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(Received 13 December 2014; revised manuscript received 5 February 2015; published 27 February 2015)

Background: The impurity effect of hyperons on atomic nuclei has received a renewed interest in nuclear physics
since the first experimental observation of appreciable reduction of E2 transition strength in low-lying states of
the hypernucleus 7

�Li. Many more data on low-lying states of � hypernuclei will be measured soon for sd-shell
nuclei, providing good opportunities to study the � impurity effect on nuclear low-energy excitations.
Purpose: We carry out a quantitative analysis of the � hyperon impurity effect on the low-lying states of sd-shell
nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF),
considering that the � hyperon is injected into the lowest positive-parity (�s) and negative-parity (�p) states.
Method: We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the
� binding energies of hypernuclei as well as the potential-energy surfaces (PESs) in the (β,γ ) deformation plane.
We also calculate the PESs for the � hypernuclei with good quantum numbers by using a microscopic particle
rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied
in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective
excitations of triaxially deformed core nuclei. Taking 25,27

�Mg and 31
�Si as examples, we analyze the impurity

effects of �s and �p on the low-lying states of the core nuclei.
Results: We show that �s increases the excitation energy of the 2+

1 state and decreases the E2 transition strength
from this state to the ground state by 12% to 17%. On the other hand, �p tends to develop pronounced energy
minima with larger deformation, although it modifies the collective parameters in such a way that the collectivity
of the core nucleus can be either increased or decreased.
Conclusions: The quadrupole deformation significantly affects the � binding energies of deformed hypernuclei.
A beyond-mean-field approach with the dynamical correlations due to restoration of broken symmetries and
shape fluctuation is essential in order to study the � impurity effect in a quantitative way.
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I. INTRODUCTION

Since the first discovery of � hypernuclei in 1953 [1,2],
hypernuclear physics as an important branch of nuclear physics
has attracted lots of attention and many novel phenomena
have been discovered in this field. Due to the absence of
the Pauli exclusion principle from other nucleons, a hyperon
with strangeness degree-of-freedom can probe deeply into the
interior of nuclear medium and significantly modify nuclear
properties. For example, a hyperon may induce a softening of
the equation of state of nuclear matter changing the properties
of neutron stars [3], a shrinkage of the size of atomic nuclei
with cluster structure [4–6], a stabilization of the binding of
unbound nuclear systems [7] and thus the driplines of nucleons
[8], a modification of nuclear deformation [9,10] and collective
excitations [11–14], and a reduction of fission-barrier height in
heavy nuclei [15,16]. Because hyperon-nucleon and hyperon-
hyperon scattering experiments are difficult to perform, the
study of properties of hypernuclei has in fact been playing a
vital role in understanding baryon-baryon interactions in nu-
clear medium, which are important not only for understanding
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hypernuclear structure but also for the study of hypernuclear
matter and neutron stars [17]. A comprehensive introduction
to the history and/or recent developments on various aspects
in hypernuclear physics can be found in the review papers
[18–25].

Thanks to the advent of hyperball facility for measuring
hypernuclear γ -ray spectroscopy with high resolution [6,26],
the study of � hyperon impurity effect on nuclear deformation
and low-energy structure has attracted a renewed interest.
The self-consistent mean-field (SCMF) approaches make good
tools for this study because they provide a vivid way to inves-
tigate how the ground-state deformation is affected by adding
a � particle. In the past decades, the SCMF approaches have
been adopted extensively to study the structure of hypernuclei
[8,27–38]. However, most of these studies are restricted to
spherical systems. In recent years, the SCMF approaches have
been extended to deformed cases in order to examine the
change of nuclear deformation after adding a hyperon, based
either on Skyrme forces [39–41] or on effective relativistic
meson-exchange Lagrangian [9,10,42,43]. It has been found in
these mean-field studies that the deformations of hypernuclei
and the corresponding core nucleus are rather similar, but with
some exceptions as predicted by the relativistic mean-field
(RMF) calculations [9,10]. It implies that the hyperon impurity
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effect is generally larger in the calculation with relativistic
approaches than that with nonrelativistic approaches, as has
been pointed out by Schulze et al. [44]. Therefore, one
would encounter more opportunities to see drastic deformation
changes from ordinary nuclei to hypernuclei in the studies
based on relativistic energy density functionals (EDFs).

It should be pointed out that, in most of the previous
SCMF studies allowing deformation, the � hyperon is put
in the lowest positive-parity (�s) state. The corresponding
�s-hypernuclei turn out to have a softer energy surface than
their core nucleus. This indicates that the dynamical shape
fluctuation effect will be more important in hypernuclei than
in normal nuclei, and thus the mean-field approaches might
overestimate or underestimate the � hyperon impurity on
nuclear deformation and shapes. To quantify the � hyperon
impurity effect, one therefore has to use the beyond-mean-field
(BMF) approximation to take into account the dynamical
correlation effects associated with symmetry restoration and
shape fluctuation. Notice that the deformed mean-field breaks
rotational symmetry and, if one works only at the mean-field
level, the connection of the deformed solution to spectroscopic
observables, such as the B(E2) value, has to rely on additional
assumptions such as the rigid-rotor model, which becomes ill
defined in light and soft nuclei.

Recently, we have quantitatively studied the � impurity
effect on the low-lying states of 24Mg by using a five-
dimensional collective Hamiltonian (5DCH) as a choice of
the BMF approaches [11]. The parameters of the 5DCH were
determined by a triaxially deformed Skyrme–Hartree–Fock
(SHF) + BCS calculation. We found that the presence of
one � hyperon in the lowest positive-parity state reduces
the B(E2 : 2+

1 → 0+
1 ) in 24Mg by 9% and shifts up the

excitation energy of the second 2+ state by about 240 keV.
Similar conclusions have also been found in the BMF study
based on the antisymmetrized molecular dynamics (AMD)
model [12,45]. We note that these BMF studies are within
nonrelativistic frameworks. Moreover, the impurity effect of
� hyperon in the lowest negative-parity (�p) state has not
been well examined in the 5DCH approach.

In view of the above facts, it is interesting to quantitatively
study the � hyperon impurity effect based on a relativistic EDF
at the BMF level by putting the � hyperon in the �s and �p

states. To this end, as a continuation of our previous work [11],
we adopt the same 5DCH approach for the low-lying states of
core nuclei but with collective parameters determined from a
triaxial RMF + BCS calculation. We generalize our triaxial
RMF approach in a three-dimensional harmonic-oscillator
(3DHO) basis for ordinary nuclei [46] to � hypernuclei by
including � hyperons. This 5DCH method based on the
triaxial RMF solutions can be regarded as the Gaussian overlap
approximation to the generator coordinate method (GCM)
[47,48] with three-dimensional angular-momentum projection
(3DAMP) [49]. The success of the 5DCH method based on
relativistic EDFs has been illustrated in a series of calculations
for spherical, transitional, and deformed nuclei from light to
superheavy regions [50–54]. In particular, the validity of the
5DCH approach for the low-lying states of 76Kr has recently
been verified against a seven-dimensional GCM calculation
[55].

