect contribution has been successfully evaluated using
the Strutinsky shell-correction prescription [37,38], which
is simpler than the full microscopic treatment. The shell-
correction energy is an important ingredient of various modern
nuclear physics models because the shell corrections strongly
improve the modeling accuracy. Many key parameters such as

atomic masses [39,40], fission process [37,38], cluster decay
of heavy nuclei [41,42], and fusion cross section hindrance
at deep sub-barrier energies [43] are well described in the
frameworks of the macroscopic-microscopic models.

The contribution of the shell structure to the nucleus-
nucleus potential has fully been ignored in phenomenological
approaches. Therefore, it is desirable to find an improved
phenomenological potential which takes into account the
shell structure variation induced by the interaction between
nucleons in the interacting nuclei. Such a potential should
be more precise because it takes into account the unique
shell-correction contribution of interacting nuclei. The shell-
correction energy varies from one nucleus to another substan-
tially [37]. In contrast, the macroscopic part of the full potential
is described by a simple phenomenological expression which
depends smoothly on the numbers of protons and neutrons of
interacting nuclei. So, the macroscopic-microscopic potential
should take into account both gross and individual properties
of the specific nucleus-nucleus system.

A simple approach to the full nucleus-nucleus potential
consisting of macroscopic and microscopic parts for a wide
range of nucleus-nucleus systems is developed in the present
paper. The parameters of the full potential are found using
both data for empirical nucleus-nucleus barriers and the
values of macroscopic nucleus-nucleus potentials around the
barrier for various systems. The compilation of the data
for empirical nucleus-nucleus barrier heights is given in
Refs. [36,44–47]. The macroscopic nucleus-nucleus potential
is evaluated in the framework of the nonlocal extended
Thomas-Fermi (ETF) energy-density functional theory and the
relaxed-density approach for the description of the nucleon
density distribution of two interacting nuclei around the
touching distance. The energy-density functional takes into
account the contributions of the nucleon kinetic energy and
the effective nucleon-nucleon Skyrme and Coulomb forces
[48]. The ETF kinetic energy-density functional consists
of the Thomas-Fermi term and all correction terms of the
order �

4 [48]. Such an approach shows high accuracy for
the description of atomic masses [39,48], nucleus-nucleus
potentials for various systems [6,20,22], and the cluster decay
of heavy nuclei [42].
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A detailed description of the macroscopic and shell-
correction contributions to the full nucleus-nucleus potential
is given in Sec. II. The shape and parameters of the relaxed-
density nucleus-nucleus potential with the shell-correction
contribution are defined in Sec. III. Sec. IV is devoted to a
discussion of the results and conclusions.

II. RELAXED-DENSITY NUCLEUS-NUCLEUS
POTENTIAL

In the shell-correction method [37], the full interaction
potential energy of the system of interacting nuclei is written
in the form (see also Refs. [42,43,49,50])

Vtot(R) = Vmacro(R) + Vsh(R)

= [E12(R) − E1 − E2] + [δE12(R) − δE1 − δE2].

(1)

Here E1, E2, δE1, and δE2 are the macroscopic and shell-
correction energies of the noninteracting spherical nuclei 1
and 2, respectively. E12(R) and δE12(R) are the macroscopic
and shell-correction energies of the interacting nuclei at
distance R between the mass centers of separated nuclei.
The shell-correction energies δE12(R), δE1, and δE2 include
proton and neutron shell-correction energies related to both
the nonuniformity of single-particle spectra around the Fermi
energies and the pairing corrections [37].

A. Macroscopic interaction potential between nuclei

The macroscopic part of the interaction potential energy
Vmacro(R) between spherical nuclei is given by

Vmacro(R) = E12(R) − E1 − E2. (2)

The macroscopic energies of nuclei in Eqs. (1) and (2) are
evaluated with the help of a semiclassical ETF energy-density
functional E[ρp(r),ρn(r)]. These energies are

E12(R) =
∫

E[ρp(r,R),ρn(r,R)]dr, (3)

Ek =
∫

E[ρkp(r),ρkn(r)] dr, (4)

where ρ1p(r), ρ2p(r), ρ1n(r), and ρ2n(r) are the proton and
neutron densities of the noninteracting nuclei, while ρp(r,R)
and ρn(r,R) are the proton and neutron densities of the
interacting nuclei, k = 1,2.