It is worth mentioning that there are two other triaxially
deformed RMF codes for � hypernuclei based on meson-
exchange interaction. One was developed by B. N. Lü et al.
with an axially deformed HO basis [10,42], while the other
one was developed by H. F. Lü et al. [56] based on the
triaxial RMF code with the 3DHO basis for ordinary nuclei
[57] with time-odd fields but without pairing correlation. Our
triaxial code developed in the present work includes the paring
correlation and is mainly based on but not restricted to the
relativistic point-coupling EDFs, which have been widely
adopted to study nuclear low-lying states within the framework
of multireference covariant density functional theory (CDFT)
[47,55,58,59].

The paper is arranged as follows: In Sec. II, we present
the main formalism of the triaxial RMF approach for �
hypernuclei. In Sec. III, we present the results for � binding
energies obtained with the triaxial RMF code and compare to
the results of the spherical code. In particular, we discuss the
potential-energy surfaces (PESs) for � hypernuclei 25,27

� Mg,
31
�Si as well as the core nucleus of each of these hypernuclei

in (β,γ ) deformation plane. In Sec. IV, the microscopic
particle-rotor model (PRM) for the PES of � hypernucleus
25
�Mg with spin-parity of Iπ = 1/2+ and 1/2− are discussed

in comparison with that of 24Mg with Jπ = 0+. In Sec. V, the
5DCH method is adopted to study a change in the low-lying
states of the core nucleus by adding a � hyperon. The impurity
effect of � hyperon is discussed both for �s and �p. A
summary of the present study and an outlook are then given in
Sec. VI.

II. TRIAXIALLY DEFORMED RELATIVISTIC
MEAN-FIELD APPROACH FOR � HYPERNUCLEI

In the present triaxial RMF approach for � hypernuclei, the
nucleon-nucleon (NN ) and nucleon-hyperon (N�) effective
interactions are described in terms of contact couplings with
different vertices. The Lagrangian density for � hypernuclei
then reads

L = Lfree + Lem + LNN + LN� + L��, (1)

where the first term Lfree is for the free nucleons and hyperon,
and Lem for the Coulomb interaction between protons. The
third term LNN is for the NN effective interaction part. The
detailed expressions for these terms can be found, for example,
in Refs. [60,61]. Since we focus on single-� hypernuclei in
this work, the L�� term for �� interaction vanishes. The N�
interaction is chosen as in Ref. [62]; that is,

LN� = LN�
4f + LN�

der + LN�
ten , (2)

with

LN�
4f = −α

(N�)
S (ψ̄NψN )(ψ̄�ψ�)

−α
(N�)
V (ψ̄NγμψN )(ψ̄�γ μψ�), (3a)

LN�
der = −δ

(N�)
S (∂μψ̄NψN )(∂μψ̄�ψ�)

−δ
(N�)
V (∂μψ̄Nγνψ

N )(∂μψ̄�γ νψ�), (3b)

LN�
ten = −α

(N�)
T (ψ̄�σμνψ�)(∂μψ̄Nγνψ

N ). (3c)
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We note that the vector-meson-like tensor coupling term
LN�

ten is usually adopted to reproduce the smallness of spin-orbit
splitting in � single-particle spectra [33,62–67], although it
can also be explained in terms of an almost complete cancela-
tion between short-range scalar and vector contributions and
longer-range terms generated by two-pion exchange [37]. The
Lagrangian contains sixteen coupling constants αS , αV , αT S ,
αT V , α

(N�)
S , α

(N�)
V , α

(N�)
T , βS , γS , γV , δS , δV , δT S , δT V , δ

(N�)
S ,

and δ
(N�)
V , which are usually optimized at the mean-field level

to properties of several atomic nuclei and hypernuclei.
From the Lagrangian density (1), one can derive the

corresponding energy ERMF at the mean-field level with the
no-sea approximation, which can be decomposed into two
parts, the pure nuclear part and the � hyperon part:

ERMF = EN
RMF + E�

RMF, (4)

with

EN
RMF = TN +

∫
d3r

[
εNN (r) + 1

2
A0eρ

(p)
V

]
, (5a)

E�
RMF = T� +

∫
d3rεN�(r). (5b)

The first term in these equations, TB = Tr[(α · p +
γ 0mB)ρB

V ], is for the kinetic energy of nucleons (B = N )
or hyperon (B = �), where mB is the corresponding mass.
For the sake of simplicity, time-reversal invariance is usually
imposed in the mean-field calculations for the � hypernuclei,
in which case the NN and N� interaction terms are given by

εNN = 1

2

∑
m=S,V,T S,T V

[
αm

(
ρN

m

)2 + δmρm�ρN
m

]

+ 1

3
βS

(
ρN

S

)3 + 1

4
γS

(
ρN

S

)4 + 1

4
γV

(
ρN

V

)4
, (6a)

εN� =
∑

m=S,V

[
α(N�)

m ρN
m ρ�

m + δ(N�)
m ρN

m �ρ�
m

]

+α
(N�)
T ρN

V ρ�
T , (6b)

respectively. In these equations, the densities ρB
m and the tensor

density ρ�
T are defined as

ρB
m =

∑
k

v2
k ψ̄

B
k �mψB

k , ρ�
T = ∇ · (ψ̄�iαψ�), (7)

where the vertex �m is 1, γ 0, τ3, and γ 0τ3, with the
index m running over S, V , T S, and T V , which represents
respectively the isoscalar-scalar, isoscalar-vector, isovector-
scalar, and isovector-vector types of coupling characterized by
their transformation properties in isospin-Lorentz spaces. v2

k

is the occupation probability of the kth single-particle energy
level of neutrons or protons to be determined by the BCS
method. The α and γ μ are the 4 × 4 Dirac matrices.