1. Energy-density functional

The semiclassical energy-density functional includes the
Skyrme and Coulomb interactions as well as the intrinsic
proton and neutron kinetic energies obtained in the ETF
approach [48]. According to [48] the following expression
for the energy density functional has been deduced:

E[ρp(r),ρn(r)] = �
2

2m
[τp(r) + τn(r)] + VSk(r) + VC(r). (5)

The kinetic parts for protons (i = p) and neutrons (i = n) are
given by

τi(r) = τiT F (r) + τi2(r) + τi4(r), (6)

where τiT F (r) is the Thomas-Fermi contribution to the kinetic
energy-density functional, and τi2(r) and τi4(r) are semiclas-
sical �

2 and �
4 correction terms to the kinetic energy-density

functional for the nonlocal case, respectively.
The nuclear interaction part VSk(r) results from the Skyrme

force and reads
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where t0, t1, t2, x0, x1, x2, α, and W0 are the Skyrme-force
parameters, Ji are the spin-orbit densities, ρ = ρp + ρn, τ =
τp + τn, and J = Jp + Jn. The expressions for τi2(r), τi4(r),
and Ji for a nonlocal case are given in Ref. [48].

The Coulomb-energy density is given by

VC(r) = e2

2
ρp(r)

∫
ρp(r′)
|r − r′|dr′ − 3e2

4

(
3

π

)1/3

[ρp(r)]4/3,

(8)

where the first term is the direct contribution, the second term
is the local approximation to the exchange contribution, and e
is the proton charge.

This approximation for the energy of nucleus based on
the semiclassical energy-density functional is simple and
accurate. Similar approximations ware successfully used
for the evaluation of the atomic masses [39], the fission
barrier characteristics [48], the nucleus-nucleus potentials
[6,17,19,20,35,51], and the cluster emission [42].

2. Parametrization of density distribution

The nucleon density is a necessary ingredient of the
semiclassical energy-density approach; see Eqs. (3)–(8). It is
difficult to find the proton and neutron density distributions by
solving the integrodifferential variational Lagrange equations
in the framework of the non-ocal �

2 ETF approach for the case
of a spherical nucleus [52]. The neutron and proton densities of
nuclei in the case of the nonlocal �

4 ETF approach are found
by using trial functions only [48]. The proton and neutron
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density distributions for system of interacting nuclei have not
been evaluated yet in the framework of the ETF.

As a rule the densities of interacting nuclei are parametrized
according to specific physical conditions of the reaction.
The frozen approximation for the density distributions of
interacting nuclei is often used for the evaluation of the
nucleus-nucleus potentials in the frameworks of the energy-
density [6,13,17,19,20,22] and double-folding [2,3,15,16,21]
approaches. Note that it is reasonable to use the frozen
approximation for fast nucleus-nucleus collisions, when the
proton and neutron densities cannot significantly relax during
the collision process [6]. The proton or neutron densities at the
fixed point of space in this approximation are the sum of the
corresponding nucleon densities of each nucleus in this point.
As the result, the nucleon density can exceed the equilibrium
density of the nuclear matter ρ in some space region at small
distances between nuclei.

The nucleus-nucleus fusion reactions around the barrier
and, especially, deeply below it are related to the slow process
of collective motion of nuclei. During this process the proton
and neutron densities can relax and the densities of nuclei
cannot be simply presented as sums of nucleon densities of
the interacting nuclei. The relaxed-density distributions should
fulfill obvious conditions:

(i) The values of density at any point in space do not
exceed the equilibrium density of nuclear matter ρ
because the compressibility modulus of nuclear matter
strongly prevents excess of ρ.

(ii) The values of relaxed density at any point in space
should be smaller than the one in the frozen approxi-
mation but larger than the density values of any of the
interacting nuclei at this point.

Taking into account these conditions, the relaxed-density
ansatz [42] for the proton (neutron) density of the interacting
nuclei at point r can be presented as

ρp(n)(r,R) = ρ1p(n)(r) + ρ2p(n)(r,R)

−2 ρ1p(n)(r) ρ2p(n)(r,R)

ρ1p(n) + ρ2p(n)
. (9)

Here ρ1p(n)(r) = ρ1p(n)f1p(n)(r) and ρ2p(n)(r,R) =
ρ2p(n)f2p(n)(r,R) are the density distributions of the
proton (neutron) subsystem related to the first and second
nuclei, respectively. The functions f1p(n)(r) and f2p(n)(r,R)
describe the space distributions of corresponding densities.
These functions are normalized to unity at the center of
corresponding nuclei, f1p(n)(r)|r=0 = f2p(n)(r,R)|r=0 = 1.

Let us consider the cases of strongly and weakly overlap-
ping nuclei in the framework of parametrization (9). For the
sake of simplicity, similar shapes of the proton and neutron
density distributions in each nucleus are proposed for con-
sideration of these cases. Therefore, the density distributions
are

ρ1p(r) = Z1

A1
ρf1(r), ρ1n(r) = N1

A1
ρf1(r),

ρ2p(r,R) = Z2

A2
ρf2(r,R), ρ2n(r,R) = N2

A2
ρf2(r,R),

where Zi and Ni are the numbers of proton and neutron in the
nucleus i, Ai = Zi + Ni , i = 1,2.

The nuclei overlap strongly at small distances between
them. The total densities of each nucleus at the point close
to the center of each nucleus are

ρ1(|r|) = ρ(1 − g1),

ρ2(|r|,R) = ρ2(R − |r|) = ρ(1 − g2),

where g1 = 1 − f1(|r|) � 1 and g2 = 1 − f2(|r|,R) � 1.
Substituting these densities into (9) I find the value of relaxed
density at small distance between nuclei at the point between
the centers:

ρ(r,R) ≈ ρ[1 − (g1 + g2)/2] < ρ.

In contrast to this, the total density of these nuclei at the same
point in the frozen density approach is

ρfrozen(r,R) = ρ1(|r|) + ρ2(|r|,R) = ρ[2 − g1 − g2] > ρ.

Note that

ρ(r,R) ≈ ρ[1 − (g1 + g2)/2] < ρfrozen(r,R).

In the opposite case of well separated nuclei (large distance
between interacting nuclei) the nucleon densities of each
nucleus in the point between nuclei and far from the center
of each nucleus are very small:

ρ1(|r|) = ρf1(|r|) = ρf 0
1 ,

ρ2(|r|,R) = ρf2(|r|,R) = ρf 0
2 ,

where f 0
1(2) � 1. Substituting these densities into (9) I obtain

the value of relaxed density at this point,

ρ(r,R) ≈ ρ
(
f 0

1 + f 0
2 − f 0

1 f 0
2

)
.

Comparing this density with the other ones, it is easy to
conclude that

(i) The value of relaxed density is larger than the density
of each nucleus at this point, i.e.,

ρ(r,R) > ρ1(|r|) = ρf 0
1 , ρ(r,R) > ρ2(|r|,R) = ρf 0

2 .

(ii) The value of relaxed density is smaller than the sum of
densities of these nuclei at this point, i.e.,

ρ(r,R) ≈ ρ
(
f 0

1 + f 0
2 − f 0

1 f 0
2

)
� ρ1(r) + ρ2(r,R)

= ρ
(
f 0

1 + f 0
2

) = ρfrozen(r,R).

Thus, the parametrization (9) satisfies the proposed con-
ditions. This parametrization leads to a more realistic spatial
distribution of density formed by two nuclei near the touching
point at collision energies around the barrier height than the
one obtained in the frozen density approach. Approximation
(9) also drastically simplifies the numerical calculations of the
macroscopic potential Vm(R) in the framework of the ETF
approach with the Skyrme and Coulomb forces.

The proton (neutron) density distributions of separated
spherical nuclei are evaluated in the framework of the Hartree-
Fock method using the SLy4 parameter set of the Skyrme
force [53]. The BCS pairing with the Lipkin-Nogami method
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[54] for approximate particle number projection is used in the
calculation. The microscopic proton and neutron densities are
given on the mesh with step h. At small distances between
nuclei, when the densities of nuclei are overlapped, let us
propose that the proton and neutron density values of each
nucleus are the same as before at any mesh points. However,
the size of the mesh is slightly changed to αp(n)h. The scaling
factors αp(n) can be fixed at any value of R by the conservation
conditions of the total numbers of protons Z1 + Z2 and
neutrons N1 + N2 in the system of interacting nuclei, which
are ∫

dr ρp(n)(r,R) = Z1 + Z2(= N1 + N2). (10)

The values of αp(n) are very close to 1 at R around the touching
point of the nuclei.

By using ansatz (9) for the relaxed-density parametrization
and the microscopic Hartree-Fock densities and conditions
(10), the description of densities of two nuclei at large R
and around the touching point is simplified. As a result,
the macroscopic interaction potential energy of the nuclei
Vmacro(R) can be easily obtained by substituting these densities
into Eqs. (2)–(8).

B. Shell-correction contribution to the full interaction potential
between nuclei

The shell-correction contribution to the full interaction
potential energy is

Vsh(R) = δE12(R) − δE1 − δE2. (11)

It is obvious that mutual influence of nuclei on their single-
particle spectra is negligible at distances much greater than the
sum of radii of nuclei Rt = R1 + R2, therefore

δE12(R)|R�Rt
= δE1 + δE2 (12)

and

Vsh(R)|R�Rt
= 0.

The δE12(R) value at R ≈ 0 equals the shell-correction
energy of the nucleus formed in the fusion of nuclei 1 and 2 at
the equilibrium deformation. The full potential should be equal
to the fusion reaction Q value at R = 0, i.e., Vtot(R = 0) = Q.

The nuclei strongly interact at small distances between
them. This interaction leads to the shift and the splitting of the
single-particle levels in both nuclei. Due to this the proton and
neutron single-particle spectra in the vicinity of the respective
Fermi levels become more homogenous around touching
distance Rt . Such behavior of the single-particle levels is
clearly demonstrated in the frameworks of the two-center shell
model [7,8,55,56] and microscopic cluster decay model [41].