Minimization of the RMF energy (4) with respect to the
single-particle wave function for nucleons or hyperon leads to
the Dirac equation, which reads[

α · p + V N
0 + γ 0(mN + SN )

]
ψN

k (r) = εN
k ψN

k (r) (8)

for nucleons, with the scalar field SN (r) = �S(r) +
τ3�T S(r) and vector field V N

0 (r) = �V (r) + τ3�T V (r)

defined as

�S = αSρ
N
S + βS

(
ρN

S

)2 + γS

(
ρN

S

)3 + δS�ρN
S

+α
(N�)
S ρ�

S + δ
(N�)
S �ρ�

S , (9a)

�T S = δT S�ρN
T S + αT Sρ

N
T S, (9b)

�V = αV ρN
V + γV

(
ρN

V

)3 + δV �ρN
V + eA0

1 − τ3

2

+α
(N�)
V ρ�

V + δ
(N�)
V �ρ�

V + α
(N�)
T ρ�

T , (9c)

�T V = αT V ρN
T V + δT V �ρN

T V . (9d)

On the other hand, the Dirac equation for the � hyperon
inside the hypernucleus reads[

α · p + V �
0 + γ 0(S� + m�)

]
ψ�

k (r) = ε�
k ψ�

k (r), (10)

with the vector field V �
0 = UV + UT , and

UV = δ
(N�)
V �ρN

V + α
(N�)
V ρN

V , (11a)

UT = −iα
(N�)
T βα · ∇ρN

V , (11b)

S� = δ
(N�)
S �ρN

S + α
(N�)
S ρN

S . (11c)

These two Dirac equations (8) and (10) are solved by ex-
panding the Dirac spinors ψB

k for nucleons and hyperon on the
basis of a 3DHO with the oscillator length parameter chosen as
bx = by = bz = √

�/(mω0), where the oscillator frequency is
determined by �ω0 = 41A−1/3 (MeV). In addition, to reduce
the computational task, it is assumed that the total densities are
symmetric under reflections with respect to the three planes
xy, xz, and yz. The Coulomb field A0 is obtained through
a direct integration of the Poisson equation. To obtain the
total energies and the mean-field wave functions for triaxially
deformed hypernuclei and the corresponding core nucleus
as a function of deformation parameters (β,γ ), a quadratic
constraint calculation on the mass quadrupole moments is
carried out by minimizing the following energy with respect
to single-particle wave function:

E′ = ERMF +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2, (12)

where C2μ is a stiffness parameter and 〈Q̂2μ〉 denotes the
expectation value of the mass quadrupole moment operator,

Q̂20 =
√

5

16π
(2z2 − x2 − y2), Q̂22 =

√
15

32π
(x2 − y2).

(13)

In Eq. (12), q2μ are the quadrupole moment of mean-
field state to be obtained. The deformation parameters
(β,γ ) of mean-field state are related to the expectation
values of the mass quadrupole moment operator by β =

4π
3AR2 (〈Q20〉2 + 2〈Q22〉2)1/2 and γ = tan−1(

√
2 Q22

Q20
), respec-

tively, with R = 1.2A1/3 (fm). We note that the deformation
parameters (β,γ ) are calculated with the nuclear density
ρN (r) for the core nuclei (cn) and with the total density
ρN (r) + ρ�(r) for the hypernuclei.

The center-of-mass correction energy Ec.m. is calculated
by taking the expectation value of the kinetic energy for the
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center-of-mass motion with respect to the mean-field wave
function. For a single-� hypernucleus, it is given by

Ec.m. =
〈
P2

N + P2
�

〉
2(AmN + m�)

, (14)

where PB is the total momentum of the baryons (B = N,�)
in hypernucleus with A nucleons and one � hyperon.

Following Refs. [46,60], the pairing correlation among
nucleons is taken into account with the BCS method using
a density-independent zero-range pairing force supplemented
with a smooth cutoff [68]. The resultant pairing energy Epair

is added to the total energy, which is finally given by

Etot
(A+1

�
Z

) = ERMF − AmNc2 − m�c2 − Ec.m. + Epair.

(15)

The total binding energy B(A+1
� Z) of a single-� hypernucleus

is given by B(A+1
� Z) = −Etot(

A+1
� Z). To study the change of

energy surface of nuclear core by the � hyperon, we also
introduce the energy Ecn

tot(
A+1

�Z) for the core nucleus inside a
hypernucleus as

Ecn
tot

(A+1
�Z

) ≡ Etot
(A+1

�Z
) − E�

RMF + E�
c.m., (16)

where the last term, E�
c.m. = 〈P2

�〉
2(AmN +m�) , is the contribution of

� particle to the center-of-mass correction energy.

III. RESULTS OF MEAN-FIELD STUDIES

A. Illustrative calculations

We first carry out an illustrative calculation to test our
triaxial RMF code for some spherical hypernuclei, comparing
with the results by the spherical RMF code in coordinate
space with the box size of R = 15 fm [62]. If not particularly
indicated, the same parameters are used in both calculations,
including the masses of nucleons and � which are taken as
mN = 939 MeV/c2 and m� = 1115.6 MeV/c2, respectively,
and the PC-F1 force [60] for the NN interaction and the
PCY-S1 [62] for the N� interaction. Taking 17

�sO as an
example, where the � particle is put in the 1s1/2 orbital, we
plot in Fig. 1 the mean-field potentials V B

0 + SB and V B
0 − SB

for neutron, proton, and �, together with the tensor density
α

(N�)
T ρ�

T from the triaxial RMF calculation. We compare the
results with three different maximum major-shell numbers in
the 3DHO basis, Nf = 8, 10, and 12. The results are compared
also with those by the spherical RMF calculations. It is shown
that the mean-field potentials are well converged at Nf = 10.
In contrast, the tensor density (7), which originated from the
tensor coupling term LN�

ten , has a slightly slower convergence
behavior, especially at small values of z. It is shown that
the tensor density obtained with the maximum shell number
Nf = 12 gives a good agreement with the spherical RMF
result.

Table I shows the detailed structural properties of hyper-
nuclei, 17

�sO, 31
�sSi, 33

�sS, and 41
�sCa from both the spherical and

triaxial RMF calculations. In the triaxial RMF calculation,
fourteen major HO shells (Nf = 14) are adopted to expand
the Dirac spinors, with which the quadrupole deformation β
of hypernuclei is convergent to zero. It is shown that both

FIG. 1. (Color online) (a) The convergence feature of potentials
V B

0 (r) + SB (r), (b) V B
0 (r) − SB (r) (with B = n,p,�), and (c) the

tensor density α
(N�)
T ρ�

T (r) with respect to the maximum number of
major shell (Nf ) in the 3DHO basis for the triaxial RMF calculation
for 17

�O. These quantities are evaluated at x = y = 0.36 fm and
plotted as a function of z. For a comparison, the results of spherical
RMF calculations are also shown by the lines.

approaches give results very close to each other. The remaining
small differences in the binding energies can be reduced
further by increasing the maximum major-shell number Nf

of the HO basis and constraining the high-order hexadecapole
deformation to be zero in the triaxial RMF calculation.