According to the shell-correction method [37,38], the
absolute value of the shell-correction energy is reduced in
the case of the more homogeneous single-particle spectrum
in the vicinity of the Fermi level. The sharp reduction of the
shell-correction contribution to the full potential energy around
the touching point of nuclei is obtained in the framework of the
microscopic cluster decay model [41]. So, the perturbation of
the single-particle nucleon levels, which is proportional to the

strength of nucleon-nucleus interaction, reduces the absolute
value of the shell-correction energy.

The perturbation of the single-particle level energies and
the interaction between nucleons belonging to different nuclei
are increased when the distance between the surfaces of
the interacting nuclei decreases. The perturbation strength is
related to the density distribution in the nucleus induced by
the disturbance as well as to the radius of the nucleon-nucleon
force. The density distribution is often parametrized by the
Fermi distribution. Since the radius of the nucleon-nucleon
force is very short, it is reasonable to approximate the shell-
correction contribution to the full nucleus-nucleus potential
around the touching point of two nuclei as [42,43]

δE12(R) ≈ [δE1 + δE2]fsh(R). (13)

Here

fsh(R) = 1/ {1 + exp [(Rsh − R)/dsh]} , (14)

and Rsh and dsh are the radius and the diffuseness related to the
attenuation of the shell-correction magnitude with reduction of
distance R. This approximation for the shell-correction energy
contribution into the full potential is rough, but it can greatly
simplify the calculations of the shell-correction energies for
various nucleus-nucleus systems at different distances R. Note
that numerical calculations of the shell-correction energy in the
framework of the two-center model [41] show that the values
of the shell-correction energy of the nucleus-nucleus system
abruptly change around the touching point of two nuclei.
Therefore, the radial dependence of the shell-correction energy
described by Eqs. (13) and (14) is reasonable. Moreover, the
exponential reduction of the shell-correction energy values re-
lated to washing out the nonhomogeneity of the single-particle
spectra is often considered in nuclear physics [4,5,57,58].

The shell-correction energy of interacting nuclei δE12(R)
smoothly approaches the limit of noninteracting nuclei (12)
at large distances R between nuclei, i.e., Vsh(R) → 0 at R �
Rsh ∼ Rt . As a result, the shell-correction contribution to the
full nucleus-nucleus potential is

Vsh(R) 	 [δE1 + δE2][fsh(R) − 1]. (15)

This approximation for the shell-correction contribution to the
potential energy of two nuclei is successfully used for the
description of both the cluster emission from heavy nuclei
[42] and the fusion cross section hindrance at deep sub-barrier
energies [43].

It is possible to evaluate the shell-correction energy values
δE1 and δE2 according to the Strutinsky prescription [37,38]
for a specific nucleon mean field. However, the easiest way
to estimate the value of the shell-correction energy δE in
a spherical nucleus is to find the difference between the
experimental Bexp and macroscopic Bm binding energies of
the nucleus:

δE = Bexp − Bm. (16)

Moreover, this approach for the evaluation of the shell-
correction energy is similar to the one applied for the evaluation
of the energy level density in nuclei; see Refs. [59,60].

The values of Bexp in Eq. (16) can be found in the recent
evaluation of the atomic masses [61], while the value of Bm in
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the nucleus with Z protons and N neutrons is

Bm = −15.86864A + 21.18164A2/3 − 6.49923A1/3

+
[
N − Z

A

]2

× [26.37269A − 23.80118A2/3 − 8.62322A1/3]

+ Z2

A1/3
[0.78068 − 0.63678A−1/3] + Pp + Pn. (17)

Here Bm is the binding energy in MeV, A = Z + N , Pp(n)

are the proton (neutron) pairing terms, which equal Pp(n) =
5.62922(4.99342)A−1/3 in the case of odd Z (N ) and Pp(n) = 0
in the case of even Z (N ). Equation (17) is a simple extension
of the liquid drop Weizsäcker formula [62,63] for the binding
energy of nuclei. The coefficients in Eq. (17) are evaluated
by fitting the recent values of the atomic masses [61]. The
experimental binding energies of 3353 nuclei are described by
Eq. (17) with a root mean error of 2.49 MeV. This error is
very small compared to the experimental values of the nuclear
binding energies in medium and heavy nuclei.