We note that the results presented in Table I are obtained
without breaking the symmetry of time-reversal invariance in
the mean-field calculations for the � hypernuclei. It has been
found in recent studies [69,70] that the effect of time-odd fields
from the breaking of time-reversal invariance by one unpaired
nucleon on the binding energies is in between 0.1 and 0.2 MeV
for the ground state of the sd-shell odd-mass nuclei. For the
single-� hypernuclei with an even-even nuclear core and the
� in a low-orbital-angular-momentum state, the effect caused
by the unpaired � hyperon is even smaller and it leads to an
energy splitting of 0.1 MeV for the time-reversal partner states
of s1/2 orbital in 17

�O [56]. Since the time-reversal invariance
is imposed in both the spherical and triaxial deformed RMF
calculations, this effect will not contribute to the difference in
the two results.

B. Hyperon binding energy and deformation effect

We first discuss the effect of deformation on the binding
energy of hypernuclei. Figure 2(a) shows the � binding
energies B� in single-� hypernuclei obtained with the spher-
ical and triaxial RMF calculations, in comparison with the
experimental data. Here, B� is defined as the energy difference
between the ground state (g.s.) of hypernucleus and that of the
core nucleus; that is, B� ≡ Etot(AZ,g.s.) − Etot(A+1

�Z,g.s.). In
the triaxial RMF calculation for the � hypernuclei, the �
hyperon is always put in the lowest state among those which
are connected to the s,p, . . . ,g state in the spherical limit. The
corresponding � is therefore denoted as �s, �p, . . . , �g for
convenience. In the spherical RMF calculations, two values of
B� for the �� �= 0 cases are plotted, corresponding to the �
hyperon in the spin-orbit partner states. Due to the introduction
of a strong � tensor coupling, the energy splitting of the
spin-orbit partner states by the spherical RMF calculation is
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TABLE I. The total energy Etot, the kinetic energy Ekin (=TN + T�), the root-mean-square (rms) radii of neutrons rn, protons rp , and
hyperon r�, and the energy of the lowest three single-particle states for neutron, proton, and hyperon obtained with the triaxial RMF (Tri.RMF)
calculation for 17

�sO, 31
�sSi, 33

�sS, and 41
�sCa, in comparison with those with the spherical RMF (Sph.RMF) calculations. All the energies are in

MeV and the radii are in fm.

17
�sO

31
�sSi 33

�sS
41
�sCa

Sph.RMF Tri.RMF Sph.RMF Tri.RMF Sph.RMF Tri.RMF Sph.RMF Tri.RMF

Etot −140.317 −140.309 −269.491 −269.476 −285.434 −285.320 −363.459 −363.174
Ekin 210.036 210.031 435.385 435.436 439.216 439.164 518.686 518.239
Ecm 9.752 9.750 9.282 9.281 8.915 8.902 8.167 8.140
rn 2.613 2.613 3.084 3.083 3.088 3.088 3.340 3.341
rp 2.638 2.638 2.984 2.984 3.129 3.129 3.385 3.386
r� 2.458 2.458 2.516 2.515 2.571 2.570 2.820 2.823

neutron 1s1/2 −41.629 −41.628 −54.234 −54.260 −57.544 −57.528 −53.827 −53.817
neutron 1p3/2 −21.937 −21.937 −34.531 −34.551 −36.477 −36.480 −37.859 −37.854
neutron 1p1/2 −15.285 −15.288 −27.694 −27.728 −28.480 −28.496 −33.354 −33.362
proton 1s1/2 −37.517 −37.514 −51.510 −51.521 −50.462 −50.445 −45.721 −45.712
proton 1p3/2 −18.107 −18.105 −30.474 −30.490 −29.744 −29.746 −30.102 −30.096
proton 1p1/2 −11.531 −11.533 −23.848 −23.877 −21.827 −21.841 −25.601 −25.608
hyperon 1s1/2 −12.569 −12.570 −18.908 −18.946 −18.458 −18.483 −18.305 −18.278
hyperon 1p3/2 −2.336 −2.297 −8.485 −8.510 −8.405 −8.416 −10.112 −10.108
hyperon 1p1/2 −1.995 −1.947 −8.391 −8.406 −8.189 −8.207 −10.255 −10.263

less than 0.5 MeV and mostly with a sign opposite that of
the ordinary nuclei [62]. The triaxial RMF approach yields
results similar to those of the spherical RMF approach for
the � binding energies of most hypernuclei, except for 9

�Be,
28
� Si, and 51

�V which are deformed in their ground states [see
Fig. 2(b) for the value of deformation parameter]. For these
nuclei, a nonzero deformation β decreases the binding energy
of �s and improves the agreement with the data, while it
significantly overestimates the binding energy of �p and �d .

FIG. 2. (Color online) (a) The � binding energies in single-�
hypernuclei with � in different single-particle states obtained with
the spherical and the triaxial RMF calculations, and their comparison
with the available data from Refs. [20,71–73]. The parameter
set PC-F1 and PCY-S1 are adopted for the NN and the N�

interactions, respectively. (b) The quadrupole deformation β for each
� hypernuclei obtained with the triaxial RMF calculation. See text
for more details.

We take hypernucleus 51
�V as an example to illustrate the

deformation effect on B�. Figure 3 shows that the energy
minimum of hypernucleus 51

�sV is shifted slightly towards
spherical shape, while that of 51

�pV and 51
�dV is pushed to a larger

deformed shape. Moreover, it is shown that the deformation
of hypernuclei increases from 51

�sV to 51
�pV, and then to 51

�dV.
The difference in the B� values of 51

�V by the spherical and

FIG. 3. (Color online) The total energy of 50V, 51
�sV, 51

�pV, and
51
�dV as a function of deformation parameter β with the triaxially
deformed RMF calculations. The energy of hypernuclei is shifted
by normalizing the minimum energy to that of 50V. The energy
difference between the hypernuclei and 50V at β = 0 is indicated
with the numbers.
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triaxial RMF calculations is also shown clearly in Fig. 3, where
the energy of hypernucleus 51

�V decreases or increases by 0.1,
0.8, and 2.2 MeV for the �s , �p, and �d , respectively. The
microscopic mechanism responsible for these phenomena can
be traced to the Nilsson diagram of hyperon single-particle
energies, which will be discussed in detail in the next section.