The liquid drop mass formula may be found by using
the Skyrme force too [64]. Such an approach may look
more consistent because the macroscopic nucleus-nucleus
interaction energy is evaluated with the help of the Skyrme
energy density functional; see Eqs. (2)–(8). However, the
liquid drop mass formula obtained in Ref. [64] using the
Hartree-Fock calculation with the SLy4 parametrization of
the Skyrme force leads to a larger value of the root mean error
for experimental masses than the one in Eq. (17). The atomic
masses of very heavy nuclei calculated in the framework of
the Hartree-Fock approach with the SLy4 parameter set are
systematically underbound [65]. Therefore, Eqs. (16) and (17)
are applied for the evaluation of the shell-correction energy
here because it is better to use a simple and high accuracy
approach.

Note that slightly different values of the shell-correction
energy for the same nucleus can be calculated applying
various formulas for the liquid drop mass formula [60] or
using diverse parametrizations of the nucleon mean field for
the shell-correction calculations according to the Strutinsky
prescription. Similarly, the Hartree-Fock calculations with
various parameter sets of the Skyrme force lead to different
values of the shell-correction energy for the same nucleus.
For example, the values of the shell-correction energy of
208Pb evaluated by using Eqs. (16) and (17), the Megnoni-
Nakamura approach [60], and the Nilsson and Saxon-Woods
mean-field models [38,66] are −10.620, −9.972, −12, and
−12 MeV, respectively. These different values of the shell-
correction energy are slightly affected by the value of the
nucleus-nucleus potential due to the radial dependence of
the shell-correction contribution; see Eqs. (14) and (15).
For example, the variations of the nucleus-nucleus potentials
for the system 16O + 208Pb at the touching point induced
by various values of the shell-correction energies of 208Pb
(−10.620 and −9.972 MeV or −10.620 and 12 MeV) are
0.16 or 0.34 MeV, respectively. Moreover, the corresponding
differences of the nucleus-nucleus potentials near the barrier
distances are even smaller than 0.16 or 0.34 MeV due to

the exponential dependence fsh(R) on R. Note that the value
of the barrier height of the nucleus-nucleus potential for the
system 16O + 208Pb is close to 77 MeV [43]. Therefore, the
model-dependent variation of the shell-correction energy is
not crucial for the accuracy of the nucleus-nucleus potential.

Any influence of the relative motion of the nuclei on the
nucleus-nucleus interaction and the single-particle levels has
been ignored up to now. However, the nucleons move in
the approaching nuclei during reaction and the interaction of
nucleons belonging to different nuclei disturbs the nucleons
in both nuclei. This leads to time-dependent disturbance of
the shell structure of each nucleus. It is obvious that the
strength of this disturbance should depend on the ratio of
the nucleon velocity (kinetic energy) and the relative velocity
(kinetic energy) of the nuclei. The relative velocity of two
nuclei depends on radial and rotational degrees of freedom.
When the relative velocity of approaching nuclei is small, the
static (adiabatic) consideration is close to realistic because
the shell structure of the nuclei can be relaxed due to high
velocities of the nucleons in the nuclei. In contrast, the
shell structure and nucleon density distributions cannot be
disturbed at fast collisions. Therefore, nuclei can touch each
other without modification of the shell structure of colliding
nuclei at high collision energies. This conclusion is supported
by time-dependent microscopic calculations [24,25], which
show that the nuclei overcome the barrier essentially in
their ground-state density at high collision energies. Thus,
the shell-correction contribution to the full potential depends
on the collision energy E. The energy dependence of this
contribution can be presented in the form [43]

Vsh(R,E) =
{

V 0
sh(R) exp [−a(E − B)] at E � B,

V 0
sh(R) at E � B,

(18)

where B is the barrier height of the macroscopic potential
Vmacro(R) and a is the reduction parameter of the shell-
correction energy contribution to the full potential. So, the
shell-correction contribution to the full potential decreases
with increasing the collision energy. Eq. (18) does not depend
on the velocity of the nucleons because nucleon velocity at the
Fermi level has a small variation from one nucleus to another
and the value of the shell-correction energy depends on the
inhomogeneity of the single-particle spectra around the Fermi
energy [37].

The full potential at E > B moves smoothly towards the
macroscopic potential with increasing E. The nucleus-nucleus
collision process is near adiabatical at small collision energies
E � B, because the velocity of relative motion is less than
the velocities of nucleons in nuclei. Therefore, the energy
dependence of the shell-correction contribution is ignored at
low collision energies.

The value of the parameter a = 0.35 MeV−1 in Eq. (18) is
determined by fitting the fusion cross section for the reaction
16O + 208Pb [43] because it has been measured in a very wide
energy range around the barrier [67]. The thicknesses of the
barrier at deep sub-barrier collision energies become larger due
to the positive shell-correction contribution to the full potential
for the reaction 16O + 208Pb. This directly leads to a reduction
of the barrier penetrability and, as a result, to the hindrance of
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the deep sub-barrier fusion which is observed for this reaction
[43,67].

III. PHENOMENOLOGICAL RELAXED-DENSITY
NUCLEUS-NUCLEUS POTENTIAL

The proton and neutron densities of the nuclei are obtained
in the framework of the Hartree-Fock model and the relaxed-
density ansatz (9). The macroscopic relaxed-density nucleus-
nucleus potential is calculated substituting these densities into
Eqs. (2)–(8). The parameter set SLy4 [53] of the Skyrme force
is used for the evaluation of both the Hartree-Fock nucleon
densities and the macroscopic part of the nucleus-nucleus
potential. This parameter set is adopted in the calculations
because the nuclei along and far away from the beta-stability
line are often used in heavy-ion reactions, and this set of the
Skyrme force is adjusted to reproduce various properties of
nuclear matter, neutron stars, and finite nuclei along and far
away from the beta-stability line.

The values of fusion barrier heights obtained in the
macroscopic relaxed-density approach for light and medium
nucleus-nucleus systems are close to the empirical ones from
Refs. [36,45,47]. Unfortunately, the evaluated values of the
fusion barrier heights for heavy and very heavy nucleus-
nucleus systems are higher than the empirical ones. Note
that a similar tendency is found in Ref. [45] when the
barrier heights of nucleus-nucleus potentials are obtained in
the framework of the semiclassical energy-density approach
with the frozen density distribution of two nuclei [35] and
the SkM� parameter set of the Skyrme force [68] (see also
Fig. 1). Such a tendency is probably related to a systematical
underbounding [65] of very heavy nuclear systems and/or
nuclei in the framework of the Skyrme-Hartree-Fock approach.
Moreover, the overestimation of empirical barrier heights for
heavy and very heavy nucleus-nucleus systems is observed for
various phenomenological potentials too; see Fig. 1.

Our goal is to find the phenomenological relaxed-density
potential which describes well the empirical barriers for light,
medium, heavy, and very heavy nucleus-nucleus systems. The
values of the macroscopic part of this potential around the
touching distances should be close to the numerically evaluated
relaxed-density macroscopic potential. To solve this task the
next approach is applied.

At the beginning, 54 spherical nuclei between 16O and
216Po are selected. Then 1485 macroscopic relaxed-density
potentials between all possible pairs of these 54 nuclei at
12 distances around the touching point are evaluated. These
distances equal Ri,j = 1.18(A1/3

1i + A
1/3
2i ) + 0.3j − 0.6 fm,

where A1i and A2i are the numbers of nucleons in the
interacting nuclei, i = 1,2,3, . . . ,1485 and j = 1,2,3, . . . ,12.
The dataset for 17820 (17820 = 1485 × 12) macroscopic po-
tential values Vimacro(Rij ) and the data for 89 empirical barrier
heights B

emp
k between spherical nucleus-nucleus systems from

Refs. [36,45–47] are used for the evaluation of the macroscop-
ical and shell-correction parts of the full phenomenological
relaxed-density nucleus-nucleus potential. Note that, as a
rule, the values of the empirical barrier heights are extracted
from the analysis of sub-barrier heavy-ion fusion reactions.
Therefore, the shell-correction contributions into the full

FIG. 1. (Color online) Absolute differences between 89 empiri-
cal barrier heights [36,45–47] and barrier heights evaluated using
the relaxed density with the shell-correction contribution (relax),
frozen-density (frozen) [35], Krappe-Nix-Sirk (KNS) [31], Bass
(Bass80) [1], Bass (Bass74) [27], proximity (Prox77) [30], proximity
(Prox2000) [34], Winter [33], and Siwek-Wilczynska-Wilczynski
(SWW) [10] potentials.

nucleus-nucleus potentials are evaluated in the case E � B.
The parameters of the phenomenological potential are found
by the minimization of the function

F = 15

⎡
⎣ 1

17820

1485∑
i=1

12∑
j=1

(
V

phen
imacro(Rij )

V i
macro(Rij )

− 1

)2
⎤
⎦

1/2

+
[

1

89

89∑
k=1

(
B

emp
k − B

phen
k

)2

]1/2

. (19)

Here B
phen
k are the values of the barrier heights evaluated by

using the full phenomenological potential. The values of the
macroscopical part of the phenomenological potential should
be similar to the ones of the numerically evaluated relaxed-
density potential due to the minimization of the first term in
Eq. (19). The minimization of the second term of Eq. (19)
leads to correct values of barriers for various nucleus-nucleus
systems. The factor 15 in the first term of Eq. (19) enhances
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the influence of fitting of the macroscopic potentials, and the
values of the first and second terms of Eq. (19) are close to
each other in this case.