C. Shape polarization effect of � hyperon in sd-shell
nuclei in (β,γ ) plane

In order to discuss more in detail the shape polarization
effect of � hyperon, we take as examples three sd-shell hy-
pernuclei: the prolate deformed 24Mg and the oblate deformed
26Mg and 30Si, the latter two having transitional characters.
Figure 4(a) shows the PESs for 25

�sMg, 25
�pMg, 27

�sMg, 27
�pMg,

31
�sSi, and 31

�pSi obtained with the triaxial RMF method as a
function of deformation parameter β. The energy surfaces
for the corresponding core nuclei are also shown. As in the
case of 51

�V shown in Fig. 3, the energy minimum of 25
�sMg

and 25
�pMg is shifted to a slightly smaller and larger deformed

region, respectively, compared with that of the core nucleus.
For 26Mg, �s significantly lowers down the barrier between
the oblate and prolate minima. Of particular interest is that
the �p inverts the energy order of the oblate and prolate
minima in 26Mg. A significant change of the deformation
parameter of the mean-field ground state by � hyperon is
shown in 30Si. That is, the �s brings the oblate deformed 30Si
to spherical 31

�sSi. A similar conclusion has been obtained also
in Refs. [9,10]. In contrast, the �p drives 30Si to be more oblate

FIG. 4. (Color online) The potential-energy surfaces obtained
with the triaxially deformed RMF calculations for (a) 24Mg, 25

�sMg,
25
�pMg, and the core nucleus inside 25

�sMg; (c) 26Mg, 27
�sMg, 27

�pMg, and
the core nucleus inside 27

�sMg; (e) 30Si, 31
�sSi, 31

�pSi, and the core nucleus
inside 30

�sSi as a function of deformation parameter β. All the energies
are normalized to the global minimum. The deformation-dependent
� separation energy defined by Eq. (17) as a function of deformation
parameter β for (b) 25

�sMg and 25
�pMg; (d) 27

�sMg and 27
�pMg; and (f)

31
�sSi and 31

�pSi. The binding energies of �s and �p for each case are
given above the figures.

deformed. It is worthwhile to mention that, although the PESs
of hypernuclei could be significantly different from those of
core nuclei, the differences in the PESs for the core nuclei
inside the hypernuclei (the dotted lines) and for the core nuclei
without the hyperon impurity (the solid lines) are negligibly
small.

To illustrate the shape-driving effect of � hyperon in
different orbitals, we introduce a deformation-dependent �
separation energy S�(β) as

S�(β) ≡ Etot(
AZ,β) − Etot(

A+1
�Z,β), (17)

where Etot(A+1
�Z,β) and Etot(AZ,β) are the total energies

of the hypernucleus and the core nucleus at deformation β,
respectively. Here, we take the same deformation value β for
the hypernucleus and the core nucleus to define the quantity
S�(β). Notice that, even though S�(β) is different from the
standard definition of hyperon separation energy, it provides a
convenient way to understand the shape polarization effect of
�. The S�(β) in 25

�sMg, 25
�pMg, 27

�sMg, 27
�pMg, 31

�sSi, and 31
�pSi is

shown in Figs. 4(b), 4(d), and 4(f) as a function of deformation
β. It is seen clearly that the S� decreases (or increases) with
β for �s (or �p), which provides a mechanism to change the
structure of the PESs in such a way that the nuclear shape
becomes less or more deformed.

Figure 5(a) shows a comparison of the potential-energy
surfaces for 30Si, 31

�sSi, and 31
�pSi from the deformed RMF

calculation with different N� interactions; namely, the PCY-
S1 and PCY-S4 [62]. It is seen that the potential-energy surface
of 31

�sSi is similar to each other for both of the two N�

FIG. 5. (Color online) (a) The potential-energy surfaces for 30Si,
31
�sSi, 31

�pSi, as a function of deformation parameter β obtained with
the deformed RMF calculations using the same PC-F1 force for the
NN interaction but different N� interaction (PCY-S1 and PCY-S4
[62], respectively). The energies are normalized to the global minima.
(b) The � separation energy S�(β) as a function of deformation
parameter β.
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FIG. 6. (Color online) (a) The total energy of 24Mg, 25
�sMg,

and 25
�pMg as a function of deformation parameter γ , where

the deformation β is fixed at the value of the global minimum
of the energy surface. The energies are normalized to the energy
of the global minimum. (b) Same as in panel (a), but for 26Mg, 27

�sMg,
and 27

�pMg.

interactions. However, those of 31
�pSi are evidently different

in some deformation region. This difference is shown more
clearly in the comparison of the � separation energy S�(β)
in Fig. 5(b). For �s , the two N� interactions give similar
slopes of S�(β) as a function of deformation β. On the other
hand, for �p, the slope is apparently different on the prolate
side, resulting in the different behavior of the potential-energy
surface of 31

�pSi. It implies that the impurity effect of �p is
somewhat sensitive to the N� interaction, in contrast with
that of �s .

The influence of � hyperon on nuclear triaxiality is
illustrated in Fig. 6, which shows the PESs for 25

�sMg, 25
�pMg,

27
�sMg, 27

�pMg, and their core nuclei as a function of γ

deformation. For 24Mg with a pronounced prolate energy
minimum, the stiffness of the PES along the γ deformation
increases by adding �s or �p. This tendency is opposite
that predicted by the Skyrme–Hartree–Fock (SHF) calculation
[40]. For 26Mg, with a shallow oblate energy minimum, the
inclusion of �s softens the PES along the γ deformation, in
agreement with the previous SHF calculation. However, at the
same time, the energy minimum is shifted to a prolate-like
shape with γ = 12◦ by adding �p, which is a consequence
of competition between the γ deformation effect and the �p

impurity effect.
The impurity effects of �s and �p on nuclear quadrupole

deformation β and γ discussed in Figs. 4 and 6 can be also
studied in the PES over the whole (β,γ ) plane. Figures 7, 8,
and 9 show the PESs for 24,26Mg and 30Si, together with
the hypernuclei 25,27

� Mg and 31
�Si with a �s or �p. The

contribution of �s and �p to the total energy of hypernuclei
in the (β,γ ) plane is also plotted. One can again see that

FIG. 7. (Color online) The potential-energy surfaces of (a) 24Mg,
(b) 25

�sMg, (c) 25
�sMg (cn), and (d) 25

�pMg in the (β,γ ) plane. The
energies are normalized to the global minimum. The energy difference
between (e) 25

�sMg and its core nucleus and (f) between 25
�pMg and its

core nucleus are also plotted. Two neighboring contour lines are
separated by 0.5 MeV.

FIG. 8. (Color online) Same as Fig. 7, but for 26Mg, 27
�sMg, and

27
�pMg.
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FIG. 9. (Color online) Same as Fig. 7, but for 30Si, 31
�sSi, and 31

�pSi.

the �s stabilizes the spherical shape, while �p stabilizes the
deformed shape.

To understand the impurity effects of �s and �p in a
qualitative way, we plot in Fig. 10 the Nilsson diagram
of the single-particle energy for � hyperon in 25

�sMg as a
function of deformation parameters β and γ . The results of
the calculation without the tensor potential UT in the Dirac

FIG. 10. (Color online) The single-particle energies of � hy-
peron in 25

�sMg as a function of deformation parameters β and γ

from the calculation with the PC-F1 and PCY-S1 for the NN and
N� interactions, respectively. In panel (a), the energy levels from
the calculation without the tensor potential UT (11b) are also plotted
with the dashed lines.

equation for � hyperon are also plotted for comparison. It
is shown that the tensor potential UT pushes up the energy
of the 1s1/2 and 1p3/2 orbitals and reduces significantly
the spin-orbit splitting between the partner states �p3/2 and
�p1/2 at the spherical shape. The resultant energy splitting is
�Eso = εj=l−1/2 − εj=l+1/2 = −0.16 MeV. The inversion of
the energy order of the spin-orbit partner states for a � hyperon
is a particular character of the parameter set PCY-S1 for the
N� interaction with a very strong tensor coupling [62].

With the increase of deformation β, the �s becomes slightly
less bound, while the �p becomes deeper bound. It explains
both the behaviors of � separation energy as a function of β
and the different shape-driving effects of �s and �p shown
in Fig. 4. In other words, �s drives the hypernucleus toward
a spherical shape, while �p drives the hypernucleus towards
large deformation, as has been pointed out in Ref. [45] based
on AMD calculations. For the axial asymmetric shapes, the
energies of the three p-hyperon orbitals in 25

�sMg apparently
differ from each other. The rotational bands with such
configurations have been discussed recently based on the AMD
model [74]. The energy of �p increases with γ , explaining
the phenomenon that the �p drives hypernucleus towards
prolate-like shape with slightly larger deformation β [see
Fig. 6(b)].

IV. PROJECTED POTENTIAL ENERGY SURFACES FOR
25
�MG WITH MICROSCOPIC PARTICLE-ROTOR MODEL

The deformed mean-field states considered in the previous
section break rotational symmetry and thus several angular
momentum components are admixed in the wave functions.
To compare with experimental data, one has to make a
transformation from the intrinsic frame to the laboratory frame,
which can be realized by introducing the technique of AMP. It
can be implemented based on the mean-field wave function for
the whole � hypernuclei composed of an even-even nuclear
core and one unpaired � particle. Rather than implementing
the AMP for an odd-mass nuclear system, however, we instead
apply the microscopic particle-rotor model (PRM) [13] to
calculate the PESs for the hypernuclei.

The microscopic PRM was developed recently by the
present authors using the transition densities from the mul-
tireference DFT calculation [75,76]. In this model, the wave
function of � hypernucleus is constructed as

�IM (r�,{rN }) =
∑
j�J

Rj�J (r�)F IM
j�J (r̂�,{rN }), (18)

where F IM
j�J is given by

F IM
j�J (r̂�,{rN }) = [Yj�(r̂�) ⊗ �J ({rN })](IM), (19)

with r� and rN being the coordinates of the � hyperon and the
nucleons, respectively. Here, I is the total angular momentum
and M is its projection onto the z axis for the whole �
hypernucleus. Rj�J (r�) and Yj�(r̂�) are the four-component
radial wave function and the spin-angular wave function for
the � hyperon, respectively. In this paper, the wave function
�J ({rN }) for the nuclear core is chosen as the projected
mean-field wave function with different intrinsic deformation
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FIG. 11. (Color online) Comparison of the particle-number and
angular-momentum projected PES (solid curve) of 24Mg with the
PESs with spin-parity of Iπ = 1/2+ (dashed curve) and 1/2− (dash-
dotted curve) for 25

�Mg obtained with the microscopic particle-rotor
model.

β; that is,

|�JMJ
(β)〉 = P̂ J

MJ KP̂ N P̂ Z|ϕ(β)〉, (20)

where P̂ J
MJ K is the projection operator onto a good number

of angular momentum, while P̂ N and P̂ Z are those for
neutron and proton numbers, respectively. The total energy
of a � hypernucleus with spin-parity Iπ corresponding to
deformation β of the core nucleus is defined as the energy EI

of the lowest solution of the equation Ĥ |�IM〉 = EI |�IM〉,
from which one can derive the coupled-channel equations
for Rj�J (r�). More details on the microscopic PRM for �
hypernuclei are given in Refs. [13,77].

Figure 11 shows the resultant PES EI (β) for 25
�Mg with

spin-parity of Iπ = 1/2+ and 1/2− as a function of the
deformation β of the core nucleus. The energy curve for the
3/2− state is almost the same as the that for the 1/2− state and
is therefore not shown in the figure. In these calculations, only
the leading-order four-fermion coupling terms (3) are taken
into account for the N� interaction with coupling strengths
fit to the � binding energy from the coupled-channel PRM
calculation [13] to the value B� = 16.6 MeV from the triaxial
RMF calculation for 25

�sMg. For comparison, the PES for the
core nucleus 24Mg with projection onto the particle number
and angular momentum J = 0 is also plotted. (The PESs for
25
�Mg are calculated by coupling the hyperon to several J states

of the core nucleus built on the deformed mean-field state.)
We note that the 1/2+ state is dominated by the configuration
with � in s orbital, while the 1/2− state is dominated by
the configurations of [p1/2 ⊗ 0+] and [p3/2 ⊗ 2+] at nonzero
deformation β.

The impurity effect of � in the s and p orbitals on the PES
after restoration of rotational symmetry can be inferred from
the comparison of the PESs for 25

�Mg with the projected PES
(N&Z, J = 0) for 24Mg. It is shown that the PES for 25

�Mg
with Iπ = 1/2+ has a global energy minimum at a slightly

smaller deformation β = 0.55 than the deformation β = 0.60
for 24Mg. It confirms the conclusion drawn from the mean-field
results shown in Fig. 4(a). For 25

�Mg with 1/2−, the energies
of the spherical and oblate deformed shapes with respect to
the prolate minimum are significantly increased compared
with those for the core nucleus with J = 0. However, it is
difficult to assess the change of the collectivity for this case,
which depends on the distribution of the weight function in
deformation plane. In order to determine such a distribution,
one could carry out the microscopic PRM calculation by
coupling � to the configuration mixed nuclear core states,
as has been done for 9

�Be in Ref. [13]. However, this method
is currently limited only to axial deformations. Alternatively,
one can introduce a triaxial GCM or 5DCH method for the
core nucleus to examine the � impurity effect in a quantitative
way. Since the former is very time consuming for a systematic
study, the 5DCH is adopted in the subsequent study.