The full phenomenological relaxed-density nucleus-
nucleus potential is the sum of the Coulomb and nuclear parts

Vtot(R) = VC(R) + Vnucl(R), (20)

where

VC(R) =
⎧⎨
⎩

Z1Z2e
2

R
at R � RC,

Z1Z2e
2

RC

[
3
2 − 1

2
R2

R2
C

]
at 0 � R � RC,

(21)

Vnucl(R) =
{
V out

macro(R) + Vsh(R) at R � Rt,

V in
nucl(R) at 0 � R � Rt,

(22)

and

Ri = 1.2536A
1/3
i − 0.80012A

−1/3
i − 0.0021444/Ai (23)

are the radii of corresponding nuclei in fm and i = 1,2. The
expression for the Coulomb potential is standard for the theory
of heavy-ion reactions [1–4]. Let us put RC = Rt = R1 + R2

for the sake of the reduction of the parameter number.
The macroscopic nuclear part V out

macro(R) of the potential is
taken in the Woods-Saxon form

V out
macro(R) = V0

1 + exp[(R − Rt)/d]
, (24)

where

V0 = v1C + v2C
1/2 (25)

is the potential strength in MeV, v1 = −27.190 MeV fm−1,
v1 = −0.93009 MeV fm−1/2,

d = d1 + d2/C (26)

is the diffuseness in fm, d1 = 0.78122 fm, d2 =
−0.20535 fm2, and C = R1R2/Rt is in fm.

The shell-correction contribution Vsh(R) to the total po-
tential at R � Rt is evaluated using Eqs. (14)–(18). The shell-
correction contribution to the potential is small near the barrier
radius and important close to the touching point. Therefore,
it is impossible to fix the parameters of the shell-correction
potential unambiguously by using our procedure. However,
the values of the deep sub-barrier fusion cross sections are
sensitive to the shell-correction contribution of the heavy-ion
potential [43]. Therefore, the radius Rsh and diffuseness dsh

parameters of the shell-correction contribution [see Eq. (14)]
can be determined using the data for the fusion cross section
hindrance at deep sub-barrier energies for three reactions
discussed in Ref. [43]. The values of these parameters are
located in narrow ranges for various fusion reactions [43]. So,
I can use the averaging of the corresponding values obtained
in Ref. [43] for fixing values of Rsh and dsh. The average value
of the diffuseness parameter is dsh = 0.233 fm. Parameter
Rsh can be related to the touching distance of nuclei Rt, i.e.,
Rsh = Rt − 0.26 fm.

The nuclear part of the phenomenological potential at small
distances is also taken in the Woods-Saxon form

V in
nucl(R) = Qeff

1 + exp[(R − Rin)/din]
, (27)

where

Qeff = Q − 3Z1Z2e
2

2Rt
, (28)

Rin = Rt − din ln

(
Qeff

Vnucl(Rt)
− 1

)
, (29)

din = − V 2
nucl(Rt)

QeffV
′

nucl(Rt)

(
Qeff

Vnucl(Rt)
− 1

)
. (30)

Here Q is the Q value of the heavy-ion fusion reaction
evaluated by using the recent values of the atomic masses
[61]. If the binding energy of a nucleus is not given in Ref.
[61], then it can be obtained with the help of Eq. (17). The
radius Rin and the diffuseness din of the inner nuclear potential
are obtained by using the continuity conditions of both the
potential

Vnucl(Rt) = V out
macro(Rt) + Vsh(Rt) = V in

nucl(Rt) (31)

and the potential derivative

V ′
nucl(Rt) = V in

nucl
′(Rt) (32)

at the matching point R = Rt.
The nucleus-nucleus interaction at large distances R �

Rt contains the macroscopic nuclear, Coulomb, and shell-
correction contributions; see Eqs. (20)–(22). In the general
case, the heavy-ion potential energy at distances much smaller
than Rt depends on the shape of fusing nuclei. For the sake of
simplicity, the potentials in Eqs. (24) and (27) are parametrized
by the Woods-Saxon one, because it is very often used in the
theory of nuclear reactions. Therefore, this potential can be
easily integrated into existing nuclear reaction codes.

According to Eq. (1) the potential energy of a nucleus
formed at complete fusion of two nuclei equals the reaction
Q value, i.e., Vtot(0) = Q. The relaxed-density potential is
approximately equal to Q at R = 0 due to Eqs. (20)–(22) and
(27)–(30).

IV. RESULTS AND DISCUSSION

The values of 89 empirical barrier heights between spherical
nuclei [36,45–47] have been thoroughly described by a phe-
nomenological relaxed-density potential with shell-correction
contributions. The root mean square error of the barrier
height description related to the second term of Eq. (19) is
0.879 MeV. The value of the same quantity obtained without
the shell-correction contribution to the potential is 0.976 MeV.
The comparison of the root mean square errors shows that the
shell-correction contribution to the nucleus-nucleus potential
is an important ingredient which improves the description of
empirical barrier heights.