V. BEYOND-MEAN-FIELD STUDY OF CORE
NUCLEI WITH MICROSCOPIC COLLECTIVE

HAMILTONIAN METHOD

In the 5DCH approach, the collective excitations of the
core nucleus are described with the following collective
Hamiltonian:

Ĥ = T̂vib + T̂rot + Vcoll, (21)

where the first two terms are the vibrational kinetic energy

T̂vib =− �
2

2
√

wr

{
1

β4

[
∂

∂β

√
r

w
β4Bγγ

∂

∂β
− ∂

∂β

√
r

w
β3Bβγ

∂

∂γ

]

+ 1

β sin 3γ

[
− ∂

∂γ

√
r

w
sin 3γBβγ

∂

∂β

+ 1

β

∂

∂γ

√
r

w
sin 3γBββ

∂

∂γ

]}
, (22)

and the rotational kinetic energy

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

, (23)

with Ĵk denoting the components of the angular momentum
in the body-fixed frame of a nucleus. Two quantities that
appear in the vibrational kinetic energy; that is, r = B1B2B3

and w = BββBγγ − B2
βγ , determine the volume element in the

collective space. The mass parameters Bββ , Bβγ , and Bγγ , as
well as the moments of inertia Ik , depend on the quadrupole
deformation variables β and γ :

Ik = 4Bkβ
2 sin2(γ − 2kπ/3), k = 1,2,3, (24)

and are determined by the triaxial RMF + BCS calculations
in the cranking approximation [78].

The third term Vcoll in Eq. (21) is a collective potential given
by

Vcoll (β,γ ) = Ẽtot − �Vvib (β,γ ) − �Vrot (β,γ ) , (25)

where �Vvib(β,γ ) and �Vrot(β,γ ) are the zero-point energy of
vibrational and rotational motions, respectively. Ẽtot is given
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FIG. 12. (Color online) (a) The collective potential Vcoll, (b) the
moment of inertia along x axis, Ix , (c) the mean squared radius
of protons, and (d) the mass parameters Bββ as a function of
quadrupole deformation β for 24Mg and 25

�Mg (cn) obtained with
the fine-dimensional collective Hamiltonian (5DCH) approach.

by the summation of total energy for the core nucleus inside the
hypernucleus and the N� interaction energy εN�(r) [Eq. (6b)]
which carries most of information on the � impurity effect.

The eigenvalue problem with the collective Hamiltonian is
solved by expanding eigenfunctions in terms of a complete set
of basis functions that depend on the five degrees of freedom:
the deformation variables β and γ , and the Euler angles φ, θ ,
and ψ [79].

Figure 12 shows the parameters in the 5DCH as a function
of quadrupole deformation β for 24Mg and the core nucleus
inside 25

�sMg and 25
�pMg. These are the collective potential

Vcoll, the moment of inertia along the x direction, Ix , the
rms radius of protons, and the mass parameters Bββ . It is
shown that the collective potentials for the core nucleus inside
25
�sMg and 25

�pMg have a similar behavior as the projected
PESs for 25

�sMg and 25
�pMg shown in Fig. 11. Moreover, the

moment of inertia for the core nucleus around the energy
minimum is significantly reduced by �s and �p. The resultant
energy spectrum is stretched as shown in Fig. 13 for the

FIG. 13. (Color online) (a), (b) The low-spin spectra of the
ground-state band for 24Mg and (c), (d) the nuclear core of 25

�Mg
obtained with the 5DCH method. The B(E2) values are in units of
e2 fm4. The spectrum of 24Mg is compared with the corresponding
experimental data, taken from Ref. [80].

FIG. 14. (Color online) Same as Fig. 12, but for 26Mg and nuclear
core inside 27

� Mg.

low-spin spectra of the ground-state band for 24Mg and for
the core nucleus inside 25

�Mg. �s increases the excitation
energy Ex(2+

1 ) for the 2+
1 state by ∼12.2% and reduces the E2

transition strength B(E2 : 2+
1 → 0+

1 ) by ∼11.8% compared
with the value of ∼7% and ∼9%, respectively, found in our
previous 5DCH calculation for the same nucleus based on the
nonrelativistic Skyrme EDFs [11,81].

The sensitivity of the � impurity effect on nuclear collective
properties to the underlying EDFs has been examined based
on several sets of Skyrme EDFs with various pairing strengths
for 45

�sS [81]. It has been found that, although different Skyrme
EDFs give somewhat different low-lying spectra for the core
nucleus, they give similar and generally small size of �
impurity effect (typically within 5%) on the spectroscopic
observables. From this point of view, one can draw a conclu-
sion that the present relativistic study yields the �s impurity
effect on nuclear low-energy structure which is larger than that
by nonrelativistic Skyrme EDFs, similarly to the conclusion
for mean-field calculations [44]. In addition, it is shown that
the �p increases the excitation energy of 2+

1 state by ∼9.1%
and reduces the E2 transition strength B(E2 : 2+

1 → 0+
1 ) by

∼6.9%. Moreover, we note that the excitation energy of 2+
2

state is increased from 5.62 to 5.88 and 6.67 MeV due to �s

and �p, respectively, which is consistent with the observation
in Fig. 6.

Figure 14 shows the parameters in the 5DCH for 26Mg and
the core nuclei inside 27

�sMg and 26
�pMg. Similar to the PESs

in Fig. 8, the collective potential Vcoll is rather different for
the 27

�sMg, 27
�pMg and the core nucleus 26Mg. Similarly to the

24Mg case, the �s and �p apparently reduce the moments of
inertia around the prolate minimum of the collective potential.
The competition of the changes in the collective potential
and the collective parameters results in the � impurity effect
on the low-energy excitations. Figure 15 shows the low-spin
spectra of the ground-state band for the 26Mg and 27

�Mg. It
is shown that the �s increases the excitation energy of the
2+

1 state by ∼16.2% and reduces the B(E2 : 2+
1 → 0+

1 ) by
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FIG. 15. (Color online) Same as Fig. 13, but for 26Mg and 27
�Mg

(cn). The experimental data for 26Mg are taken from Refs. [82,83].

∼14.3%. Moreover, the �p increases the excitation energy of
the 2+

1 state by ∼15.2% and reduces the B(E2 : 2+
1 → 0+

1 ) by
∼8.6%. The excitation energy of the 2+

2 state is increased from
3.92 to 4.63 and 4.68 MeV due to �s and �p, respectively.