The root mean square errors related to the description of
89 empirical barrier heights obtained in the frameworks of the
frozen-density [35], Krappe-Nix-Sirk [31], Bass 1974 [27],
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FIG. 2. (Color online) Relative differences between 89 empirical
barrier heights and barrier heights evaluated with the help of various
potentials. The notations are the same as in Fig. 1.

Bass 1980 [1], proximity 1977 [30], proximity 2000 [34],
Winter [33], and Siwek-Wilczynska-Wilczynski [10] poten-
tials are 3.373, 3.460, 6.718, 1.815, 1.784, 3.710, 1.835,
and 1.521 MeV, respectively. These values of the root mean
square errors are larger than the one obtained using the phe-
nomenological relaxed-density potential with shell-correction
contributions.

The absolute differences between 89 empirical barrier
heights and the barrier heights evaluated using various
phenomenological potentials are presented in Fig. 1. As a
rule, various empirical potentials well describe the values
of the barrier heights for light nucleus-nucleus systems. The
values of the barrier heights evaluated with the help of
phenomenological potentials from Refs. [1,27,31,33–35] for
heavy and especially very heavy nucleus-nucleus systems are
larger than the empirical ones. It is also useful to compare the
relative differences between the empirical barrier heights and
the barrier heights obtained using various phenomenological
potentials. The corresponding differences are presented in
Fig. 2. The relative differences between the empirical and
theoretical barrier heights clearly show the accuracy of the
barrier evaluation for light systems in the framework of various
approaches.

FIG. 3. (Color online) Nucleus-nucleus potentials for the system
58Ni + 58Ni evaluated with the help of various approaches. The
empirical value of the barrier height is shown by a horizontal arrow
and the touching distance of these nuclei by a vertical arrow.

The analysis of the results presented in Figs. 1 and 2 shows
that phenomenological relaxed-density potential with shell-
correction contributions successfully describes the empirical
barrier heights in the full range of nucleus-nucleus systems in
contrast to other potentials.

The nucleus-nucleus potentials for the system 58Ni + 58Ni
evaluated in various approaches are presented in Fig. 3. The
value of the shell-correction energy for 58Ni is −4.45 MeV.
The barrier height of the phenomenological relaxed-density
potential with the shell-correction contribution is close to the
empirical value 97.90 MeV [47]; see Fig. 3. The relaxed-
density potential deviates from other potentials around the
touching distance and at smaller distances.

There are many nuclei which have positive values of
the shell-correction energies. Therefore, it is interesting to
study the effect of the sign of the shell-correction energy
on the nucleus-nucleus potential. The full relaxed-density
potentials obtained with opposite values ∓4.45 MeV of the
shell-correction energy of 58Ni and the macroscopic part of
the potential (the full potential without the shell-correction
contribution) are presented for the system 58Ni + 58Ni in
Fig. 4. The shell-correction contribution to the potential is
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FIG. 4. (Color online) Full relaxed-density potential with the
shell-correction contribution for the system 58Ni + 58Ni evaluated for
various contributions of the shell-correction energies to the potential.

small at large distances and is important around the touching
point (see Fig. 4).

According to Eqs. (1) and (15) the depth of the capture well
of the relaxed-density potential with negative shell-correction
contributions (the case δE1 + δE2 < 0) becomes shallower
than the one of the macroscopic potential. The barrier thickness
of the full potential is larger than the one for the macroscopic
potential. In contrast to this, the shell-correction contribution
to the potential at δE1 + δE2 > 0 reduces the barrier thickness
and increases the well depth of the full potential in comparison
to the macroscopic ones. This effect is clearly seen in Fig. 4.

Because of this effect the deep sub-barrier fusion hindrance
takes place for a nucleus-nucleus system with the strong
negative shell-correction contribution to the full heavy-ion po-
tential, while the strong positive shell-correction contribution
to the full potential leads to the weak enhancement of the deep
sub-barrier fusion cross section; see Ref. [43] for details.

In conclusion, the phenomenological relaxed-density
nucleus-nucleus potential with the shell-correction contribu-
tion is discussed in detail. The shell-correction contribution
to the potential is related to inner structure of nuclei, which
is disturbed by nucleon-nucleon interactions of colliding
nuclei. A simple approach for the evaluation of the shell-
correction contribution to the full potential is proposed. The
shell-correction contribution shows how the full potential for
the specific nucleus-nucleus system deviates from the global
macroscopic potential. The global macroscopic potential
smoothly depends on A1, Z1, A2, and Z2 in contrast to
the shell-correction part. The shell-correction contribution
to the full potential is very important at distances smaller
than the barrier radius. The phenomenological relaxed-density
nucleus-nucleus potential with the shell-correction contribu-
tion can reproduce the empirical barrier heights with a value
of the root mean square error of 0.879 MeV.
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