Figure 16 shows the collective parameters for 30Si and
31
�Si. In contrast to the �p effect in 25,27

�sMg, the �p

increases the mass parameters in most of the deformation
regions. Together with the well-developed oblate minimum,
�p increases the nuclear collectivity as shown in Fig. 17. �p

increases significantly B(E2 : 2+
1 → 0+

1 ) of the core nucleus
30Si by ∼16.7% and decreases slightly the excitation energy of
2+

1 state. The excitation energy of the 2+
2 state is altered from

4.28 to 4.99 and 4.26 MeV due to �s and �p, respectively.
The impurity effect of �s and �p is summarized in Fig. 18.

The change in the proton root-mean-squared radius of the
ground state is within 1% for all the three nuclei. It confirms
that the reduction or enhancement of the B(E2) value for the
core nucleus by adding a � particle mainly originates from
the modification of nuclear collective potential, the moment
of inertia, and the mass parameters, rather than a shrinkage or
an expansion of proton distribution as found in light nuclear
systems with cluster structures [5]. One can also see that the
changes in the excitation energies Ex(2+

1 ) and Ex(2+
2 ) for the

lowest two 2+ states are similar to one another. To examine

FIG. 16. (Color online) Same as Fig. 12, but for 30Si and nuclear
core inside 31

�Si.

FIG. 17. (Color online) Same as Fig. 13, but for 30Si and 31
�Si

(cn). The experimental data for 30Si are taken from Refs. [82,83].

the model dependence of the � impurity effect for 30Si, we
also plot the results by the PCY-S4N� interaction in Fig. 18. It
shows again that the impurity effect of �s is much less sensitive
to the N� interaction than that of �p, which is consistent with
the potential-energy surfaces in Fig. 5.

VI. SUMMARY

We established a triaxially deformed relativistic mean-field
approach for � hypernuclei based on a point-coupling EDF.
Using the 5DCH method based on this approach, we quan-
titatively studied the impurity effect of �s and �p hyperon

FIG. 18. (Color online) The impurity effect of �s and �p hy-
peron on the excitation energies Ex(2+

1 ) and Ex(2+
2 ) for the lowest

two 2+ states, the proton root-mean-squared radius rp of the ground
state (0+

1 ), and the E2 transition strength B(E2 : 2+
1 → 0+

1 ) in 24,26Mg
and 30Si from the 5DCH calculations based on the PC-F1 and PCY-S1
forces for the NN and N� interactions, respectively. For comparison,
the impurity effect of �s and �p on 30Si calculated with the N�

interaction of PCY-S4 [62] is also plotted in the last column.
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on the low-energy collective excitations of 24Mg, 26Mg, and
30Si. In addition, we studied the quadrupole deformation effect
on the � binding energies of hypernuclei. In particular, the
PESs of three sd-shell � hypernuclei 25,27

� Mg and 31
�Si, as

well as their core nucleus in the (β,γ ) deformation plane was
calculated. The low-lying states of the core nuclei before and
after adding a � hyperon in the lowest positive-parity (�s) and
the negative-parity (�p) states were also discussed. Moreover,
the PESs of 25

�Mg with spin-parity of Iπ = 1/2+ and 1/2−
were obtained with the microscopic PRM and compared with
the PES of the core nucleus with Jπ = 0+. Our main findings
in the present study are summarized as follows:

(i) The quadrupole deformation decreases the �s binding
energy and increases the �p binding energy in the �
hypernucleus.

(ii) The potential-energy surfaces of the whole � hy-
pernuclei could be significantly different from those
of the core nuclei without the hyperon impurity. In
general, the hypernuclei with a �s (�p) have an
energy minimum with smaller (larger) deformation
than the core nucleus. However, the potential-energy
surfaces of the core nuclei inside the hypernuclei are
very similar to that of the nuclei without hyperon.

(iii) Quantitatively, �s increases the excitation energy of
the 2+

1 state and decreases the E2 transition strength
from this state to the ground state in the core nucleus
by 12% to 17%; about twice larger than the value

found in our previous 5DCH study based on the
nonrelativistic Skyrme EDFs. However, �p can either
increase or decrease the collectivity of the core nucleus
depending on the competition between the changes
in the potential-energy surface and the collective
parameters.

Finally, we emphasize that the generalization of our triaxial
RMF approach for hypernuclei to multistrangeness systems
is straightforward. Moreover, the present approach provides
a starting point to carry out a beyond-mean-field calculation
of the low-lying states of � hypernuclei by introducing the
techniques of exact projections and GCM [47,55] for the odd-
mass system, the results of which can be compared with those
of the microscopic PRM [13] based on the same relativistic
point-coupling EDF.
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Phys. Rev. C 85, 034303 (2012).

[13] H. Mei, K. Hagino, J. M. Yao, and T. Motoba, Phys. Rev. C 90,
064302 (2014).

[14] K. Hagino, J. M. Yao, F. Minato, Z. P. Li, and M. T. Win, Nucl.
Phys. A 914, 151 (2013).

[15] F. Minato, S. Chiba, and K. Hagino, Nucl. Phys. A 831, 150
(2009).

[16] F. Minato and S. Chiba, Nucl. Phys. A 856, 55 (2011).

[17] F. Hofmann, C. M. Keil, and H. Lenske, Phys. Rev. C 64, 025804
(2001).

[18] D. Davis, Nucl. Phys. A 754, 3 (2005).
[19] R. Dalitz, Nucl. Phys. A 754, 14 (2005).
[20] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57, 564

(2006).
[21] E. Hiyama and T. Yamada, Prog. Part. Nucl. Phys. 63, 339

(2009).
[22] H.-J. Schulze, Nucl. Phys. A 835, 19 (2010).
[23] E. Hiyama, Few-Body Syst. 53, 189 (2012).
[24] E. Botta, T. Bressani, and G. Garbarino, Eur. Phys. J. A 48,

(2012).
[25] K. Hagino and J. M. Yao, arXiv:1410.7531v1.
[26] H. Tamura et al., Phys. Rev. Lett. 84, 5963 (2000).
[27] M. Rayet, Ann. Phys. (NY) 102, 226 (1976).
[28] R. Brockmann and W. Weise, Phys. Lett. B 69, 167 (1977).
[29] J. Boguta and S. Bohrmann, Phys. Lett. B 102B, 93 (1981).
[30] Y. Yamamoto, H. Bando, and J. Zofka, Prog. Theor. Phys. 80,

757 (1988).
[31] J. Mares and J. Zofka, Z. Phys. A 333, 209 (1989).
[32] M. Rufa, J. Schaffner, J. Maruhn, H. Stöcker, W. Greiner, and
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